
TsQuality: Measuring Time Series DataQuality in Apache IoTDB
Yuanhui Qiu

Tsinghua University
qiuyh21@mails.tsinghua.edu.cn

Chenguang Fang
Tsinghua University

fcg19@mails.tsinghua.edu.cn

Shaoxu Song
BNRist, Tsinghua University
sxsong@tsinghua.edu.cn

Xiangdong Huang
Timecho Ltd

hxd@timecho.com

Chen Wang
Timecho Ltd

wangchen@timecho.com

Jianmin Wang
Tsinghua University

jimwang@tsinghua.edu.cn

ABSTRACT
Time series has been found with various data quality issues, e.g.,
owing to sensor failure or network transmission errors in the In-
ternet of Things (IoT). It is highly demanded to have an overview
of the data quality issues on the millions of time series stored in
a database. In this demo, we design and implement TsQuality, a
system for measuring the data quality in Apache IoTDB. Four time
series data quality measures, completeness, consistency, timeliness,
and validity, are implemented as functions in Apache IoTDB or
operators in Apache Spark. These data quality measures are also
interpreted by navigating dirty points in different granularity. It
is also well-integrated with the big data eco-system, connecting
to Apache Zeppelin for SQL query, and Apache Superset for an
overview of data quality.

PVLDB Reference Format:
Yuanhui Qiu, Chenguang Fang, Shaoxu Song, Xiangdong Huang, Chen
Wang, and Jianmin Wang. TsQuality: Measuring Time Series Data Quality
in Apache IoTDB. PVLDB, 16(12): 3982 - 3985, 2023.
doi:10.14778/3611540.3611601

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://thssdb.github.io/TsQuality/.

1 INTRODUCTION
Time series data are often found with various data quality issues,
such as completeness, consistency, and validity, especially in the
scenarios of IoT [5]. In the process of time series data management,
from being collected to being stored in time series databases, any
issue like sensor failure or network transmission errors, may lead
to data quality problems. Analysis upon dirty data without prior
assessment of data quality may yield misleading results.

Existing systems, such as Cleanits [1] and cleanTS [3], propose
to clean the dirty data in individual time series. However, commod-
ity databases often store millions of time series, for thousands of
devices [7]. There is still a lack of overall assessment for all the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611601

Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

𝑠!"#

𝑠!$%

𝑣!"#

𝑣!$%

Normal 
points

Missing 
points

Redundant 
points

Delay 
points

Abnormal 
values

Value

13:01:37 60s 13:04:37 13:08:37
Time

13:06:37

Figure 1: Time series data quality example

data stored in the database. Moreover, such works are not well
integrated with the eco-system, from storage to analysis.

In this demo, we present TsQuality to measure data quality in
Apache IoTDB1, an open-source time series database developed
based on our preliminary study [7]. Each time series consists of a
time column and a value column in the database. For the timestamp
issues, we consider missing, redundant and delay points [2]. For the
value column, we investigate abnormal values w.r.t. range, variation,
speed [6], and acceleration [4].

Example 1.1. Figure 1 presents a segment of time series with four
types of data quality issues. As shown, the data points are usually
collected every minute, a preset frequency of sensors. A point,
however, is missing at time 13:02:37, and leads to completeness issue.
In contrast, the point at 13:06:37 is re-transmitted, resulting in a
redundant one, known as consistency issue. Moreover, a point could
also be delayed, e.g., the one that should appear at time 13:04:37 but
not until 30 seconds later. Such an issue is measured by timeliness.

The validity measure is evaluated w.r.t. a set of constraints on
both time and value. For instance, the two horizontal red lines, 𝑣min
and 𝑣max, denote the valid range of values. The point at time 13:08:37
has an abnormal value smaller than the minimum. In addition,
the two red arrows, 𝑠min and 𝑠max, specify the speed of maximum
and minimum value fluctuation over time. The data point at time
13:01:37 has a speed of 250−115

60 = 2.25 > 2 = 𝑠max, and thus has
abnormal value as well.

The major features of TsQuality are as follows.
(1) Well-integrated eco-system. The data quality measures

have been implemented as database-native functions in Apache

1https://iotdb.apache.org/

3982

https://doi.org/10.14778/3611540.3611601
https://thssdb.github.io/TsQuality/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611601
https://sxsong.github.io/
https://iotdb.apache.org/
https://www.acm.org/publications/policies/artifact-review-and-badging-current


select completeness(s0) 
from root.group0.d0

df = spark.read();
df.completeness();

TsFile RDBMS

Computation

Interface

Storage

Zeppelin Dashboard

Figure 2: System architecture

IoTDB as well as data-intensive operators in Apache Spark. More-
over, it may also connect to Apache Zeppelin for SQL query and
Apache Superset for an overview of data quality.

(2) Interpreted results. In addition to the overview of all data
quality measures in the entire database, TsQuality Dashboard pro-
vides an interpretation of each dirty point. Users can thus navigate
individual time series for data quality issues in various granularity.

(3) Customized measures: TsQuality is able to accommodate
different data quality definitions for various scenarios by extending
the ER diagram and writing IoTDB UDFs.

The document of four data quality functions, completeness, con-
sistency, timeliness, and validity, is also available on the product
website of Apache IoTDB.2 The corresponding code is included in
the GitHub repository of the system.3

2 SYSTEM DESCRIPTION
In this section, we first overview TsQuality and introduce the sys-
tem architecture. Then we describe the storage design for storing
IoTDB time-series-related statistics in SQLite. Finally, we close this
section by introducing data quality evaluation in TsQuality and its
ability to adapt to different definitions of data quality.

2.1 System Architecture
Figure 2 illustrates the system overview and the data flow between
different components. The whole system follows a three-tier archi-
tecture model: Storage, Computation, and Interface. The interface
layer is responsible for direct interaction with the user, it receives
SQL queries regarding data quality and visualizes the results in the
form of graphs. Specifically, users can choose TsQuality Dashboard,
the native visualization tool of IoTDB, which gives an overview of
data quality at the time series level, as well as a detailed analysis of
abnormal values to locate and fix data quality problems in the data.
TsQuality is also tightly integrated with the open-source ecosystem
by interfacing with Apache Zeppelin for custom SQL queries, and
Superset for the overall overview of data quality.

We store the time series statistics in a relational database, in order
to read and visualize them in TsQuality Dashboard. For this purpose,

2https://iotdb.apache.org/UserGuide/Master/Operators-Functions/Data-
Quality.html
3https://github.com/apache/iotdb/tree/master/library-udf/src/main/java/org/apache/
iotdb/library/dquality

page

pid
cid, sid

path

chunk

cid
fid, sid
offset

file

fid
path

series

sid
path

page_stat

pid
start_time
end_time

cnt
miss_cnt
late_cnt

redundant_cnt
value_cnt

variation_cnt
speed_cnt

acceleration_cnt
custom_fields

chunk_stat

cid
start_time
end_time

cnt
miss_cnt
late_cnt

redundant_cnt
value_cnt

variation_cnt
speed_cnt

acceleration_cnt
custom_fields

file_series_stat

sid,fid
start_time
end_time

cnt
miss_cnt
late_cnt

redundant_cnt
value_cnt

variation_cnt
speed_cnt

acceleration_cnt
custom_fields

chunk_group

id
path

n

m

1 n 1 n

1

1

1

1

1
n

1
1

Figure 3: ER diagram of time series statistics

we devise and implement the computation layer, which reads the
original time series data from IoTDB, calculates the number of
all kinds of data quality issues in each time series, and stores the
statistics in SQLite. In particular, we have developed two computing
methods to suit the needs of different scenarios. We first implement
a series of functions in IoTDB to perform the computation, as shown
in the left part of the computation layer in Figure 2. This approach
allows users to monitor data changes in real-time through IoTDB’s
triggers and take different measures according to actual demands.
Meanwhile, considering the possible performance bottleneck of this
approach when facing large amounts of data, we leverage Apache
Spark to cope with large data volume, as shown in the right part
of the computation layer in Figure 2. While losing the ability to
monitor data changes, this method calculates statistics much faster
than the previous one.

The bottom layer in Figure 2 is the storage layer. IoTDB stores the
time series data in the form of TsFile and provides data upwards for
the computation layer as well as the three tools in the interface layer.
Considering the relatively simple data storage schema (number of
various abnormal values), we use SQLite, a lightweight relational
database, to store the results of the computation layer and provide
information for the interface layer.

2.2 Storage Design
Figure 3 presents the entity-relationship model of the data in SQLite,
where the white entities are existing concepts in IoTDB and the gray
ones are new information in TsQuality. The entities page, chunk,
chunk_group, file correspond to the hierarchical storage structure
of IoTDB, sorted in order of storage granularity from fine to coarse.
Defined according to the tree data model of IoTDB, entity series
records the logical path of a time series. In IoTDB, all time series
will be sliced and stored into multiple data files partitioned by time.
The composite entity file-series thus corresponds to one partition
of a time series.

The three entities page_stat, chunk_stat, file_series_stat store the
statistical information of the corresponding storage level, including
the start and end timestamps, the total data count and the number
of all kinds of abnormal values introduced in Section 1. In addition,

3983

https://iotdb.apache.org/UserGuide/Master/Operators-Functions/Data-Quality.html
https://iotdb.apache.org/UserGuide/Master/Operators-Functions/Data-Quality.html
https://github.com/apache/iotdb/tree/master/library-udf/src/main/java/org/apache/iotdb/library/dquality
https://github.com/apache/iotdb/tree/master/library-udf/src/main/java/org/apache/iotdb/library/dquality


Figure 4: Data quality overview of time series in TsQuality

the ER diagram can be extended with custom fields to accommodate
different data quality metric definitions in real-world scenarios.

2.3 Data Quality Evaluation
In this section, we introduce how to measure data quality in IoTDB
with TsQuality. TsQuality supports two forms of data quality eval-
uation. In addition to calculating data quality metrics based on the
statistic information stored in SQLite, we also implement a series of
functions in IoTDB to perform data quality-related queries. The data
quality functions currently supported by IoTDB are listed below:

(1) Completeness measures the ratio of data that is not missing.
(2) Consistency measures the ratio of data that is not redundant.
(3) Timeliness measures the ratio of data that is not delayed.
(4) Validity measures the ratio of data that meets constraints.
For example, the following SQL statement is used to partition

the data into windows of 15 data points and query the validity of
the time series root.test.d1.s1 in IoTDB before January 1, 2023.

SELECT consistency(s1,"window"="15")
FROM root.test.d1 WHERE time <= 2023-01-01

Considering that the definition of data quality may vary in prac-
tical scenarios, TsQuality has two extension mechanisms to ac-
commodate different demands which correspond to the two data
quality evaluation forms respectively. First, based on the statistical
information in SQLite, users can extend the ER diagram by adding
custom fields as introduced in the previous section. In addition,
users are also able to handle complex data quality analysis with
TsQuality by writing IoTDB UDFs.

3 DEMONSTRATION PLAN
In this section, we demonstrate TsQuality using the three tools in
Figure 2 to measure the data quality in IoTDB as follows.

3.1 TsQuality Dashboard
As the native visualization tool for IoTDB, TsQuality Dashboard4
not only provides an overview of data quality at the series level
but also marks the abnormal values and gives the possible repair in
the original data distribution. Figure 4 gives an overview of data

4https://thssdb.github.io/TsQuality/

Figure 5: Data quality explanation of time series in TsQuality

quality for a single time series from November 15th to November
21st. The two bar charts on the left give the total amount of data
and the data quality aggregated by day, respectively. In addition to
aggregation by day, users can also select the corresponding time
range for aggregation by clicking on the two buttons at the top of
the bar chart, Aggregate by month and Aggregate by year. The four
pie charts on the right side of the figure show the distribution of
the four data quality metrics of different dates. It can be seen that
among the four metrics, completeness is the worst, all in the range
of [0.0-0.6), followed by timeliness and consistency. Validity is the
best, all in the range of [0.9-1.0]. Users can enter the detail pages of
the four data quality metrics through the navigation bar at the top
of the page.

After learning about the data quality of a time series aggregated
by different time ranges, users may be interested in the lower data
quality metrics and want to know the specific reasons why that data
quality problem occurs. To this end, TsQuality Dashboard also gives
the explanation of the data quality issue in the form of an outlier
list and their possible repairs in the original time series, as shown
in Figure 5. The histogram gives the value distribution of this time
series. The horizontal axis indicates all value ranges in the data and
the vertical axis represents the number of data points whose value
is in the corresponding range. The two dashed red arrows in the
figure give the minimum and maximum value constraints of the
series, which are 4.85 and 5.26 respectively. All data points with
values outside this range are considered validity outliers. The red
triangle in the graph represents the validity outlier, and the black
triangle represents the value of the outlier after repair.

The line chart below shows a possible repair scenario for the
outlier point above. The red line gives the distribution of part of
the original time series, and the black line gives the possible repair
of this segment of time series. As we can see, the value of the
outlier is modified to 5.24 because its original value 5.28 exceeds
the maximum limit 5.26.

3984

https://thssdb.github.io/TsQuality/


Figure 6: Quality overview of the entire database in Superset

3.2 Apache Superset
Apache Superset5 is able to give the overall data quality of all time
series in IoTDB in the form of a dashboard as illustrated in Figure
6. The top left corner gives the total number of data points as well
as the total number of time series and to the right side of which is
a radar chart showing the overall data quality of the data in IoTDB.
The top right corner of the figure shows the percentage of non-
empty time series in the database in a pie chart, where blue and
purple represent non-empty and empty time series, respectively.
The bar chart in themiddle shows the amount of data in the database
at different time periods. The time axis is not strictly divided by
month; instead, it is determined by the actual time distribution of
the data. At the bottom of the figure is the data quality of different
time periods. Each of the four bars for each time period corresponds
to the four data quality metrics.

3.3 Apache Zeppelin
Apache Zeppelin6 allows users to input custom SQL query state-
ments and visualize the results in the form of bar charts, scatter
plots, and so on. Figure 7 presents an example of IoTDB data quality
query in Zeppelin. The first parameter of the function is the name
of the sensor in the time series path, and the second parameter
window specifies the window size when reading the original time
series data with a sliding window for calculation. The query results
for the four data quality metrics are given at the bottom of the
figure in the format of a line chart. The user can hover the cursor
over the line chart to examine the specific values of the four data

5https://superset.apache.org/
6https://zeppelin.apache.org/

Figure 7: Data quality query in Zeppelin

quality metrics. Also, the chart can be zoomed in by dragging the
mouse over the horizontal axis to select the time period of interest.

4 CONCLUSION
We demonstrate TsQuality, a system to measure the data quality in
Apache IoTDB. Among the three tools in the interface layer, TsQual-
ity Dashboard provides an overview of data quality for time series,
explains why data quality issues occur, and gives the possible repair,
while Apache Superset has the advantage of giving the overall data
quality of the whole database through aggregate queries. Also, for
interactive analysis, users can interact with Apache Zeppelin by
executing custom queries and visualizing the results.

ACKNOWLEDGMENTS
This work is supported in part by the National Key Research and
Development Plan (2021YFB3300500), the National Natural Science
Foundation of China (62072265, 62021002, 62232005), Beijing Na-
tional Research Center for Information Science and Technology
(BNR2022RC01011), and Alibaba Group through Alibaba Innovative
Research (AIR) Program. Shaoxu Song (https://sxsong.github.io/) is
the corresponding author.

REFERENCES
[1] X. Ding, H. Wang, J. Su, Z. Li, J. Li, and H. Gao. Cleanits: A data cleaning system

for industrial time series. Proc. VLDB Endow., 12(12):1786–1789, 2019.
[2] C. Fang, S. Song, and Y. Mei. On repairing timestamps for regular interval time

series. Proc. VLDB Endow., 15(9):1848–1860, 2022.
[3] M. K. Shende, A. E. Feijóo-Lorenzo, and N. D. Bokde. cleants: Automated (automl)

tool to clean univariate time series at microscales. Neurocomputing, 500:155–176,
2022.

[4] S. Song, F. Gao, A. Zhang, J. Wang, and P. S. Yu. Stream data cleaning under speed
and acceleration constraints. ACM Trans. Database Syst., 46(3):10:1–10:44, 2021.

[5] S. Song and A. Zhang. Iot data quality. In CIKM ’20: The 29th ACM International
Conference on Information and Knowledge Management, Virtual Event, Ireland,
October 19-23, 2020, pages 3517–3518. ACM, 2020.

[6] Y. Su, Y. Gong, and S. Song. Time series data validity. InACM SIGMOD International
Conference on Management of Data, SIGMOD, 2023.

[7] C. Wang, J. Qiao, X. Huang, S. Song, H. Hou, T. Jiang, L. Rui, J. Wang, and J. Sun.
Apache IoTDB: A time series database for IoT applications. In ACM SIGMOD
International Conference on Management of Data, SIGMOD, 2023.

3985

https://superset.apache.org/
https://zeppelin.apache.org/
https://sxsong.github.io/

	Abstract
	1 Introduction
	2 System Description
	2.1 System Architecture
	2.2 Storage Design
	2.3 Data Quality Evaluation

	3 Demonstration Plan
	3.1 TsQuality Dashboard
	3.2 Apache Superset
	3.3 Apache Zeppelin

	4 Conclusion
	Acknowledgments
	References

