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ABSTRACT

Data ingestion validation, the task of certifying the quality of con-
tinuously collected data, is crucial to ensure trustworthiness of
analytics insights. A widely used approach for validating data qual-
ity is to specify, either manually or automatically, so-called data unit
tests that check whether data quality metrics lie within expected
bounds. We employ conditional unit tests based on conditional met-
rics (CMs) that compute data quality signals over specific parts of
the ingestion data and therefore allow for a fine-grained detection
of errors. A violated conditional unit test specifies a set of erro-
neous tuples in a natural way: the subrelation that its CM refers to.
Unfortunately, the downside of their fine-grained nature is that vi-
olating unit tests are often correlated: a single error in an ingestion
batch may cause multiple tests (each referring to different parts of
the batch) to fail. The key challenge is therefore to untangle this
correlation and filter out the most relevant violated conditional unit
tests, i.e., tests that identify a core set of erroneous tuples and act as
an explanation for the errors. We present CM-Explorer, a system
that supports data stewards in quickly finding the most relevant
violated conditional unit tests. The system consists of three compo-
nents: (1) a graph explorer for visualizing the correlation structure
of the violated unit tests; (2) a relation explorer for browsing the
tuples selected by conditional unit tests; and, (3) a history explorer
to get insight why conditional unit tests are violated. In this paper,
we discuss these components and present the different scenarios
that we make available for the demonstration.
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1 INTRODUCTION

Modern data analytics pipelines continuously collect and ingest
new data. Validating the quality of collected data at ingestion time
is crucial in such pipelines, for a number of reasons. First, and fore-
most, the quality of the derived insights, and the decisions driven
by them, depend directly on the quality of the collected data [8].
Second, as more and more of the data analysis process is auto-
mated, small errors in source data risk propagating to later data
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consumers (such as machine learning models), which may them-
selves act as data sources in other processing pipelines—thereby
potentially magnifying the error [3]. Finally, data errors may even
cause data processing pipelines to crash (e.g., because of null pointer
exceptions due to missing data). Machine learning platforms are
therefore including explicit data validation components into their
pipelines [1, 2, 5].

In recognition of the importance of data quality validation in
modern analytics pipelines, several tools have been proposed to
aid in automatic validation [3, 7, 8]. Broadly speaking, these tools
allow specification, either manually or automatically, of so-called
data unit tests. When a new batch of data is to be ingested, the reg-
istered tests are executed to gauge the batch’s quality where failing
tests highlight data quality problems. The tests themselves entail
computing certain metrics on the data batch (e.g., the minimum or
maximum value appearing in a numerical column or the number of
distinct elements appearing in a column) and checking that these
fall within an expected range.

Unfortunately, these tools suffer from two limitations. First, the
data unit tests that they support are based on global metrics: metrics
that are computed on the entire data batch, or on an entire column in
the batch. As the following example shows, they hence only provide
coarse-grained signals of data quality and are unable to detect fine-
grained errors, i.e., errors that occur only in a specific (potentially
small) part of the batch. Batches with fine-grained errors hence go
unnoticed. Second, even when a data unit test signals that a batch
has a data quality problem, it does not provide a principled method
to identify the part of the batch that is responsible for a test’s failure.
As such, either the entire batchmust be discarded or a human expert
must manually identify and subsequently remove or correct the
erroneous tuples—which is time-consuming and labor-intensive.

Example 1.1. A public railway company has equipped all of its
trains with measurement sensors that record the train’s arrival and
departure time at each train station. By comparing these times with
the time schedule, the train’s software computes the corresponding
delays (if any). At the end of each day, themeasurements of all trains
are collected, and ingested in the railway company’s data lake. The
delays are used to identify hotspot routes, as well as computation
of service quality indicators to the government. Train 5437 runs
daily from Hasselt (Belgium) to Blankenberge (Belgium). This route
is notorious for the delays that it incurs when it passes through
the busy Brussels railway stations. As such, train 5437 normally
reports non-zero delay. Due to a hardware malfunction on March
15, however, it consistently reports zero delay for this train.

The metrics used by state-of-the-art tools are unable to detect
this error. Indeed: because zero delay is not an uncommon value
when considering the entire ingestion batch (some trains run on
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time), metrics such as min(delay), max(delay), and avg(delay) will
not consider zero delay as an anomaly.

It is important to observe that, even if one of the global metrics
signals a data quality problem, it is not clear which train or set of
trains in the batch cause the problem. For instance, if the unit tests
based onmin(delay) ormax(delay) signal an anomaly then of course
we can easily identify the erroneous trains: simply compute the
trains whose delay value is below (or above) the expected minimum
(resp. maximum) value. However, if a unit test based on avg(delay)
signals a problem, then it is unclear how to identify the trains that
caused the delay to deviate. □

We have developed an approach for data quality validation that
is not only capable of detecting the fine-grained errors illustrated
above, but also helps in identifying responsible erroneous tuples [4].
Our methodology focuses on the setting where a data pipeline regu-
larly ingests batches of external data. As the main technical vehicle
underlying our methodology, we introduce conditional metrics (CM
for short). In contrast to a global metric, a conditional metric only
computes its value on a specified subset of tuples in the ingestion
batch. A CMm is of the following form

m := µ(Y | X = x) (†)

where µ is a metric like MIN, MAX, SUM, MAXDIGITS, . . . ;Y andX
are attributes of the relation under consideration and x is a domain
value for X . We refer to (X , x) as the entity inm. The semantics
is as follows:m computes the metric µ over the column Y for the
subrelation consisting of all tuples where X equals the value x . In
the railway example above, for instance, the conditional metric

avg(Delay | Train = 5437)

computes the average delay of train 5437 in the batch, as opposed
to the global metric avg(Delay) which computes the average delay
of all trains. A conditional unit test then is simply a CM with an
associated function that returns true for admissible values and false
otherwise. Because of their ability to calculate values for specific
entities (e.g., Train = 5437), conditional data unit tests may hence
detect data quality issues at a finer level of granularity than data
unit tests based on global metrics.

Our methodology consists of two phases: (i) a unit test discov-
ery phase and (ii) a monitoring and error identification phase, as
schematically illustrated in Figure 1. In the unit test discovery phase,
we are given a sequence R of previously ingested batches and our
objective is to automatically derive a set Θ of CM-based data unit
tests from R such that a yet-to-be-ingested batch B can be consid-
ered to be of acceptable quality if it passes all tests in Θ. Specifically,
like [7], we assume that the batches in R are themselves of accept-
able data quality—which is reasonable because they have already
been ingested successfully. Under this assumption, we may derive
CM-based data unit tests from R by considering the set of all possi-
ble CMs, and deriving, for each such CMm, a classifier that allows
to distinguish expected values ofm from anomalies. Ifm produces
an anomaly on a yet-to-be-ingested batch B, then B will be flagged
as having a quality issue. To derive the classifier based on the values
ofm observed in R, in principle any anomaly detection method [6]
may be used. For illustration purposes, Figure 1 mentions some
simple anomaly detection methods that produce classifiers that

(i) Unit Test Discovery

Historical inges-
tion sequence R

A B C A B C A B C
. . .

1
1
6
⊥
0.7
0.4

1
3
⊥
-1
0.8
0.5

⊥
3
7
9
0.7
0.5

CMs and their
values on R

avg(C | A = a1)
min(C | A = a1)
avg(C | A = a2)
min(C | A = a2)
cnst(A | B = b1)
cnst(A | B = b2)

. . .

Univariate anomaly
detection method

(e.g., IQR, avg-kNN)

CMs and set Θ
of derived unit
tests

CM expected values
min(C | A = a1) [1.0, 3.0]
avg(C | A = a2) [4.2, 8.3]
cnst(A | B = b1) [0.7, 0.8]
cnst(A | B = b2) [0.4, 0.5]

(ii) Monitoring and Error Identification

New batch BA B C

Tests in Θ on B

CM B-value exp. values
min(C | A = a1) 1.0 [1.0, 3.0]
avg(C | A = a2) 2.0 [4.2, 8.3]
cnst(A | B = b1) 0.9 [0.7, 0.8]
cnst(A | B = b2) 0.2 [0.4, 0.5]

Ranked list of
failed test enti-
ties

1. B = b2
2. A = a2

3. B = b1

List of suspected
erroneous tuples

A B C

Figure 1: Overview of methodology: (i) discovery phase to de-

rive data unit tests based on conditional metrics; (ii) moni-
toring and error identification phase where each new batch is

validated and erroneous tuples are identified.

can be summarized as an expected range of values, where values
outside the range are anomalies. Whatever method is chosen, we
require that the derived classifier is consistent with our assumption
that R is of reasonable quality, which implies that the values ofm
observed in R are without significant anomalies.

In the monitoring and error identification phase, we take the set
Θ of data unit tests derived in the discovery phase, and use this
to validate each new ingestion batch B. If all tests in Θ succeed
on B then B is deemed to be of acceptable quality. When at least
one test in Θ rejects B then our objective is to identify the tuples
in B with suspected errors. Every conditional unit test specifies a
set of erroneous tuples in a natural way: the subrelation of B that
its CM refers to. In our railway example, if a unit test with CM
avg(Delay | Train = 5437) hence fails, all tuples with Train = 5437
could be flagged. Simply flagging all the tuples of violated unit tests
selects too much, however (i.e., it results in high recall but very
low precision). The reason is that violating tests are often corre-
lated: a single error in B may cause multiple tests (each selecting
different subrelations) to fail. The key challenge in the monitoring
phase, therefore, lies in ranking the violated unit tests according
to relevance, and from this ranked list of tests filter a list of sus-
pected erroneous tuples for further inspection. We have developed
multiple metrics to rank and filter violated unit tests in [4].

We illustrate the challenges in analyzing violated unit tests by
means of an example. For this, we introduce the bipartite entity-
tuple graph as a means to represent the correlation structure of
the violated unit tests. This graph consists of two sets of nodes: all
entities mentioned in at least one of the violated unit tests and every
tuple that is selected by at least one of them. Furthermore, there is
an edge from an entity to a tuple when that tuple is selected by the
entity. Recall the scenario outlined in Example 1.1, where due to a
hardware malfunction train 5437 consistently reports zero delay.
Consider the to-be-ingested batch B shown in Figure 2 as well as the
failed unit tests ϕ1,ϕ2, and ϕ3 listed there. The entity-tuple graphs
is displayed as well. We note that for the sake of this example, we
have added an extra attribute Kind that lists the kind of service that
the train offers. Unit test ϕ1 fails because the average delay of train
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B

Train Station Kind Delay

t1 5437 Genk IC03 0
t2 5437 Hasselt IC03 0
t3 5437 Brs N IC03 0

. . .
t4 1510 Brs N P 4
t5 7873 Brs N P 5
.
.
.

.

.

. Brs N
.
.
.

.

.

.

t13 8837 Brs N P 10
. . .

t14 2891 Gent IC03 7
t15 2891 Brugge IC03 8
.
.
.

.

.

.
.
.
. IC03

.

.

.

t23 6061 Alken IC03 5

Φ

ϕ1 avg(Delay | Train = 5437)
ϕ2 min(Delay | Station = Brs N)
ϕ3 avg(Delay | Kind = IC03)

t1

t2

t3

t4

t5
.
.
.
t13

t14

t15
.
.
.
t23

(Train, 5437)
= entity(ϕ1)

(Station, Brs N)
= entity(ϕ2)

(Kind, IC03)
= entity(ϕ3)

Figure 2: Illustration of a to-be-ingested batch B, failed unit

tests Φ, and the corresponding entity-tuple graph.

5437 is now zero, which is unexpected given the historical sequence.
However, in this example, the zero delay of train 5437 also causes
the minimum delay in station Brussels North (Brs N) to become
zero, which is also unexpected, causing ϕ2 to fail. Similarly, it also
causes the average delay of route kind IC03 to become unexpected,
failing ϕ3. The root cause here is the zero delay of train 5437, and
ideally we would hence like to filter out ϕ1 that selects only the
tuples t1–t3 of train 5437 as suspected erroneous tuples.

We present CM-Explorer, an interactive system that focuses
on the monitoring and error identification phase of the methodol-
ogy described above, and that allows to interactively investigate
the observed data quality problems. Using CM-Explorer, a data
steward may easily inspect the correlation structure of the violated
unit tests via a graph-based representation to identify the most
relevant ones for selecting a set of erroneous tuples and serving
as an explanation for them. We next describe the components of
CM-Explorer that support this (in Section 2), and discuss concrete
demonstration scenarios in Section 3.

2 OVERVIEW OF CM-EXPLORER

The CM-Explorer consists of three components: the graph explorer,
the CM history explorer, and the relation explorer. The workflow
supported by CM-Explorer is as follows. A data steward may first
utilise the graph explorer to filter the failed conditional unit tests
by selecting tests with high scoring entities and removing tests
with entities that refer to column names that are not considered
to be important. In a second step, the data steward can zoom into
individual entities using the history and relational explorer, to
further reduce the conditional unit tests until only those of interest
remain.

Figure 3: Entity-tuple graph explorer example for a single

component for all flagged entities.

2.1 Graph explorer

An example of a real-world entity-tuple graph, as inspectable in the
graph explorer, is displayed in Figure 3. The graph explorer always
shows a contracted version of the entity-tuple graph, where tuple
nodes are combined into a single node when they are connected to
the same set of entity nodes. Contracted tuple nodes are colored
green and carry as label the number of tuples that they represent.
Entity nodes are colored grey. The graph explorer supports the data
steward in analyzing the entity-tuple graph through a number of
filters:

• Filtering on score: As explained above, we developed a num-
ber of metrics to rank entities and each of those can be used
to filter for high scoring entities (and the associated CMs).
When a particular measure is chosen, the score of each entity
can be displayed.

• Filtering on entity column name: Consider the conditional
metric avg(Delay | Train = 5437). Then Train refers to the
entity column name and Delay to the column name the ag-
gregate is applied to. The data steward can filter out specific
column names that she regards as uninteresting thereby
reducing the size of the entity-tuple graph.

To further support interactive exploration, the graph explorer
component allows to remove specific entities from the graph, that,
for instance, have been inspected by the components described in
the following sections, and for which it has been established that
they do not refer to erroneous tuples and can be safely disregared.

2.2 History explorer

When an entity is selected in the graph explorer, the history view
shows all the data points from previous batches in blue, with the
lower and upper bounds highlighted in red (see Figure 4a for an
example). The value on the current batch (that reported an error)
is shown in green. When there is no value for a specific batch in
the historical data, this is shown as a gap in the graph. The user
can hover over a specific data point to inspect the exact value for
that batch. The user can hence explore in more detail why specific
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(a) CM history view (b) Relation explorer

Figure 4: History view and relation explorer for the delay of

train 3933.

conditional metrics have reported an error for that entity and can
choose to keep or exclude the corresponding entity from the graph
explorer.

2.3 Relation explorer

We refer to Figure 4b for an example of the relation explorer. We
next explain the two modes:

From entities to selected tuples: When an entity is selected in
the graph explorer, the relation explorer shows the tuples of the
batch that are selected by the entity. Together with the history
explorer described in Section 2.2, this functionality allows to inspect
individual tuples for errors. For example, the history explorer might
show that the average length of the delay for train 3933 is too low.
The relation explorer can then be used to view the tuples for train
3933 and identify the specific delay that is causing the error.

From tuples to entities: The relation explorer may also be used
in the other direction: the user can select a tuple in the relation
explorer which will reveal the entities that select the corresponding
tuple. This allows to identify which entities are affected by the
selected tuple and can be used to correlate the error with other
errors that might be reported by other entities.

2.4 Test data generation

For demonstration purposes, we also provide a principled way to
generate test data that is similar to what might occur in the real
world. This allows the user to insert errors in a new batch of data
and run the analysis pipeline to explore the results in CM-Explorer.
Modifications are based on the granularity of an entity. The user first
picks the entity that should be modified, and specifies the column
to change together with the modified value. We also allow partial
modification through the specification of an ‘edit percentage’. Any
number of entities can be modified, and for each entity it is possible
to modify any number of columns. An example modification can be
specified as follows: set the delay value to 0 for 75% of tuples for the
entity train 3933. This modification will result in the conditional
metric average length of delay reporting an error for the entity train
3933, as shown in Figure 4a.

3 DEMONSTRATION SCENARIO

In this demonstration, participants will be able to interact with
our proposed data quality validation approach [4], as embodied
in CM-Explorer and described above. We provide the following
demonstration scenarios:

Exploration mode. In this scenario the participant is given the
opportunity to manually introduce errors in an ingestion batch
using the test data generation component described in Section 2.4.
The goal of this scenario is to provide a controlled environment
in which to explore the different components of CM-Explorer
and assess their effectiveness in filtering for the relevant violated
conditional unit tests to uncover the introduced errors.

Detective mode. In this scenario, the participant may use CM-
Explorer on a number of existing batches with errors. For these
batches there is a clear single explanation of the error, as for instance
is the case for Example 1.1 where due to a hardwaremalfunction one
train consistently reports zero delay. The purpose of this scenario
is to showcase the effectiveness of CM-Explorer to uncover errors
in ingestion batches.

Inspector Columbo mode. This scenario is similar to detective
mode except that a batch now contains different types of errors
and it is more challenging to find the different errors and their
corresponding explanations. The purpose of this scenario is to
showcase the effectiveness of CM-Explorer in a more complex
setting.
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