
Ganos Aero: A Cloud-Native System for Big Raster Data
Management and Processing

Fei Xiao
Alibaba Group

jibo.xf@alibaba-inc.com

Jiong Xie
Alibaba Group

xiejiong.xj@alibaba-
inc.com

Zhida Chen
Alibaba Group

zhida.chen@alibaba-
inc.com

Feifei Li
Alibaba Group

lifeifei@alibaba-inc.com

Zhen Chen
Alibaba Group

erchen.cz@alibaba-
inc.com

Jianwei Liu
Alibaba Group

jerven.ljw@alibaba-
inc.com

Yinpei Liu
Alibaba Group

yinpei.lyp@alibaba-
inc.com

ABSTRACT
The development of Earth Observation technology contributes to
the production of massive raster data. It is vital to manage and con-
duct analytical tasks on the raster data. Existing solutions employ
dedicated systems for the raster data management and processing,
respectively, incurring problems such as data redundancy, difficulty
in updating, expensive data transferring and transformation, etc.
To cope with these limitations, this demonstration presents Ganos
Aero, a cloud-native system for big raster data management and
processing. Ganos Aero proposes a unified raster data model for
both the data management and processing, which stores a single
copy of the raster data and without performing an expensive tiling
procedure, and thus achieves significant improvement in the stor-
age and updating efficiency. To enable efficient query and batch task
processing, Ganos Aero implements an on-the-fly tile production
mechanism, and optimizes its performance using the cloud features
including decoupling compute from storage and pushing costly
operations closer to the storage layer.

Since deployed in Alibaba Cloud in 2022, Ganos Aero has been
playing a critical role in many real applications including the mod-
ern agriculture, environment monitoring and protection, et al.

PVLDB Reference Format:
Fei Xiao, Jiong Xie, Zhida Chen, Feifei Li, Zhen Chen, Jianwei Liu,
and Yinpei Liu. Ganos Aero: A Cloud-Native System for Big Raster Data
Management and Processing. PVLDB, 16(12): 3966 - 3969, 2023.
doi:10.14778/3611540.3611597

1 INTRODUCTION
The development of Earth Observation technology gives rise to an
explosion of the raster data, e.g., NASA’s climate observation data
has reached 32PB since 2000 [6]. There exist extensive raster data
applications such as evaluating the condition of a broad geospa-
tial area, and simulating a geophysical phenomenon. A raster data
object consists of a matrix of equal-sized pixels (or cells), where
each pixel is associated with a geographic location and contains

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611597

values such as the temperature and altitude. It is critical to manage
and analyze the raster data, where an analytical task usually encap-
sulates many expensive operations on the large-scale raster data.
Existing solutions employ dedicated systems for the raster data
management and big raster data processing, respectively. Typically,
the raster data is managed in a DBMS, and the raster data analytics
is performed in a distributed computing framework. Such strategy
has several defects. Firstly, it results in data redundancy and high
storage costs. In a DBMS, the raster data is stored as a data format
that is compact and is efficient for indexing, while in a raster data
processing system, the raster data is partitioned into a vast number
of small pieces called the tiles so that the processing can be easily
parallelized for better efficiency. Secondly, it is unfriendly to update.
When the raw raster data is updated, both systems need to perform
the data updating accordingly, which is especially expensive for the
raster data processing system because it must conduct the tiling
procedure on the whole dataset. Thirdly, it has poor support for the
analytical tasks that operate on the non-raster data as well, requir-
ing the cooperation of the DBMS and the raster data processing
system. Lastly, it is unfriendly to use. The user has to interact with
entirely different systems for different applications. To solve these
problems, we propose Ganos Aero, a novel system that integrates
the raster data management and processing into one system. Before
introducing Ganos Aero, we first briefly review existing works.

Many traditional relational DBMSs (e.g., PostGIS [3], Oracle
Spatial [1]), and some array-based DBMSs (e.g., SciDB [2], Ras-
daman [4]) have supported the raster data and developed indexing
mechanisms to facilitate the query processing. However, the paral-
lelism of a DBMS is mostly optimized for the parallel processing
at the object level, while the raster data is usually large and differs
greatly in size, which hinders the parallel processing and makes it
not efficient for a complex raster data processing task. The other
line of works (e.g., SpatialHadoop [7], GeoTrellis [5]) develop raster
data processing systems based on a distributed computing frame-
work. They perform a tiling procedure to divide the raster data
into a vast number of tiles for the parallel processing. However, the
tiling procedure is time-consuming and results in high storage cost.
Also, they have limited support for processing the queries running
on both the raster and non-raster data.

This study presents Ganos Aero, a unified system that integrates
Alibaba’s cloud-native DBMS PolarDB for PostgreSQL [8] (hereafter

3966

simplified as PolarDB) and Apache Spark for big raster data man-
agement and processing. Many challenges exist for the integration,
such as how to break through the barrier between a DBMS and a
batch computing framework, how to reduce the system deployment
cost, and how to store the massive raster data in database without
compromising the batch processing performance. To solve the prob-
lems arisen, Ganos Aero leverages the cloud features of decoupling
compute from storage and the flexible storage mode, which stores
a single copy of the raster data in Object Storage Service (OSS), and
employs multiple high-performance computing instances to enable
efficient computations on the raster data. Besides, by providing the
raster data as a native data type, Ganos Aero implements a trans-
parent yet efficient raster data accessing mechanism, and develops
optimization techniques including pushing costly operations to be
performed in the DBMS. Our contributions are summarized below.

• This study presents Ganos Aero, a novel cloud-native big
raster datamanagement and processing system. GanosAero
is a full-fledged system having the features of large-scale
raster data management, and being capable of processing
both the interactive queries and complex batch tasks.

• Ganos Aero adopts a unified raster data model for both the
data management and processing, which stores a single
copy of the raster data and without building and maintain-
ing a vast number of tiles. Therefore, Ganos Aero achieves
significantly better storage and updating efficiency than
existing solutions. It greatly saves the system deployment
cost for TBs or even PBs of raster data.

• Ganos Aero implements an on-the-fly tile production mech-
anism, and leverages the cloud features to optimize its ef-
ficiency including decoupling compute from storage and
pushing costly operations closer to the storage layer, thus
enabling efficient interactive query and batch processing.

• Since deployed in Alibaba Cloud in 2022, Ganos Aero has
been playing a critical role in many real applications. We
showcase the features of Ganos Aero on real datasets.

2 SYSTEM ARCHITECTURE
Figure 1 shows the architecture of Ganos Aero, composed of the
management layer, the computing layer, and the user interface.

2.1 Management Layer
The management layer, i.e., PolarDB, is responsible for the raster
data management, including storing, indexing, and optimizing the
operations on the raster data. PolarDB is cloud-native and provides
features such as high-performance data accessing, resource auto-
scaling, and fault tolerance. Ganos Aero is developed on top of
Ganos [9], the spatial and temporal database engine of PolarDB,
and adds supports for the raster data management and processing.
To reduce the system deployment cost, Ganos Aero can store the
data in OSS, which is much cheaper than storing in a table. A
transparent yet efficient data accessing mechanism is implemented
so that the user can access the data without noticeable difference.

The user can decide for each raster object whether to build a
pyramid structure. The pyramid consists of the data chunks having
different resolutions, which facilitates the online tile production
and the visualization procedure. The user can decide between using

M
an

ag
em

en
t

La
ye

r
(P

ol
ar

D
B

)

Geometry

Raster

...

Ganos Model

Raster Data Driver

PolarFS

ExecutorService

REST Service Endpoint

User Interface
(Python client library)

Interactive/Batch

On-the-fly/
batch

CRUD/Push-down

RDD[Tile]

DataFrame

Web Map
Service

Pixel Array

On-the-fly

Container Container

Raster Image
Renderer

DAG
Manager

Pixel Array

Spark JobsSpark JobsSpark Jobs

Container

...

C
om

pu
tin

g
La

ye
r

Server
Node

Server
Node

Server
Node

Ganos
Engine

Load Balancing

Publish service

Ganos
Engine

Ganos
Engine

UDTUDF Operation
Operation
Operation

OSS

Storing original raster dataset without tiling process

Figure 1: Ganos Aero architecture.

the raster data or the pyramid for a query based on the user’s
demands w.r.t. the accuracy and efficiency. This is an advantage
over a tile-based system that can only operate on the tiles.

2.2 Computing Layer
Ganos Aero provides two processing modes, namely the interactive
mode and the batch mode. The interactive mode performs opera-
tions on the raster data in a record-by-record manner. It is suitable
for the query that runs on a small raster data subset. By contrast,
the batch mode performs operations on the raster data in a batch
manner, suitable for the task that encapsulates a pipeline of complex
computations on the large-scale raster data. A background map
service is responsible for transforming the results into the images
that can be displayed by the user interface. The raster data driver
bridges the computing and the management layers, which reads
and writes the raster data between the two layers.

In an interactive processing instance, ExecutorService produces
a directed-acyclic-graph (DAG) workflow by parsing the query
request. Then, the DAG manager encodes the DAG into a data
structure called a template and calls the management layer to store
the template in the database. Subsequently, the interactive process-
ing instance communicates with the management layer to obtain
the raster objects of interest. Instead of directly sending back the
objects, the management layer reads the template and determines
the operations to be performed in the DBMS. Next, it performs the
operations on those objects accordingly and sends the intermedi-
ate results to the interactive processing instance. The interactive
processing instance performs the remaining operations on the inter-
mediate results one by one and sends the result to the user interface

3967

for display. By pushing some operations to the DBMS, the query
optimizer helps improve the query plan, and reduce the network
costs, e.g., by conducting a cropping operation in the DBMS, the
cropped raster objects instead of the original ones are transferred.

Similarly, a batch processing instance parses the query request
and interacts with the management layer to push a subset of the op-
erations to the DBMS. The sent-back objects are packed into RDDs,
transformed into a DataFrame, i.e., the concept of a batch of data in
Spark, and are processed in parallel by Spark. Ganos Aero extends
the DataFrame model to support the raster data by developing a set
of user-defined functions (UDFs). In contrast to other Spark-based
raster data processing frameworks, e.g., GeoTrellis, Ganos Aero can
query the raster data stored in the database via SQL, and produce
the tiles on-the-fly to achieve high efficiency in the subsequent
operations, thereby avoiding the extra storage cost of the tiles.

3 DATA ORGANIZATION

22

ID footprint timestamp ... Raster
1 POLYGON(...) 2022-03... ... raster object 1
2 POLYGON(...) 2022-03... ... raster object 2

ID footprint timestamp ... Raster
1 POLYGON(...) 2022-03... ... raster object 1
2 POLYGON(...) 2022-03... ... raster object 2

ID footprint time ... raster
POLYGON 2022-03.. ... raster object
POLYGON 2022-03.. ... raster object

1
2

chunk tableraster table

ID name templateextent
1 layer 1 rs table 1 JSONfootprint
2 layer 2 rs table 2 footprint

...

...

... JSON
...

SQL

Spark Job

Tile

Partition

SQL SQLlayer table

TileRDD

OSS
(raw data)

Raster DataFrame

rid L row chunk
1 0 xxx bytea
1 1 xxx bytea
...
2 0 xxx bytea
...

col
xxx
xxx
...

xxx
...

TileTile
Tile

Partition

TileTile
Tile

Partition

TileTile
...

....

raster table

Figure 2: Ganos Aero data organization.

Figure 2 shows the raster data model and the data organization
approach in Ganos Aero. The raw raster data is stored in OSS. The
raster table stores the metadata and the address of a raster object in
OSS. The pyramid table stores the raster data chunks for online tile
production. The layer table stores the layers, each of which refers
to a subset of raster objects that are specified by a query request.

Raster Data Type. Ganos Aero provides a native raster data
type, composed of the metadata and the address of the raw data in
OSS. The metadata is not stored as the columns of the table because
the raster data from different sources differ in the metadata, making
it difficult and memory-inefficient to predefine the table schema.
The footprint and timestamp of the raster data are stored as the
columns, which are used for indexing. When importing a raster
object into the raster table, the user can specify whether to build a
pyramid based on that object. The pyramid is composed of many
data chunks, each of which stores an image of the raster object at a
specific zoom scale. The pyramid is similar to the tiles returned by
a tiling procedure, so it can facilitate the on-the-fly tile production.

The key difference is that the pyramid is associated with a single
raster object, hence it can be updated efficiently when that object
is updated. To reduce the storage cost, the pyramid only stores the
data chunks at small zoom scales.

Layer. When a user submits a query request, the computing
layer parses the query request into a DAG workflow. The workflow
is then encoded into a data structure called the template, which
stores a set of constraints specifying the raster objects of interest.
Next, Ganos Aero adds a new tuple representing the new layer into
the layer table. The management layer loads the corresponding set
of raster objects after reading the layer table, and decides the subset
of operations defined in the template that are better to be performed
in the DBMS. After performing the operations, the management
layer sends the intermediate results to the computing layer, and
the computing layer performs the remaining operations.

TileRDD and Raster DataFrame. Ganos Aero extends the
RDD and DataFrame model of Spark for the raster data, allowing
Ganos Aero to leverage the rich features of Spark for various tasks.

4 DEMONSTRATION SCENARIO
User Interface. Figure 3 shows the front-end interface of Ganos
Aero. Users can write code or SQL in the workspace of the Jupyter
notebook, and the map UI will display the running result.

Data Management and Interactive Query Processing. As
shown in the first picture of Figure 3, the user can input SQL to
fulfill the raster data management tasks and to check the running
results of the small queries in an interactive manner. Step one
shows the procedure of establishing a connection to the database
and querying the objects in the raster data table. The tiles of the
objects are produced on-the-fly so that the user can see the query
result in the map UI. The part highlighted by the rectangle labeled
one in the map UI shows the only raster object in the table. When
the user performs common map operations such as zoom in/out,
and panning, the map UI will send the tile requests to the backend
process, and Ganos Aero will produce the corresponding tiles on-
the-fly and send them back for visualization. In the second step, two
raster objects are inserted into the table, and the part highlighted
by the ellipse labeled two in the map UI shows the inserted raster
objects, whose tiles are produced on-the-fly as well.

Step three calls the function ST_NormalizedDifference on a
raster data table containing 9,190 objects. The function computes
the normalized difference vegetation index (NDVI) of the raster
objects, which is an indicator of quantifying vegetation greenness
and is commonly used in accessing the vegetation density of a
geospatial area. To save space, we zoom out the visualization result
and put it on the bottom right of the first picture. As we can see,
the user can easily recognize the geospatial areas having denser
vegetation, i.e., the greener parts. It takes only a few seconds to
compute and visualize the query result, giving the user an interac-
tive experience. This feature allows the user to conduct trial and
error on a small dataset before raising a complex task request using
the batch mode.

Batch Processing using Spark. The second picture of Figure 3
showcases the capability of Ganos Aero leveraging Spark to conduct
a cumbersome task. The task is composed of two sub-tasks. The
first sub-task performs a spatial join on the global raster data and a

3968

Figure 3: Demonstration scenarios.

table storing the geospatial areas of the administrative districts in
the USA, computes the NDVI for the raster data in each state of the
USA, and then calls the function ST_Reclassify to classify the NDVI
values of the pixels into 1, 2, 3, or 4. The four categories represent
different levels of the vegetation density, where the category 4
represents the densest vegetation. The second sub-task is to sum
up the number of pixels belonging to each category in each state.
This task is useful for analyzing the vegetation status of a country.

This demo scenario showcases the merits of Ganos Aero: With
the on-the-fly tile production mechanism, Ganos Aero is efficient in
handling a complex analytics task running on massive raster data
with small storage cost; As a DBMS, it is convenient to conduct
analytics tasks involving other non-raster data in Ganos Aero.

REFERENCES
[1] Oracle [n.d.]. Oracle’s Spatial Database. Oracle. Retrieved January 4, 2023 from

https://www.oracle.com/database/spatial/
[2] Carnegie Mellon Database Group [n.d.]. SciDB. Carnegie Mellon Database Group.

Retrieved January 4, 2023 from https://dbdb.io/db/scidb

[3] PostGIS Project Steering Committee (PSC) [n.d.]. Spatial and Geographic objects
for PostgreSQL. PostGIS Project Steering Committee (PSC). Retrieved January 4,
2023 from https://postgis.net/

[4] Edgewall Software [n.d.]. Welcome to rasdaman - the world’s most flexible and
scalable Array / Datacube Engine. Edgewall Software. Retrieved January 4, 2023
from http://www.rasdaman.org/

[5] GeoTrellis [n.d.]. What is GeoTrellis? GeoTrellis. Retrieved January 4, 2023 from
https://geotrellis.readthedocs.io/en/latest/

[6] Peter Baumann, Dimitar Misev, Vlad Merticariu, and Bang Pham Huu. 2021. Array
databases: concepts, standards, implementations. Journal of Big Data 8, 1 (2021),
1–61.

[7] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce
framework for spatial data. In ICDE. IEEE, 1352–1363.

[8] Feifei Li. 2019. Cloud-native database systems at Alibaba: Opportunities and
challenges. PVLDB 12, 12 (2019), 2263–2272.

[9] Jiong Xie, Zhen Chen, Jianwei Liu, Fang Wang, Feifei Li, Zhida Chen, Yinpei
Liu, Songlu Cai, Zhenhua Fan, Fei Xiao, and Yue Chen. 2022. Ganos: A Multidi-
mensional, Dynamic, and Scene-Oriented Cloud-Native Spatial Database Engine.
PVLDB 15, 12 (sep 2022), 3483–3495.

3969

	Abstract
	1 Introduction
	2 System Architecture
	2.1 Management Layer
	2.2 Computing Layer

	3 DATA ORGANIZATION
	4 Demonstration Scenario
	References

