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ABSTRACT
This demo paper presents KGNet, a graphmachine learning-enabled
RDF engine. KGNet integrates graph machine learning (GML) mod-
els with existing RDF engines as query operators to support node
classification and link prediction tasks. For easy integration, KGNet
extends the SPARQL language with user-defined predicates to sup-
port the GML operators. We refer to this extension as SPARQL𝑀𝐿

query. Our SPARQL𝑀𝐿 query optimizer is in charge of optimizing
the selection of the near-optimal GML models. The development
of KGNet poses research opportunities in various areas spanning
KG management. In the paper, we demonstrate the ease of inte-
gration between the RDF engines and GML models through the
SPARQL𝑀𝐿 inference query language. We present several real use
cases of different GML tasks on real KGs. Using KGNet, users do
not need to learn a new scripting language or have a deep under-
standing of GML methods. The audience will experience KGNet
with different KGs and GML models, as shown in our demo video
and Colab notebook.
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1 INTRODUCTION
Knowledge graphs (KGs) are heterogeneous directed graphs that
store the semantics of relationships of real-world entities in differ-
ent domains[4]. Graph machine learning (GML) methods, especially
graph neural networks (GNNs), have been used recently to apply
machine learning on top of graph data and achieved outstanding
results in different tasks such as recommendations [9], drug dis-
covery [7] and fraud detection [2]. KGs are built to express the
relational graph data structure semantics. However, existing RDF
engines lack the support of integrating directly with GML-trained
models to allow ad-hoc GML-based queries over the stored KGs.

Data scientists often develop custom ML pipelines for their
tasks. The automated SQL-ML pipelines get attention recently
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Figure 1: The KGNet architecture, which enables data scien-
tists to automatically train GMLmodels on KGs for querying
and inferencing using the SPARQLML language interface.

on ML-databases [3, 6, 10], such as MindsDB 1. Likewise, GML
pipelines now commonly train ML models on graph data using
popular GML frameworks, such as PYG, DGL, and others. For
the average user, this responsibility is overwhelming and time-
consuming. Furthermore, the trained models are isolated from
the RDF engine, where the KG is stored. Therefore, automating
the training and inference pipelines via a SPARQL-like query is
essential. We refer to this query as a SPARQLML query.

The KGNet architecture [1] shown in Figure 1 extends existing
RDF engines with two main components GML-as-a-service (GM-
LaaS) and SPARQLML as a Service. The GMLaaS automates the
training of GML tasks, such as node classification or link prediction,
on KGs andmaintains a set of trained models. It also provides a Rest-
ful API service to manage the trained models and support ad-hoc in-
ference queries. SPARQLML as a Service collects the metadata of the
trained models fromGMLaaS. This metadata is stored as an RDF KG,
called KGMeta. This process is managed by the KGMeta governor.
KGMeta enables seamless integration between the RDF engine and
the GMLmodel zoo [5] to allow ad-hoc inference queries in the form
of SPARQLML. KGMeta allows users to identify the appropriate
GML model for their task and then get model predictions through
SPARQLML inference queries. It allows the SPARQLML optimizer to
choose the optimal model in terms of accuracy and inference time
by automatically mapping the user-defined predicates into the ap-
propriate GML model. Our SPARQLML as a Service enable data and
ML engineers to focus on analytics and model development. The re-
mainder of this paper is organized as follows. Section 2 presents the
KGNet SPARQL𝑀𝐿 query management and optimization. Section 3
demos five real GML tasks. Section 4 concludes the paper.

2 THE SPARQLML AS A SERVICE
The SPARQLML as a Service component in Figure 1 transforms
SPARQLML queries into SPARQL queries, which are then executed
1predicting home rental prices with MindsDB SQL-ML
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Figure 2: A KGMeta instance of two trained models for the
node classification task. The white nodes are nodes from
the original data KG. The dashed nodes/edges are metadata
collected per trained model. A single task can have multiple
trained models, such as RGCN and GraphSAINT.

using existing RDF engines. The SPARQLML extension enables users
to express SPARQL-like queries for INSERT, DELETE, or SELECT
(Inference) queries, such that: (i) The trained model metadata, as
illustrated in Figure 2, is gathered from a SPARQLML, INSERT query
in Figure 3 through a training pipeline for the GML model. The
collected metadata is maintained in KGMeta KG in the form of
RDF triples, (ii) a SPARQLML DELETE query depicted in Figure 4
deletes the trained model files and their corresponding embeddings
from the GMLaaS component, followed by the deletion of their
metadata from the KGMeta. (iii) a SPARQLML SELECT query is
for querying and inferencing the KG, e.g., the query in Figure 5.
When a SPARQLML query is received, the query manager parses it.
The SELECT query is optimized and rewritten as a SPARQL query.
The INSERT or DELETE query is sent to the KGMeta governor for
maintaining the KGMeta updates. The UDF manager manages the
creation of UDFs in a remote RDF engine. These UDFs enable the
communication between the remote RDF engine and KGNet GML
inference manager API via Restful HTTP Post/Get requests.

2.1 KGMeta Governor
The KGMeta governor maintains a KGMeta graph, which includes
statistics, such as triples and target labels, and metadata collected
for trained models for a given task, such as the model accuracy
and training time. The INSERT query is a request to train a task
on a certain KG. The parsed information includes the task type,
i.e., node classification or link prediction, and the task inputs,
i.e., the target nodes and the GNN method. This information is
encapsulated as a JSON object. The TrainGML function shown
in Figure 3 takes the JSON object that encapsulates all required
information to train a GML model as input and then invokes the
GMLaaS training pipeline. Before starting the training pipeline,
the KGMeta Governor sends the JSON object to the task sampler
to extract a task-oriented subgraph denoted as 𝐾𝐺 ′ for the given
task. This subgraph 𝐾𝐺 ′ is subsequently transformed into a GML
dataset and then initiates the model training. Once training is
complete, the KGMeta governor receives the trained model’s
metadata, including trained model score and inference time, to
maintain the KGMeta, as illustrated in Figure 2.

The SPARQLML
𝑝𝑣 query shown in Figure 5 is an example of an

inference query that extends traditional SPARQL query language
to apply GML models on top of the DBLP KG. The venue variable

1 prefix dblp:<https ://www.dblp.org/>

2 prefix kgnet:<https ://www.kgnet.com/>

3 Insert into <kgnet > { ?s ?p ?o }

4 where {select * from kgnet.TrainGML(

5 {Name: 'MAG_Paper -Venue_Classifer ',

6 GMLTask :{ taskType:kgnet:NodeClassifier,

7 targetNode: dblp:publication ,

8 labelNode: dblp:venue ,GNNMethod: RGCN},

9 taskBudget :{ maxMemory :50GB, maxTime :1h} })};

Figure 3: A SPARQLML insert query that trains a paper-venue
classifier on DBLP KG. The TrainGML function is imple-
mented inside KGNet to automate a training pipeline for a
given task.

1 prefix dblp:<https ://www.dblp.org/>

2 prefix kgnet:<https ://www.kgnet.com/>

3 delete {?NodeClassifier ?p ?o}

4 where {

5 ?NodeClassifier a kgnet:nodeClassifier.

6 ?NodeClassifier kgnet:targetNode dblp:Publication.

7 ?NodeClassifier kgnet:labelNode dblp:venue.

8 ?NodeClassifier ?p ?o.}

Figure 4: A SPARQLML delete query that deletes a trained
model and its meta-data.

1 prefix dblp: <https ://www.dblp.org/>

2 prefix kgnet: <https ://www.kgnet.com/>

3 select ?title ?venue

4 where {

5 ?paper a dblp:Publication.

6 ?paper dblp:title ?title.

7 ?paper ?NodeClassifier ?venue.

8 ?NodeClassifier a kgnet:nodeClassifier .

9 ?NodeClassifier kgnet:targetNode dblp:Publication.

10 ?NodeClassifier kgnet:labelNode dblp:venue.}

Figure 5: SPARQLML
𝑝𝑣 : a SPARQLML query includes the user

defined predicate ?NodeClassifier to invoke a trained node
classification (𝑃𝑉 ) model. 𝑃𝑉 predicts a paper’s venue by
querying and inferencing over the DBLP KG. Lines 8-10 are
user-defined triple patterns identifying the candidate node
classification models.
is a virtual node that could be predicted using a node classification
(NC) model. This query uses a model of type kgnet:NodeClassifier
to predict a venue for each paper or for a subset of papers
that can be identified through a SPARQL filter function. The
SPARQLML triple patterns in lines 8-10 will retrieve all models of
type kgnet:NodeClassifier that predict a label of type dblp:venue
for target node of type dblp:publication. In the triple pattern
⟨?paper, ?NodeClassifier, ?venue⟩, we refer to ?NodeClassifier
as a user-defined predicate.

2.2 SPARQL𝑀𝐿 query Optimization
The query manager optimizes SPARQLML queries for model
selection and rank-ordering to evaluate user-defined predicates.
In the case of SPARQLML

𝑝𝑣 shown in Figure 5, the query parser
parse the SPARQL𝑀𝐿 query to identify the KG triples patterns
in lines 5-6 and the user-defined GML triples patterns in lines
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1 prefix dblp: <https ://www.dblp.org/>

2 prefix kgnet: <https ://www.kgnet.com/>

3 select ?title

4 sql:UDFS.getNodeClass($m ,?paper) as ?venue

5 where {

6 ?paper a dblp:Publication.

7 ?paper dblp:title ?title.

8 }

(a) Small Cardinality Query Form

1 prefix dblp: <https ://www.dblp.org/>

2 prefix kgnet: <https ://www.kgnet.com/>

3 select ?title

4 sql:getKeyValue (?venues_dic ,?paper) as ?venue

5 where {

6 ?paper a dblp:Publication.

7 ?paper dblp:title ?title.

8 {select sql:UDFS.getNodeClass($m,dblp:Publication)

9 as ?venues_dic where { } }}

(b) Large Cardinality Query Form

Figure 6: Candidate SPARQL Queries for SPARQLML
𝑝𝑣

7-10. The latter allows the query optimizer to fetch the IRI of the
models satisfying the conditions associated with the user-defined
predicate ?NodeClassifier from KGMeta. The SPARQLML Query
Re-writer uses the near-optimal GML model with IRI𝑚 to generate
a candidate SPARQL query. The candidate SPARQL query passes
through two optimization phases.

(Phase 1) Optimizing for the GML model selection: The KGMeta
stores training task metadata, such as model accuracy, inference
time, and model cardinality. The query optimizer uses the KGMeta
to select the near-optimal GML model with high accuracy and low
inference time. We define this problem as an integer programming
(IP) optimization problem [5, 8] that minimizes total execution time
and maximizes the inference accuracy for a set of candidate-trained
models as in equation 1.

max 𝑤1 · 𝑆𝑐𝑜𝑟𝑒 (𝑚) −𝑤2 · 𝐼𝑛𝑓 𝑒𝑟𝑇𝑖𝑚𝑒 (𝑚) for m ∈ 𝑄𝑀

s.t. 𝑆𝑐𝑜𝑟𝑒 (𝑚) > 𝑐1, 𝐼𝑛𝑓 𝑒𝑟𝑇𝑖𝑚𝑒 (𝑚) < 𝑐2,
𝑤1 = 0.7,𝑤2 = 0.3, 𝑐1 > 0, 𝑐2 > 0

(1)

where 𝑄 is The GML inference query that is to be mapped into
a single model𝑚 from a set of trained modes 𝑄𝑀 , 𝑐1 and 𝑐2 are
constraints according to user preferences.

For large size |𝑄𝑀 |, constrained multi-objective optimization is
essential for optimal model selection during the inference time to
enable accurate and fast SPARQLML query execution pipeline.

(Phase 2) : Optimizing for user-defined predicates ordering: Fig-
ures 6a, 6b shows two candidate SPARQL query for the SPARQL𝑀𝐿

in Figure 5. KGNet currently supports two possible execution plans.
The core idea is to map a user-defined predicate into a user-defined
function (UDF), such as sql:UDFS.getNodeClass. The RDF engine
sends HTTP calls during the execution time to the GML infer-
ence manager to get the predictions based on the chosen model
𝑚 in optimization phase 1. The number of HTTP calls may sig-
nificantly influence the query execution time, corresponding to
both the query and model cardinality. For example, SPARQLML

𝑝𝑣

1 select ?s from <http ://kgnet >

2 where {?s a <kgnet:type/GMLTask >.}

(a) SPARQL query that Lists KGNet GML tasks.

1 select ?m from <http ://kgnet >

2 where {?t a <kgnet:type/GMLTask >.

3 ?t <kgnet:GMLTask/targetNode > dblp:Publication .

4 ?t <kgnet:GMLTask/labelNode > dblp:venue .

5 ?t <kgnet:GMLTask/modelID > ?m .}

(b) SPARQL query that lists the GML models of DBLP-PV Task.

1 select ?m ?p ?o from <http ://kgnet >

2 where{ ?t a <kgnet:type/GMLTask >.

3 ?t <kgnet:GMLTask/targetNode > dblp:Publication .

4 ?t <kgnet:GMLTask/labelNode > dblp:venue .

5 ?t <kgnet:GMLTask/modelID > ?m

6 ?m <kgnet:GMLModel/GNNMethod > "G-SAINT".

7 ?m ?p ?o. }

(c) SPARQL query that lists the attributes of trained Graph SAINT
GML models for DBLP-PV task.

Figure 7: SPARQL queries to explore the KGMeta KG.

predicts the venue of all papers, whose size is |?papers|. The query
template shown in Figure 6a will generate |?papers| HTTP calls.
However, the query template shown in Figure 6b reduces the num-
ber of HTTP calls to a single call by enforcing an inner select
query constructing a dictionary of all papers and their predicted
venues. Then, sql:UDFS.getKeyValue is used to select the venue of
each paper from an intermediate dictionary of all papers and their
predicted venues. In a small-cardinality query, the cardinality of
the query |𝑞𝑐 | ≪ |𝑚𝑐 |, where |𝑚𝑐 | is the model cardinality. In a
large-cardinality query, where |𝑞𝑐 | ≈ |𝑚𝑐 |, the single HTTP call
form is more efficient.

3 DEMONSTRATION OF GML USECASES.
3.1 Exploring KGMeta GML Models.

For ease of use and seamless integration, KGMeta KG allows
users to explore KGNet GML models by writing simple SPARQL
queries as in Figure 7. The user can explore the catalogue of GML
tasks using a select query shown in Figure 7a and then explore the
list of GML models trained for a GML task using a query in Figure
7b. The metadata of a trained GML model can be retrieved using a
query like the one in Figure 7c.

3.2 GML Tasks
Table 1 shows five GML tasks for node classification (NC) and link
prediction (LP). For every task the inference query is written in
form of a SPARQL𝑀𝐿 query where the query engine is in charge of
parsing, optimizing and re-writing that query into a SPARQL query.
The SPARQL𝑀𝐿 optimizer selects the best model for each task by
solving the IP maximization problem in Eq:1 for the available set
of models by selecting them from the KGMeta KG. After model
selection, The user-defined predicate ordering optimization is used
to generate the final SPARQL query. The KGs data are loaded into
Openlink-Virtuoso (V.07.20.32) RDF engine. The GML inference API
is accessible through HTTP Restful doPost calls. The SPARQL𝑀𝐿

3976



Table 1: Node classification (NC) and link prediction (LP) GML tasks. The SPARQL𝑀𝐿 query is optimized for the highest score,
the lowest inference time, or both as integer programming (IP) optimization problems. IP is the default strategy in KGNet.

Task Type KG GML Method Model Score(%) Inference SPARQL 𝑀𝐿 Optimization
Time (sec) Highest Score Lowest Infer. Time IP

Paper-Venue
#Papers=1.2M

NC DBLP

GraphSAINT 89.88 49
√

RGCN 80.07 28
√

ShadowSAINT 90.89 64
√

SeHGNN 86.2 72

Paper-Venue
#Papers=703K

NC MAG

GraphSAINT 81.08 31
√

RGCN 69.49 19
√

ShadowSAINT 82.48 43
√

SeHGNN 76.4 45

Fraud Detection
#Transaction=590K NC IEEE-CIS

GraphSAINT 96.72 30
RGCN 96.62 15

√

ShadowSAINT 96.57 26
√

SeHGNN 97.05 37
√

Film Language
#Films=26K

NC Linked-MDB

GraphSAINT 83.9 15
RGCN 86.5 12

√ √ √

ShadowSAINT 84.5 19
SeHGNN 85.4 26

Connected Airports
#Links=32.3K

LP YAGO3-10
MorsE 85.27 51

√

RGCN 29.12 23
√

LHGNN 99 79
√

Author Affiliation
#Links=108K

LP DBLP MorsE 89.07 113
√ √

RGCN 10.05 62
√

Person Occupation
#Links=1.7M

LP ogbl-wikikg2 MorsE 77 328
√ √

RGCN 6 109
√

query optimizer selects the model with the highest accuracy and
reasonable inference time compared with the highest score and
lowest inference time rule-based optimization shown in Table 1.
Node classification tasks:We demonstrate 3 node classification
taskswhere the inference query is written in SPARQL𝑀𝐿 syntax. For
each task, we trained 4 GNN models using SOTA methods (RGCN,
GraphSAINT, ShadowSAINT, and SeHGNN) in [1]. The evaluation
metric is classification accuracy. The first task uses the DBLP2 KG
and predicts a publication venue for each paper. The second task
similarly uses MAG3 KG and predicts a publication venue for each
paper. The third task uses the IEEE-CIS4 dataset to predict whether
an e-Commerce transaction is fraudulent or not. The fourth task
uses the Linked-MDB5 dataset to predict the language of a film.
Link Prediction tasks: We demonstrate three link prediction
tasks. For each task, we trained 3 GNN models using SOTA
methods (RGCN, LHGNN, and MorsE) in [1]. The evaluation
metric is Hits@10. The first task uses the Yago3-106 dataset to
predict a connected airport link between two airports. The second
task similarly uses DBLP KG to predict an affiliation link between
the author and the research institute. The third task uses the
ogbl-wikikg27 dataset to predict the person’s occupation link.

The presented tasks are varying in task type, model cardinality,
KG size, used GML methods, and data domain that shows the
applicability and ease of use of SPARQL𝑀𝐿 . We are enriching the
KGNet system by adding more tasks and GML models for bench-
marking the SPARQL𝑀𝐿 queries for further GML applications and
ML-based query optimization for inference and insert queries.
2DBLP-03-2022: https://dblp.org/rdf/release/
3MAG-2020-05-29: https://makg.org/rdf-dumps/
4IEEE-CIS-Fraud Detection: https://www.kaggle.com/c/ieee-fraud-detection
5LinkedMDB: https://triplydb.com/Triply/linkedmdb/sparql/linkedmdb
6YAGO3-10: https://paperswithcode.com/dataset/yago3-10
7ogbl-wikikg2: https://ogb.stanford.edu/docs/linkprop/#ogbl-wikikg2

4 CONCLUSION
In this demo paper, we present our KGNet platform, which provides
SPARQL𝑀𝐿 as a service to extend existing RDF engines to support
querying and inferencing KGs using trained models. Our service
maintains all the metadata collected from training GML models as
a KG called KGMeta, which is stored alongside the domain-specific
KG. This enables seamless integration between trained GMLmodels
and existing RDF engines. Executing SPARQL𝑀𝐿 query includes
two main optimizations: i) selecting the model that achieves the
highest accuracy with the lowest inference time, and ii) ranking
ordering to optimize the inference query HTTP calls.
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