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ABSTRACT

With quantum computers now available as cloud services, there is
a global quest for applications where a quantum advantage can be
shown. Naturally, data management is a candidate domain. Work-
able solutions require the design of hybrid quantum algorithms,
where a quantum computing unit (a QPU) and classical comput-
ing (via CPUs) cooperate towards solving a problem. This demo
illustrates such an end-to-end solution targeting NP-hard variants
of database schema matching. Our demo is intended to be educa-
tional (and hopefully inspiring), allowing participants to explore
the critical design decisions, such as the handover between phases
of QPU- and CPU-based computation. It will also allow participants
to experience hands-on - through playful interaction — how easily
problem sizes exceed the limitations of today’s QPUs.
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1 INTRODUCTION

For decades, quantum computing has been considered a futuristic
technology from the viewpoint of data management research. Yet
with quantum hardware available as cloud-based services, there is
now acute interest to explore quantum computing units (QPUs).

Already, a growing community is exploring quantum machine
learning [11]. For database core tasks, early research targets prob-
lems where the solution space cannot be exhaustively explored us-
ing classical hardware. This includes query planning in multi-query
optimization, join order optimization, and transaction scheduling.
We refer to [2] for an overview of the state-of-the-art.

Coming from a traditional computer science background, data
architects encounter a very steep learning curve with quantum
software engineering: While programming libraries and tutorials
are readily available (e.g., several MOOCs offered on platforms such
as edx), engineers need to adopt an entirely new way of thinking.

Several of the pioneer works surveyed in [2] resort to solving
QUBO models, a mathematical formula which is then solved on a
QPU. However, it is not sufficient to just find any QUBO formula-
tion: The major physical resource that limits quantum computers is
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the available number of qubits, so developers must find formulations
that are parsimonious in this regard.

Conceptually, programming quantum computers is vastly dif-
ferent, which also holds for the operational aspects: Whereas we
are used to executing a program (once) and then collecting the
(usually deterministic) answer, hybrid quantum algorithms are ex-
ecuted in a stochastic process: A problem (task) is issued to the
QPU repeatedly (e.g., in 10K shots). The QPU produces solutions
nondeterministically, and the most frequent solutions must then
be assessed for their viability: Non-viable solutions are discarded,
and only the viable solutions are considered for further processing.

Goal of this Demo. In this demo proposal, we focus on the established
data management challenge of database schema matching.

We walk our demo attendees through our system architecture,
starting from two input tables, and ultimately, presenting a specific
matching. Such an end-to-end discussion is indeed a contribution:
Existing works on quantum computing in database research focus
on the handover between CPU and QPU [3, 10, 12]. For instance,
solutions to query optimization problems so far ignore the steps of
query parsing, logical optimization, or query cost estimation. Strong
assumptions as to the shapes of join trees or the independence of
cost estimates for predicates make it difficult to assess the impact
for real-world query workloads.

By presenting an end-to-end solution, we illustrate where ex-
actly quantum computing comes into play. As we (as a research
community) have learned from building machine learning pipelines,
considerable work goes into classical data engineering. This effect
will also be observable with the engineering of a hybrid quantum
algorithm in our demo scenario.

We further discuss the interfaces between classical and quantum
computations, the challenges in crafting suitable encodings, and
common patterns in engineering hybrid quantum algorithms, as
comprehensively surveyed in [13].

With the problem of schema matching, we address an impor-
tant data integration challenge: To integrate two tables, pairs of
attributes are weighted according to a similarity function. This part
of our workflow is solved on classical hardware. The goal is then to
identify the candidate pairs that form suitable matches. This part
will be off-loaded to a QPU.

Schema matching can be reduced to stable matching problems
(ak.a. stable marriage problems), a family of problems with NP-hard
variants. Specifically, we focus on finding a matching of maximum
cardinality, with ties and incomplete preference lists, and leverage

a QUBO model proposed by Roch et al [9].

Contributions. Our demo makes the following contributions:
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We target hard variants of database schema matching. We
present a solution implemented as a hybrid quantum al-
gorithm, where pre- and post-processing are realized on
classical CPUs, while solving the hard variants of the stable
matching/marriage problem is delegated to the QPU.

We point out the challenges in designing such a hybrid quan-
tum algorithm, specifically the handover between phases
of CPU- and QPU-based computing.

We illustrate the QPU properties limiting the scalability of
our solution, most notably the scarcity of qubits.

We integrate different quantum architectures in our work-
flow. We work with gate-based and annealing-based QPUs,
as well as software-based simulators.

We present our solution end-to-end, starting from two data-
base schemas to be matched. Although solutions to other
data management problems will of course require careful
adaption, our workflow can serve as a blueprint.

2 PRELIMINARIES

We structure our introduction of the necessary preliminaries along
the workflow sketched in Figure 2. We proceed top-down.

Schema Matching. Schema matching is a well-known data inte-
gration challenge: The task is to find matching pairs of attributes
between a source and a target schema. We refer to [1] for a sys-
tematic overview of the various approaches and to the Valentine
framework for a collection of implementations [6]. As input, we
assume relational schemas, so matching is based only on attributes.
We employ a linguistic and schema-based matching algorithm such
as Cupid [7]. The output is a similarity matrix, assigning each pair
of attributes from the source and target schema a similarity score.
Stable Matching Problems. The next step is to compute a global
matching. We reduce this task to the problem of finding a solution
to the stable matching problem (also known as “stable marriage
problem”). Our input is the similarity matrix, from which we derive
an ordering of preferences for each element. A solution to the
stable matching problem is then a specific assignment, where each
individual is assigned at most one partner.

The matching is stable when there does not exist any pair in
which the partners prefer each other to their current partner under
the matching. If such pairs exist, they are called blocking in the
terminology of the mathematical problem [9].

Table 1: Instance of stable matching problem w/ ranked pref-
erences. Brackets denote a tie, i.e., equally preferred partners.

Set A Preferences of Ai ‘ Set B Preferences of Bi

Al B2, B1 B1 A2, A1, A3
A2 B3, [B1, B2] B2 A3, A2, Al
A3 B1, B3, B2 B3 Al, A3, A2

Consider Table 1, for matching sets A and B with attributes
A1, A2, A3 and B1, B2, B3 respectively. Individual A1 has the prefer-
ences B2, B1 (in this order), so A1 prefers B2 over B1. As B3 does
not appear in the preference list of A1, we speak of incomplete
preference lists.
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If we consider the preference list of A2, we notice that B1 and B2
are set in brackets. This expresses the presence of a tie, i.e., A2
prefers B1 and B2 equally. Yet A2 still prefers B3 over B1 or B2.

One possible stable matching is shown below:

Every element of set A gets its first choice and every element of
set B gets its third choice. The matching is stable since every pair is
happy (it is not the case that both partners prefer another partner)
and the pairing is monogamous (no one is matched twice).

Although there are variants of this problem that are computable
in O(n?), there are also variants that are NP-hard, such as finding
stable matchings of maximum cardinality with ties and incomplete
preference lists [5]. This is the family of problems considered here.

QUBO formulations. A QUBO model is a quadratic unconstrained
binary optimization formula. This formula is a sum that is based
on binary variables and products of pairs of these binary variables.
The products are restricted to quadratic relationships between the
binary variables. Further, each term carries a coefficient. A solution
to a QUBO model is an assignment of the variables with zero or
one such that the overall sum is minimized.

The formulation of QUBO models for optimization problems is an
established approach, and we can resort to mature software-based
solvers [8]. However, QUBO models are also popular in quantum
software engineering. We refer to [4] for a comprehensive tutorial
on how to embed a range of well-known computer science problems
into the NP-hard QUBO problem.

We can provide a very basic introduction only. QUBO models
use binary variables and in our use case, each variable represents a
candidate pair of attributes to be matched:

1 if attributes a and b are matched,
Xgp = .
ab =10 otherwise.

The QUBO formula in Figure 1 targets our family of matching
problems and was proposed (as a standalone solution) by Roch et al.
in [9]: A solution to the stable matching problem (i.e., an assignment
of the variables) minimizes the objective function. We cannot go
into the details regarding the design of this specific function, but
we introduce the high-level idea. By p1, p2, p3, we denote penalties
that developers assign to weight the objective function (first part)
and the constraints (second and third part) of the optimization.

The first part represents our main goal: to minimize the objective
function and to find as many pairs as possible. The second part is
declared for all candidate attribute pairs a, b. It adds the penalty p2
to the solution if a pair is not stable, thereby discouraging unstable
pairs. In the first half, unstable pairs are identified, in the second
half; pairs that are not likely to be blocking are promoted. Finally,
the third part imposes the penalty p3 if candidates are matched
more than once, which would result in nonmonogamous matchings.

Solving QUBO on QPUs. QUBO formulas can be solved on QPUs.
There are two kinds of architectures, namely gate-based QPUs and
quantum annealers. Both are able to run and solve our QUBO for-
mula. However, gate-based QPUs need a quantum approximate
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Figure 1: The QUBO formula proposed by [9] for the stable matching problem, annotated for better comprehensibility.

optimization algorithm, short QAOA, in between. The QUBO for-
mula acts as an input to the QAOA that can then be run by the
QPU. The challenge with gate-based QPUs is that there are cur-
rently only a few hundred qubits available, while we would need
as many qubits as there are possible matching pairs. Ultimately, the
execution time of gate-based QPUs depends on the depth of the
resulting QAOA circuit.

Quantum annealers do not need an interim representation for
executing the QUBO formula, since they are designed to solve
optimization problems. They offer thousands of qubits.

A solution is obtained by issuing multiple shots to the QPU (up
to several thousands shots). A shot yields one computed result,
which can differ between shots, due to quantum mechanical effects.

When all shots are completed, the candidate solutions are re-
turned, each with a candidate matching, a probability value captur-
ing how often the solution was returned among all shots, and the
result of evaluating the QUBO. The candidate solutions must be
validated on a CPU, and invalid solutions discarded. Valid solutions
with a low objective value constitute the best solutions found.

3 WORKFLOW AND DEMO OUTLINE

Our demo is set up as an interactive python notebook, following
the workflow in Figure 2. Figure 3 shows screenshots. Our demo
attendees may execute the workflow step-by-step and can inspect
all interim results (e.g., the milestones @-@ in the screenshot):

(1) The user enters the database schemas to be matched.

In the demo, we provide a set of input schemas that are
hand-crafted to fall into the category of NP-hard matching
problems. Demo attendees can freely edit these inputs.

(2) The user confirms the database schema matcher, such as
Cupid. Matching produces a similarity matrix and assigns
to each candidate match a similarity score. Next, the pref-
erence lists are derived from the similarity matrix.

The user confirms the global matching algorithm, in our
case “stable matching”.

Our tool automatically translates the similarity matrix to
the QUBO model, which the user can inspect.

The user chooses the target platform: A gate-based quantum
computer, a quantum annealer, or a simulation software.

Visualization inspired by https://de.wikipedia.org/wiki/Globales_Matching.
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Figure 2: Workflow! with classical and quantum phases.

(6) The QUBO model is issued to the target platform in a se-
quence of N shots. The results are aggregated as a proba-
bility distribution (see blue barchart in the illustration).

(7) In post-processing, our tool automatically validates the
candidate solutions produced by the N shots, to discard
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matchings that are unstable or not monogamous. Validation
is again solved on classical hardware.

(8) The top-k valid results are chosen and translated to human-
consumable matchings, which are returned to the user.

Implementation. Our tool demo is realized as a Jupyter notebook,
written in python. We use the libraries pandas for importing data-
base schemas, the library valentine, which implements several
matchers, docplex for encoding the QUBO formula within python,
qiskit for access to IBMQ quantum engines, and giskit_optimization
for converting the docplex QUBO model into a valid input for the
quantum engine, creating an QAOA optimizer with the quantum
engine and solving the problem.

We use ibmq_gasm_simulator for simulation, and further the
ibmq_lima QPU as gate-based QPU, both from IBMQ?. For quantum
annealing, we use the Advantage_System4.1 QPU by D-Wave>.

Note that only small problems can be solved live in our demo,
where we use simulators. For larger experiments, we can only show
the results of prerecorded runs, as simulations easily take hours.

We also present pre-recorded results from real quantum hard-
ware. Unfortunately, running these experiments live is not feasible,
due to the waiting times in the job queues of the cloud providers.

Scalability. Our chosen QPU vendors currently support a maxi-
mum of 433 (exploratory gate-based QPU of IBM), 5,000 (simulator
of IBM) or 5,627 (quantum annealer of D-Wave) physical qubits.
The QUBO formulation we use requires as many logical qubits as
possible pairs, so up to |A| X |B| logical qubits.

In embedding the QUBO model onto the QPU, several physical
qubits may be required to represent one logical qubit. This will
ultimately increase the total number of qubits required on the QPU.
We point this effect out to our demo attendees.

Discussion items. In presenting this demo, our goal is to familiarize
the VLDB community with the methodology of engineering hybrid
quantum algorithms. Throughout our demo, we emphasize on the
aspects of quantum software engineering for data management
tasks, rather than tuning the embedding of the QUBO onto QPUs, or
comparative benchmarking of QPUs from different vendors. These
are all promising angles for future work, as well as the design of a
custom QUBO formula for schema matching that directly integrates
the similarity scores from the similarity matrix.
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