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ABSTRACT
Approximate Query Processing (AQP) systems produce estimation
of query answers using small random samples. It is attractive for
the users who are willing to trade accuracy for low query latency.
On the other hand, real-world data are often subject to concurrent
updates. If the user wants to perform real-time approximate data
analysis, the AQP system must support concurrent updates and
sampling. Towards that, we recently developed a new concurrent
index, AB-tree, to support efficient sampling under updates. In
this work, we will demonstrate the feasibility of supporting real-
time approximate data analysis in online transaction settings using
index-assisted sampling.
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1 INTRODUCTION
Approximate Query Processing (AQP) systems are designed to
produce approximate answers for complex SQL queries in split
seconds over large databases, where full scans are too slow. It is an
attractive alternative for those who cannot afford exact queries over
large data due to high response time and/or computational cost, but
can trade accuracy for efficiency. For example, a data analyst may
issue an aggregation query to find the total revenue of sales that
satisfy some predicate over billions of business transaction records.
Exactly answering the query incurs at least a linear data access
cost. As a result, DBMS cannot keep up with the stringent time
requirements due to the faster pace of data growth than memory
bandwidth [15], let alone the high economical cost of scale-up
and scale-out solutions. In contrast, approximate queries can be
answered using a sub-linear or constant sized random sample [4, 5],
which makes it an appealing (sometimes must-have) solution.
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On the other hand, real-world data are usually under constant
updates. If the data analyst has to get real-time insights into the
updated data, it is essential for the system to support efficient
concurrent queries under updates. Despite the promising query
efficiency over large data, most existing AQP systems are not usable
for that purpose because they do not support concurrent updates
and oftenmake assumptions that data updates happen offline and/or
in batches. With those assumptions, they can rely on pre-collected
offline samples [13] or pre-built indexes for random sampling [4, 9].
If the system needs to work with concurrent updates by performing
online sampling (e.g., [7]), it has to sacrifice the sampling efficiency.

The crux of the issue is that the existing data structures opti-
mized for sampling do not support concurrent updates efficiently,
while most AQP techniques treat the sampling mechanism as black
boxes provided by underlying database systems. There are generally
two approaches for random sampling in AQP systems: scan-based
sampling and index-assisted sampling. Scan-based sampling [7] can
be implemented as a random filter on top of regular table scans,
and thus can leverage the existing concurrency control mechanism
such as multi-version concurrency control to support very efficient
concurrent updates without much modification to the system. How-
ever, it requires at least fully scanning the underlying data once.
Index-assisted sampling, on the other hand, can scale linearly to
the sample size with a logarithmic factor in terms of table size if we
use an aggregate B-tree (aka ranked B-tree [12]), making it a more
desirable alternative to scan-based sampling However, concurrent
updates in a naïve aggregate B-tree must obtain an exclusive lock in
order to update the internal aggregates along a tree path atomically,
and thus do not scale well with concurrency in practice .

Towards that, we recently designed AB-tree [17], an aggregate
B-tree based on B-link tree [8] for efficient concurrent updates
and sampling. In AB-tree, most updaters, with the exception of
structural modification operations (SMO), do not block concurrent
samplers. That means, AB-tree does not have additional blocking
compared to a regular B-link tree and thus can support concur-
rent update and sampling operations very efficiently. Our imple-
mentation in PostgreSQL shows AB-tree indeed achieves similar
scalability compared to the standard B-link tree in PostgreSQL.

In this demonstration proposal, we present pgAQP, a PostgreSQL
extension that supports approximate aggregation queries with ran-
dom sampling. Through that, we will show that AB-tree opens
the door for supporting real-time approximate query processing in
online transaction processing settings. In particular, we introduce a
new SQL TABLESAMPLE operator in pgAQP called SWR (i.e., Simple
random sampling With Replacement), which can draw 𝑘 indepen-
dent range samples from a base table using AB-tree. It also provides
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a set of query rewriting rules to transform approximate aggrega-
tion operators into unbiased estimators and confidence intervals.
With that, we will demonstrate a typical real-time data analysis
scenario where a data analyst issues ad-hoc approximate queries
against a database with online transactional updates and the ran-
dom sampling queries from other users at the same time. We also
developed a web interface that allows the audience to customize
the ad-hoc query and the background workload, view the accuracy
of approximate query answers and their running times, as well as
monitor the key system performance metrics.

In the rest of this demo proposal, we briefly review the back-
ground and related works in Section 2. In Section 3, we describe
how pgAQP is implemented as a set of SQL extensions, rewriting
rules, and physical operators in PostgreSQL. In Section 4, we will
describe a detailed demonstration plan.

2 BACKGROUND AND RELATEDWORKS
The goal of an AQP system is to produce approximate answers to
aggregation queries with error guarantees. To formally define that,
let’s first consider a single-table aggregation query:

SELECT SUM(e) as Y FROM T WHERE 𝑃𝑟 AND 𝑃 𝑓 ;

where 𝑒 is any expression over base table𝑇 , 𝑃𝑟 is an optional range
predicate and 𝑃 𝑓 is the remaining filter predicates. We denote the
exact query answer as 𝑌 , which is unknown to the system.

To produce an approximate answer, the system draws a random
sample in 𝑇 from some probability distribution, and computes an
unbiased estimator �̃� such that 𝐸 [�̃� ] = 𝑌 . The unbiased estimators
with simple random sampling with replacement [5] and Bernoulli
sampling [7], two commonly used sampling methods1, are subtly
different. For Bernoulli sampling, each tuple 𝑡 ∈ 𝑇 is independently
selected with a fixed probability 𝑝 . If we denote the sample set as 𝑆
and 𝑒 (𝑡) as the value of 𝑒 evaluated over 𝑡 , the unbiased estimator is
�̃� Bern =

∑︁
𝑡 ∈𝑆 𝑒 (𝑡)/𝑝 . However, Bernoulli sampling always incurs

a linear cost because it needs to make an independent random deci-
sion on every tuple in the base table. For simple random sampling
with replacement, the sample set 𝑆 is a multi-set where each tuple
𝑡 ∈ 𝑆 is independently chosen from 𝑇 with some probability 𝑝𝑡

2.
The unbiased estimator can be computed as �̃� SWR =

∑︁
𝑡∈𝑆 𝑒 (𝑡 )/𝑝𝑡

|𝑆 | .
It is usually impossible to produce the relative error 𝜀𝑟𝑒𝑎𝑙 ≜

|�̃�−𝑌 |
𝑌

without computing the exact answer𝑌 . Instead, most systems
provide error guarantees in the form of confidence interval, usually
denoted as a symmetric range3 around �̃� of width 2𝜀 with respect
to a confidence level 𝛼 ∈ [0, 1], such that 𝑃𝑟 {𝑌 ∈ [�̃� −𝜀, �̃� +𝜀]} ≥ 𝛼 .
Note that there is no guarantee that a confidence interval is a true
indicator for accuracy because 1) there are small probabilities �̃�
is not in it; and 2) the confidence interval itself is also often an
estimation from a random process.
1Another commonly used type of random sampling, simple random sampling without
replacement (SWOR), can be treated as simple random sampling with replacement
(SWR) when sample size is small [5]. We omit an in-depth discussion on the pros and
cons of them because they are beyond the scope of this work and they provide similar
guarantees over small samples.
2Uniform sampling where all 𝑝𝑡 equal 1/ |𝑇 | is most commonly used but weighted
sampling (such as measure biased sampling [4], where 𝑝𝑡 ∝ 𝑒 (𝑡 )) can reduce sample
size needed for the same error guarantee, if the expression 𝑒 is known in advance.
3While we assume confidence intervals centers around the estimator, some systems
may opt for asymmetric ones for better error guarantees.
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Figure 1: An aggregate B-tree with uniform weights.
Finally, [12] was the first comprehensive study on random sam-

pling in databases. It introduced the ranked B-tree (aka aggregate
B-tree, see Figure 1) to support independent uniform random sam-
pling over database tables, which can be easily extended to support
independent range sampling and weighted independent range sam-
pling with respect to some weight function𝑤 (𝑡). Formally, given a
base table 𝑇 and a range predicate 𝑃𝑟 , we want to draw a random
sample 𝑠 from 𝑇 , such that ∀𝑡 ∈ 𝜎𝑃𝑟𝑇, 𝑃𝑟 (𝑠 = 𝑡) = 𝑤 (𝑡)/𝑊 , where
𝑊 =

∑︁
𝑡 ∈𝜎𝑃𝑟𝑇 𝑤 (𝑡) is the sum of weights of tuples satisfying 𝑃𝑟 .

Let’s consider full table sampling with 𝑃𝑟 = 𝑡𝑟𝑢𝑒 first. Each child
node link in the tree is annotated with the sum of weights in its
child node. For instance, the left-most child node link in the root
node 𝑝1 has a weight of 5, which is the sum of weights stored in its
child node 𝑝2. Suppose we denote all nodes in a particular level as
𝑐1, 𝑐2, . . . , 𝑐𝑘 in index key order (from left to right), their weights
as 𝑤 (𝑐𝑖 ) for any 𝑖 ∈ [1, 𝑘], and define a prefix sum for them as
𝑊𝑖 =

∑︁𝑖
𝑗=1𝑤 (𝑐𝑖 ). Then we can partition the sum range [0,𝑊 ) into

disjoint subranges [𝑊𝑖−1,𝑊𝑖 ) whose lengths exactly match𝑤 (𝑐𝑖 ).
If we draw a random number 𝑖 ∈ [0,𝑊 ), it can be mapped to a
unique tree path where each node’s subrange contains 𝑖 . Sampling
in the tree boils down to finding the subrange that contains 𝑖 from
root to leaf. As the last step, we can sample a tuple from the leaf
with probability proportional to its weight. It is obvious that, for
any update in this tree, we also need to update all the weights along
a tree path from root to leaf atomically to ensure the correctness
of sampling. Hence, the main challenge of supporting concurrent
updates efficiently is the exclusive locking required by atomicity of
weight update. For range sampling, we can modify the definition of
the weights and ranges such that we only count those that satisfy 𝑃𝑟 .
Since it is a range predicate, only the weights in left-most path and
right-most path that intersects with the key range can be different
from the stored weights. A known technique is to perform two
tree descends to find the two paths and their modified weights and
then draw samples per the modified weights. However, this does
not work without locking the tree for the duration for sampling
because the weights might be changed by concurrent updates.

That said, aggregate B-trees are indeed widely used in many
AQP techniques (e.g., [3, 9, 16]) because of it promising run time
which scales linearly to sample size with a log factor in table size,
and there are many works that seek to improve the efficiency and
applicability of sampling indexes in theory [1, 2, 6]. However, to the
best of our knowledge, there was no implementation in real-world
DBMS because of the difficulty to handle concurrency without ex-
cessive blocking. As a result, most AQP systems resort to scan-based
sampling, which are either available off-the-shelf (e.g., Bernoulli
sampling), or easy to implement in query processing layer [7] or as
a middleware [13]. However, they either suffer from long latency
due to data scans, or have to use stale offline samples which are
not automatically refreshed with data updates.

Our recent work AB-tree [17] tackled problem by using "consis-
tent" weights (i.e., upper bound of weights with relaxed consistency
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(b) Sampling throughput
Figure 2: Scalability test over mixed workload in AB-tree

requirements), which can be updated one at a time rather than atom-
ically. We also showed that weight updates do not have to block
tree search and other weight updates by using atomic compare-and-
swap over shared-locked B-tree nodes, which is the key to achieve
concurrency. In this design, a random number in the range of [0,𝑊 )
may not map to a tuple because of the relaxation. AB-tree performs
rejection sampling to account for that. Note that the rejections in-
duced by the relaxed weight consistency do not introduce excessive
rejection because the rejection rate is bounded by the total weight
of updates in flight, which is usually a small constant determined
by the maximum number of concurrent threads in the system. As
a result, AB-tree is able to sustain very high level of concurrent
updates and sampling at the same time. Figure 2 shows the inser-
tion and sampling throughput if we run 10 insertion threads and a
varying number of sampling threads over a synthetic two-column
table with random insertions, where the baseline is an aggregate
B-tree with exclusive locks. We refer the readers to [17] for details.

Other related works. There is a rich literature on AQP tech-
niques [10], which usually depend on variants of Bernoulli sampling
(aka Binomial sampling), uniform/weighted random sampling with
or without replacement [12] (sampling algorithms that improve
accuracy such as correlated sampling and stratified sampling [7]
can be treated as modified Bernoulli sampling with different, some-
times non-independent, sampling probabilities). There are also AQP
systems that combine sampling with pre-aggregation [14] or use
machine learning models [11]. While these techniques can improve
AQP accuracy, but they are usually more expensive to maintain
even without concurrency.

3 PGAQP: A POSTGRESQL EXTENSION FOR
APPROXIMATE QUERY PROCESSING

In this section, we describe an experimental PostgreSQL exten-
sion, pgAQP, which supports approximate queries on top of the
PostgreSQL 13.1 with AB-tree. It supports a subset of approximate
SQL queries using simple random sampling with replacement (SWR)
and Bernoulli sampling. We utilize the server-side extensibility of
PostgreSQL to add the new approximate query operators and to
implement query rewriting rules. Specifically, it supports the query
syntax in Figure 3, with joins and nested queries.

Currently, there may only be one TABLESAMPLE clause in each
query block, which may be either BERNOULLI or SWR. Except for the
range variable with table sample clause which must be a base table,
all other range variables in the FROM clause may be either nested
queries or base tables. Nested queries can also appear in predi-
cates. pgAQP adds a few approximate aggregation operators, includ-
ing APPROX_COUNT and APPROX_SUM and their Central Limit The-
orem based confidence intervals APPROX_COUNT_HALF_CI() and
APPROX_SUM_HALF_CI(). Note that the AVG operator is naturally
an unbiased estimator for the true average if the underlying sample

SELECT <target-list>
FROM T1 TABLESAMPLE {SWR(m)|BERNOULLI(pct)}[, T2, ...]
[WHERE <predicate>]
[GROUP BY <colspec>]
[HAVING <predicate>]
[ORDER BY <orderspec>]

Figure 3: Approximate query syntax in pgAQP

is uniform, so we do not have to add an approximate version of
that. If any of these approximate aggregation appears in the target
list, then pgAQP will rewrite the query plan such that approximate
aggregation operators are replaced with unbiased estimators ex-
pressed as a mix of standard SQL aggregations and our own UDA
(User-Defined Aggregation). For SWR operator, there are some
extra works to do during query planning: (1) unlike Bernoulli sam-
pling where sampling probability 𝑝 is constant, samples in SWR can
have different sampling probabilities due to non-uniform weight
function or concurrent updates. In fact, the sampling probability of
a tuple 𝑡 can only be computed when AB-tree performs sampling by
dividing𝑤 (𝑡) stored in the leaf tuple by the total weight of the tree.
Hence, we add the sample probability as an extra column in the
output in every operator below the aggregation operator. (2) SWR
needs to be implemented using index-assisted sampling operator,
which does not exist in PostgreSQL. We add it as a customized scan
operator. (3) We inject the index-assisted sampling path into the
query planner for a base table with AB-tree, if SWR is requested.

Note that, the semantics of SWR is different for aggregation and
non-aggregation queries in pgAQP. For the aggregation queries, the
sample size m is the number of samples fetched from AB-tree, which
are subject to further rejection due to MVCC visibility checks and
filter predicate evaluation. Rejected samples are incorporated as 0-
valued estimators in aggregation nevertheless. For non-aggregation
queries, we retry for each rejected sample until we have m accepted
samples, because the user may not be interested in getting a NULL
tuple due to rejection and will have to repeatedly issue the same
query until getting enough samples. As an illustrating example,
let’s the following query against the ORDERLINE table in the TPC-C
benchmark, where one wants to find a small random sample from
all the order lines delivered before a certain date whose amounts
are more than 1.5 times of the average amount:
SELECT * FROM ORDERLINE TABLESAMPLE SWR(10)
WHERE OL_AMOUNT >=

1.5 * (SELECT AVG(OL_AMOUNT)
FROM ORDERLINE TABLESAMPLE SWR(1000))

AND OL_DELIVERY_D < '2023-03-01'

Assuming we have an AB-tree index built on the delivery date
with uniform weights, the inner query will perform index-assisted
sampling using AB-tree for exactly 1000 samples. Note that while
there are no filter predicates in the inner query block, samples can
still be rejected due to failed MVCC visibility checks. That said, this
sample is already sufficient to produce a quite accurate estimation
with a relative error of around 2% for TPC-C data. Then, the query
plan generated by pgAQP will use the AB-tree to perform indepen-
dent range sampling with delivery date before 2023-03-01 and filter
the samples based on the estimated value from the inner block. As
the samples may be rejected by the filter predicate on OL_AMOUNT,
the index-assisted scan will be retried until 10 rows are generated
in the outer block. It may also emit a warning if the rejection rate in
the outer block is higher than 99.9%, because it indicates the filter
predicate could be too selective and yields almost empty results. In
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Figure 4: Running ad-hoc queries
that case, there is no need for sampling and the user may cancel the
query to fetch all results for the outer block instead. Another quick
note is that this query may be executed even if there are heavy
updates in the background, because AB-tree can efficiently support
sampling over an MVCC snapshot. Meanwhile, because of its small
amount of page reads, it has very limited impact on the transaction
processing as well. In contrast, scan-based sampling would take
substantially longer to run, and could compete for the limited I/O
or CPU resources with the background workload.

4 DEMONSTRATION PLAN
In this demonstration, we aim to showcase the superior perfor-
mance of index-assisted sampling and the feasibility of supporting
highly efficient approximate queries with concurrent online up-
dates. We will simulate an online business transaction database
with updates, in which there are also multiple simulated data ana-
lysts extracting real-time insights by issuing ad-hoc queries. More
specifically, we will set up a TPC-C database with 100 warehouses
(27GB, 100 million rows in orderline table initially) and a larger
one with 400 warehouses (308GB, 2 billion rows in orderline ini-
tially) in PostgreSQL 13.1 with AB-tree and pgAQP. In addition to
the standard primary key indexes, we will also build an AB-tree
over the delivery date column in the orderline table.

The audience will mainly interact with the system through aweb-
based frontend interface. In the ad-hoc query panel (Figure 4), they
can select from a list of example queries to get familiar with the TPC-
C database schema and the approximate query syntax. We prepared
6 queries with 3 variants each: exact query that performs full scans,
approximate query using index-assisted sampling (our approach),
and approximate query using scan-based sampling (baseline). The
audience can also customize the queries. Once a query is executed,
the query panel will display the running time and results below
it. It can also compute and visualize the relative errors between
the ground truth and the estimators. We pre-configured the sample
size and sampling rate for both approximate queries such that they
draw roughly the same amount of samples and produce estimators
with comparable errors.

Once the audience gets familiar with the setup, they can switch
to the background workload panel, where they can configure and
run a mixed TPC-C and sampling query workload. With the back-
ground workload running, the audience can view the performance
metrics in the third panel, including AB-tree’s sampling through-
put, insertion throughput, overall rejection rate, as well as other
common system metrics (CPU, memory, I/O). They will be able
to study the scalability of the system by varying the number of

Figure 5: Adjusting background workload
transaction and sampling threads. At the mean time, they can also
switch to the ad-hoc query panel again, and run the queries with
the background workload running. They can find out the impact of
background workload on three approaches.
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