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ABSTRACT

Nowadays, Apache Hive has been widely used for large-scale data

analysis applications in many organizations. Various visual ana-

lytical tools are developed to help Hive users quickly analyze the

query execution process and identify the performance bottleneck of

executed queries. However, existing tools mostly focus on showing

the time usage of query sub-components (jobs and operators) but

fail to provide enough evidence to analyze the root reasons for

the slow execution progress. To tackle this problem, we develop a

visual analytical system DHive to visualize and analyze the query

execution progress via dataflow analysis. DHive shows the dataflow

during query execution at multiple levels: query level, job level and

task level, which enable users to identify the key jobs/tasks and

explain their time usage by linking them to the auxiliary informa-

tion such as the system configuration and hardware status. We

demonstrate the effectiveness of DHive by two cases in a produc-

tion cluster. DHive is open-source at https://github.com/DBGroup-

SUSTech/DHive.git.
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1 INTRODUCTION

Large-scale data analytical system such as Apache Hive has been

widely used in both industry and academia. With the rapid increase

of data scale, debugging and optimizing the queries become the daily

work of engineers and users. The questions such as łwhere does

time go?ž and łwhat is the performance bottleneck?ž are frequently

asked by them. However, answering these questions is difficult even

for the most experienced engineers due to the inherent complexity

of the query execution in Apache Hive. It is essential for users to

understand the query execution process before taking action to

improve execution performance inmany cases.We briefly introduce

two of them as follows:

Execution performance understanding: The performance of

query execution is unpredictable because it is affected by many
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factors, such as the data layout, resource contention, and query

execution strategy. For example, processing the data from remote

machines incurs expensive data movement overhead. Thus, under-

standing the overhead of data movement overhead in the query

execution time is vital to improve the query execution performance

by exploiting the data locality.

Query execution comparison: Comparison is crucial for per-

formance analysis. For example, comparing the query execution

progresses of the same benchmark query on different versions of

Hive will assist the developers to verify the effectiveness of the

proposed optimizations. Hence, it will help them determine which

optimization techniques should be taken into account in the next

Hive release version.

However, there are two major challenges to analyze the time

consumption in Apache Hive query execution. (C1) Complex execu-

tion process. A query execution can be affected by the query’s inner

logic, optimization strategies and executing environment, which

requires users to analyze the query execution from multiple aspects.

(C2) Massive tasks. For large-scale input data, many atomic tasks

(i.e., the basic execution unit to process a sub-set of input data) are

spawned from Map/Reduce jobs. For example, there are in total of

9743 tasks from Query 54 in TPC-DS, with 100GB input data in

our cluster. Identifying and explaining the key tasks during query

execution is obviously difficult.

In this demo, we present DHive, a visual analytical system for

post-analysis of Hive query execution to tackle these challenges.

We handle challenge C1 by visualizing the execution progress at

multiple levels of detail: query level, job level, and task level. Andwe

trace the processing details by dataflow visualization, which records

the information about data size and the data processing speed.

Auxiliary information is also jointly shown to help users understand

the execution time usage. DHive addresses the challenge C2 by

providing a set of coordinated visualizations and rich interactions,

which enables users to efficiently narrow down to the jobs/tasks of

interest. Specifically, DHive includes the following components:

• Query logic view: An interactive timeline-based visualization

to show the time usage and the relationship of jobs.

• Dataflow overview: A river-based visualization showing the

dataflow of the whole query and its jobs.

• Processing details view: A timeline-based visualization tracing

the execution of individual tasks, visualizing the speed of data

input and computing, to help users explore and reason the

low-level problems during the query execution.
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Figure 1: System architecture of DHive

2 RELATED WORK

Several performance analysis tools have been developed for big data

systems [1, 3ś6, 9]. However, using these automated techniques in

isolation, such as [9], are limited to localizing problems at the level

of granularity desired by users [3], the weak interpretability and

extra labeling overhead are also coming with recently developed

learning-based methods, e.g., iSQUAD [5].

Visualization can be used to migrate these limitations, however,

current interactive tools such as [1, 4, 6, 8] only focus on show-

ing the whole time usage of operators or Map/Reduce jobs and do

not provide auxiliary information such as system profiling, which

makes the reasoning of abnormal query execution very difficult.

Perfopticon [6] and QEVIS [8] are the most relevant tools to DHive,

they both directly illustrate the time usage distribution or paral-

lelism of different operators for each Map/Reduce job. However, it

is not sufficient to locate the root reason of abnormal time usage

without any details about the execution process. For example, with

only the time usage distribution of operators, it is difficult to reason

if the abnormal time usage is caused by lower input speeding (e.g.,

I/O block), lower computing speed (e.g., CPU competition), or both.

In DHive, we depict these details with dataflow by visualizing the

data size and data processing speed over time for each task or job,

which presents the much more fine-grained query process.

3 SYSTEM ARCHITECTURE

Figure 1 depicts the system architecture of DHive. It consists of

three layers: the data collection layer, the data processing layer, and

the visual interface layer.

3.1 Data Collection

DHive collects the data from multiple resources, including SQL

statement, query execution plan (QEP), execution log from Apache

Hive, and the data distribution (DD) in the initial and intermediate

execution progress. Our objective is to trace the processing details of

dataflow of a query execution. However, we find that the original log

from Hive cannot provide enough details, where only the start/end

time of each stage of tasks is contained as the most-grained infor-

mation. Hence we add several new logging points to Hive to collect

the temporal information of each task with a given timestamp

such as total data size allocated, unprocessed data size, and output

data size during the execution process, the specific code files with

new logging points can be found at https://github.com/DBGroup-

SUSTech/DHive.git.

3.2 Data Processing

The task is the basic execution unit spawned from Map/Reduce job

for query processing. We first extract data from the log file to model

a given task 𝑡 associated with a set of attributes: ⟨𝑠𝑡, 𝑒𝑡, 𝑗, 𝑑𝑠, 𝑐, 𝐹𝑡 ⟩,

where 𝑠𝑡, 𝑒𝑡 , 𝑗 , 𝑑𝑠 and 𝑐 indicate the start time, end time, its corre-

sponding job, the total data size the task processed and the related

container (i.e., the allocated resource unit on a cluster node in Hive)

executing this task. 𝐹𝑡 =

〈

𝑓 0𝑡 , 𝑓
1
𝑡 ...𝑓

𝑛
𝑡

〉

is a tuple list that records

the temporal features of task 𝑡 . 𝑓 𝑖𝑡 = (𝑡𝑠𝑖 , 𝑢𝑖 , 𝑜𝑖 , 𝑑𝑖𝑖𝑛, 𝑑
𝑖
𝑝𝑟𝑜𝑐 , 𝑠

𝑖
𝑖𝑛, 𝑠

𝑖
𝑝𝑟𝑜𝑐 )

indicate the feature at timestamp 𝑡𝑠𝑖 . 𝑢𝑖 and 𝑜𝑖 indicate the size

of unprocessed data and output data of task 𝑡 . 𝑑𝑖𝑖𝑛 and 𝑑𝑖𝑝𝑟𝑜𝑐 indi-

cate the total input time and computation time from 𝑡𝑠0 to 𝑡𝑠𝑖 . 𝑠𝑖𝑖𝑛
and 𝑠𝑖𝑝𝑟𝑜𝑐 depict the input speed and computation speed of task

𝑡 during the time range between 𝑡𝑠𝑖−1 and 𝑡𝑠𝑖 .𝑠𝑖𝑖𝑛 =
𝑢𝑖−1−𝑢𝑖

𝑑𝑖
𝑖𝑛
−𝑑𝑖−1

𝑖𝑛

and

𝑠𝑖𝑝𝑟𝑜𝑐 =
𝑢𝑖−1−𝑢𝑖

𝑑𝑖𝑝𝑟𝑜𝑐−𝑑
𝑖−1
𝑝𝑟𝑜𝑐

. Specifically, 𝑠0𝑖𝑛 = 𝑠0𝑝𝑟𝑜𝑐 = 0.

QEP can be modeled as a directed acyclic graph (DAG) with the

nodes as jobs and edges as the dependency relations. We denote

QEP as G = (N,E), where N is the jobs set and E is the edge set.

We further calculate the aggregated temporal information of the

whole query and jobs. For instance, job 𝑗 =
〈

𝑠𝑡, 𝑒𝑡, 𝑑𝑠, 𝐹 𝑗
〉

where 𝑠𝑡 ,

𝑒𝑡 and 𝑑𝑠 are start time, end time and total data processed by job

j. 𝐹 𝑗 =
〈

𝑓 0𝑗 , 𝑓
1

𝑗 ...𝑓
𝑛
𝑗

〉

where 𝑓𝑗 = (𝑡𝑠𝑖 , 𝑢𝑖 , 𝑜𝑖 ), 𝑢𝑖 and 𝑜𝑖 are the total

unprocessed data and output data of job 𝑗 at timestamp 𝑡𝑠𝑖 .

3.3 Visual Interface

Figure 2 illustrates the user interface of DHive, which is built upon

the data collection and processing layers. DHive consists of three

coordinated views which enable users to explore the query exe-

cution at multi-levels: query level, job level, and task level. We

elaborate on the design of the user interface in section 4.

4 VISUALIZATION DESIGN

In this section, we discuss the visual interface of DHive. To facilitate

the visualization design, we first formulate four goals informed by

the observation of common analysis practices and review results

from state-of-the-art visualization tools. The final four goals are

presented as follows:

G1: Illustrate the logical plan of each query.

G2: Visualize the overall execution process of the query, i.e.,

show the duration and processing progress of each job.

G3: Trace the execution of individual tasks during the overall

query execution progress.

G4: Support query execution process comparison.

Guided by these goals, we design four coordinated views in DHive

shown as Figure 2: (i) query selection view; (ii) query logic view

(G1-2); (iii) dataflow overview (G2) and (iv) processing details view

(G3). These four views profile the query execution at multi-grained,

where the query logic view and the dataflow overview illustrate the

logic content and execution speed (bytes/sec) of query at jobs level,

respectively, and processing details view profiles each task execution

process. Meanwhile, DHive automatically links related elements

in these four views and supports execution comparison between

different queries by sharing the same time axis (G4).
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Figure 2: The visual interface of DHive (best viewed in color)

Query selection view: Query selection view, shown in Figure 2(A),

lists all the queries to be analyzed. After selecting a query for

analysis, the general execution information will be displayed on

the right panel, such as the total time usage and total data size.

Query logic view: As shown in Figure 2(B), the query logic view

displays the QEP as a directed acyclic graph (DAG) enhanced with

a timeline. Each node in this DAG represents a Map/Reduce job,

The left and right positions of each node are aligned with the start

and end time of the corresponding job. The nested rectangles in

each node illustrate its time distribution for input, computation,

and output, encoded with red, green, and pink colors, respectively.

The job dependencies are visualized as the edges with grey color.

We have implemented a greedy algorithm in [4] to lay out the DAG

with time information for a better visual result.

Dataflow overview: Dataflow overview visualizes the overall data

processing procedure of query and jobs shown in Figure 2(C1, C2).

We design a river-flow-based visualization [2] to present the data

evolution over time. Figure 3 displays the design details: during

the execution of each task, the data is recorded as (i) prepared: the

status of data before task processing; (ii) unprocessed: unprocessed

data during the task processing; and (iii) output: the output data.

Figure 3(A) illustrates task dataflows consisting of these three sta-

tuses encoded by red, green and blue color. Meanwhile, the height

of the flow represents the data size at each timestamp. The job and

query dataflows are generated by stacking of task dataflows along

the time axis, as shown in Figure 3(B) and Figure 3(C).

Figure 2(C1) shows an example of dataflow visualization of a

whole query. We use glyphs to represent filter (𝜎) and join (▶◀ for

map join and ⊲⊳ for merge join) operators, which are overlaid at the

timestamp they occur. Figure 2(C2) shows dataflows of individual

jobs, we implement a novel greedy algorithm to place all the job

dataflows without overlap aligned with time, and the job dataflows

with dependencies are placed at a closer vertical distance.

Processing details view: Processing details view (Figure 2(D)) visu-

alizes the data processing details for tasks. There are three panels

...

Job data size
Query data size

Dataflow stacking

(A) Task dataflows

(B) Job dataflows (C) Query dataflow

Dataflow

stacking

Start time End time

Start time End time Start time End time

Task data size

Prepared Unprocessed

Output

Time

Figure 3: Example of dataflow stacking process

in this view: (1) data parallelism (Figure 2(D1)), (2) task execution

details (Figure 2(D2)), and (3) counter statistics (Figure 2(D4)).

⊲Data parallelism.As shown in Figure 2(D1), the data parallelism

for the whole query execution is shown as the grey area chart, a

nested area chart will be colored with yellow to depict the data

parallelism of a selected job. For instance, Figure 2(D1) illustrates

the data parallelism during "M1" execution process.

⊲Task execution details. Figure 2(D2) visualizes the execution de-

tails for each task. In this view, each row represents a container and

displays the tasks executed by that container in sequential order

based on their execution time. Each task is visualized as a rectan-

gle, and the task processing details are presented by the input and

computation speed encoded with red and blue, and the gradient

color from white to dark red or dark blue present the speed size of

input and computation from minimum to maximum, respectively.

Meanwhile, for some Map tasks, the stages of input and computa-

tion may be overlapped. Hence the top half of the rectangle is used

to encode the input speed for these tasks, while the bottom half is

used for computation speed encoding. Moreover, whenever a job is
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selected from other views (e.g., "M1" is chosen in Figure 2(B)), its

corresponding task dataflows will be highlighted in Figure 2(D2).

The essential processing details for each task will also be shown by

task selection, for example, Figure 2(D3) presents the information

from the four tasks executed by container 08-28.

⊲Counter statistics. The statistical information from Hive coun-

ters is shown in Figure 2(D4), which provides different measure

metrics of the execution of the tasks. For the tasks spawned from

one job, similar behaviors should be exhibited [7]. Hence we sort

the metrics according to their degree of dispersion of the value in

the selected job. The higher score means the more discrete numer-

ical distributing and the corresponding metric will be presented

first with darker green encoded in Figure 2(D4). After selecting one

metric, a scatter chart in the right panel shows the exact distribu-

tion of these values, where each task is presented as a scatter plot

and is placed according to its start time and metric value.

5 DEMONSTRATION OVERVIEW

DHive is implemented using Python Flask and Vue. Our demonstra-

tion will use the queries in TPC-DS with 100GB input data, and all

these queries are running on a production cluster with 9 machines.

The goal of our demonstration is to show VLDB attendees the

effectiveness of DHive and we also allow the audience to experience

the interactive features of DHive through a web application. In the

following, we will describe the two demo scenarios we aim to show

in detail.

Single query performance analysis: The first scenario is to un-

derstand the query execution process of TPC-DS Query 29, which

takes 76 seconds. After selecting this query in Figure 2(A), we first

start exploration from the query logic view in Figure 2(B). Obvi-

ously, the time durations of Map jobs M1 and M8 are significantly

larger than other jobs. Then, by checking the dataflow overview

in Figure 2(C2), we find both M1 and M8 incur long tails, which

means a slow data processing speed during their executions.

To diagnose this problem, we click the M1 node in the query logic

view, and the corresponding tasks are highlighted automatically in

the processing details view, as illustrated in Figure 2(D2). Apparently,

several tasks of M1 take significantly larger execution time than

other tasks. For example, for the container 08-28 (i.e., the container

with green border), the last highlighted task executed by it has

a longer execution time than the first three highlighted tasks. To

investigate the reason for time usage difference, we then click these

four tasks and analyze them in Figure 2(D3). We find these four

tasks are all processed at dbg08, and the major difference is the

source of input data and input speed, where the slowest task (i.e.,

the last task at the bottom) fetches the data from dbg09, instead of

dbg08. Thus, it incurs expensive overhead to move the data from

dbg09 to dbg08 via inter-connects. In this scenario, the performance

bottleneck is the overhead of data movement during the execution

progress, bounded by the network bandwidth.

Execution performance comparison: In the second case, we

show how to analyze the reason for the performance improvement

of TPC-DS Query 29 on Hive via the help of DHive. Specifically, the

previous running time for Query 29 is 45s, while the last execution

cost is 76s with the same input data. After selecting both queries in

the query selection view, as shown in Figure 4(A1) and Figure 4(B1),

A1

B1

B2

A2

A

B

Figure 4: Execution comparison: (A) the previous slower exe-

cution progress and (B) the last faster execution progress.

these two execution progresses are visualized with a shared time

axis. Obviously, the time costs of Reducer jobs R9, R2 and R3 in the

last execution are smaller than those in the previous one.

To identify the reasons for this improvement, we click R9 node

and highlight its corresponding tasks in Figure 4(A2) and Fig-

ure 4(B2). Compared with the visualization result in Figure 4(A2),

fewer tasks are executed by each container in Figure 4(B2), while

the computation time for each task (i.e., the longer blue segment)

is slightly longer. Interestingly, the total shuffling time is reduced,

shown as the thin red area shown in Figure 4(B2), which means

that in the last execution, each task of R9 incurs a slightly longer

computation time, but the data shuffling cost of R9 is significantly

reduced. Thus, we can conclude that in the last execution, the num-

ber of tasks of job R9 is less than the previous one, but the processed

data of each task is larger than the previous one. Motivated by the

above observation, we found the value of hive.exec.reducers.max

parameter in Apache Hive is changed from 1008 to 150, which is

the root reason for the query performance improvement.
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