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ABSTRACT

This paper demonstrates Wa�e, a self-driving grid indexing sys-

tem for moving objects. We introduce system architecture, system

work�ow, and user scenarios. Wa�e enables the management of

moving objects with less human e�ort while automatically improv-

ing performance.
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1 INTRODUCTION

Moving object-based services are getting important and popular.

Ride-sharing services, navigation services, autonomous driving,

delivery services, and micro-mobility services are based on moving

objects. The main feature of moving objects is that object posi-

tions, de�ned by latitude and longitude, may keep changing. When

managing moving objects, the feature results in the two following

challenges. First, location-updates should be handled e�ciently

while also considering scan queries. Second, various object distri-

butions should also be considered.

To overcome these challenges,Wa�e, a self-driving grid indexing

system, has been proposed [4]. The main insights of Wa�e are (1)

to keep a regular grid to handle location-updates e�ciently and

(2) to change a grid de�nition according to object distribution.

Speci�cally, Wa�e handles the following problems: how to de�ne

an index structure, when to change a grid de�nition, and how to

rebuild an index without blocking user queries.

Wa�e consists of three main parts: a Wa�e index, Wa�eMaker,

and a regrid. AWa�le index is an in-memory grid index optimized

for location-updates [4]. AWa�e index divides a geographical space

into �xed-sized cells, and neighboring cells are grouped into a chunk

to improve cache e�ciency. Wa�e supports four query types for a

Wa�e index: insertion, deletion, range, and k-NN queries. A Wa�e

index is de�ned by �ve con�guration knobs, which have a huge

impact on the performance of Wa�e. However, it is not trivial to
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determine a decent knob setting considering a lot of factors includ-

ing object distribution. Therefore, Wa�e includes an automatic

con�guration tuner, Wa�leMaker [4]. For the current object dis-

tribution, Wa�eMaker determines a knob setting and whether to

rebuild a Wa�e index. In case of rebuilding a Wa�e index with

the new knob setting, Wa�e does not block user queries during

the rebuilding based on a concurrency control scheme, and the

mechanism is called a regrid [4].

We introduce the implementation details of Wa�e, a mechanism

to tune hyperparameters of Wa�e, and user experiences when

managing moving objects, not covered in the paper [4]. Section 2

introduces the system architecture and work�ow of Wa�e. Section

3 demonstrates Wa�e, and related studies are introduced in Section

4. Section 5 concludes the paper.

2 SYSTEM ARCHITECTURE

We introduce the architecture of Wa�e. Wa�e consists of six com-

ponents: a query parser, a transaction manager, a Wa�e index

manager, a lock manager, a regrid manager, and Wa�eMaker, as

shown in Figure 1.

Given an insertion/deletion/range/k-NN query, a query parser

parses the query, extracts necessary information including a query

type and query parameters, and requests a transaction manager to

process the query.

A transaction manager constructs a transaction with query

information from a query parser. For the same query, a transac-

tion manager may construct di�erent transactions depending on

whether Wa�e is performing a regrid. Speci�cally, during a regrid,

a transaction manager considers not only an original index but also

a new index, if required.

A Wa�le index manager is responsible for a single Wa�e

index. AWa�e indexmanager processes operations of a transaction

for the manager’s Wa�e index. The manager also keeps statistics to

calculate a reward, including query processing times, the number

of processed queries, and memory usage. A Wa�e index manager

includes a lock manager. A lock manager grants and releases

a lock considering lock compatibility. Because each Wa�e index

may have a di�erent chunk de�nition, and a set of chunks with

the same chunk coordinate is the unit of a lock, each Wa�e index

manager has its own lock manager. During a regrid, two Wa�e

index managers exist.

Wa�e launches a regrid manager to perform a regrid. The

regrid manager receives a new knob setting from Wa�eMaker

and generates a new Wa�e index manager. For each object in the

original index, the regrid manager processes a transfer transac-

tion, which deletes the object from the original index and inserts

the object into the new index. After processing all the transfer

transactions, the regrid manager replaces the original Wa�e index

manager with the newWa�e index manager, andWa�e terminates
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Figure 2: Work�ow of Wa�le

the regrid manager. A regrid manager temporarily exists during a

regrid and runs in a separate thread.

Wa�leMaker is an automatic con�guration tuner that deter-

mines a new knob setting for a regrid. A Wa�eMaker state summa-

rizes the current objects in a geographical space and is de�ned as a

�xed-sized grid, which is not related to a Wa�e index. Each state

cell maintains the number of corresponding objects. AWa�eMaker

model is a convolutional neural network; inputs are a state and a

knob setting, and an output is an expected reward, which repre-

sents the performance of Wa�e including query processing times

and memory usage. Wa�eMaker determines a knob setting using

exploration or exploitation [4]. A regrid manager requests a knob

setting to Wa�eMaker, and Wa�eMaker determines a knob setting

for the current state. Afterward, Wa�eMaker obtains a reward for

the knob setting. Wa�eMaker stores the state, the knob setting,

and the reward as a new experience and utilizes the previous ex-

periences to update the model. Speci�cally, Wa�eMaker samples

|10C2ℎ | previous experiences using a prioritized experience replay

[9] and updates the model with a given learning rate.

Wa�e was implemented using C++14 and PyTorch 1.13.1 with

the PyTorch C++ frontend 1.

2.1 Work�ow

We introduce the work�ow of Wa�e in Figure 2. Wa�e executes

maximally three threads at the same time: a Wa�e main thread,

a thread for a regrid manager, and a thread for Wa�eMaker. The

Wa�e main thread runs a query parser, a transaction manager, and

maximally two Wa�e index managers 2. The work�ow depends

on convergence of a Wa�eMaker model.

We �rst introduce the work�ow before a Wa�eMaker model

converges. Wa�e launches a new regrid manager G seconds after

the previous regrid. The previous work [4] utilizes the number of

processed user queries as a condition to start a new regrid, which is

not intuitive for a user. Instead, the regrid condition is set based on

time, which is more user-friendly. Wa�eMaker determines a new

1https://pytorch.org/
2Wa�e processes user queries in a single thread in the current implementation but
can be extended to process user queries in multiple threads.
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knob setting through exploration [4] and passes the knob setting to

the regrid manager. While the regrid manager performs the regrid,

Wa�eMaker obtains the reward for the previous knob setting from

the user queries processed for the G seconds and stores the new

experience. Wa�e processes concurrent user queries during the

regrid based on a concurrency control scheme.Wa�eMaker updates

the model using the previous experiences. After �nishing the regrid,

Wa�e processes user queries for the next G seconds and repeats

the process until the Wa�eMaker model converges.

The work�ow after a Wa�eMaker model converges is as follows.

Wa�e starts a new regrid manager G seconds after the previous

regrid. Wa�eMaker determines a candidate knob setting through

exploitation [4], which selects one of the knob settings determined

by the recent explorations. If the candidate knob setting is the same

as the current knob setting, Wa�e does not have to perform the

regrid. The knob setting is still expected to perform the best among

the recent knob settings. After processing user queries for the next

G seconds, Wa�e launches a new regrid manager, and Wa�eMaker

selects a candidate knob setting with the highest expected reward

among the recent knob settings. If the candidate knob setting is

di�erent from the current knob setting, Wa�e performs the regrid.

Wa�e naturally determines when to perform a regrid based on the

exploitation method.

3 DEMONSTRATION

Wa�e aims to minimize human e�orts when managing moving

objects. Wa�e does not require administrators to consider a lot of

factors including object distribution. The interface for Wa�e was

implemented using React 3, Chart.js 4, and Restbed 5.

3.1 Dataset

We �rst introduce the dataset used in the demonstration. We gen-

erated a synthetic dataset in a similar way to the work [4]. First,

we extracted road network data [5] in Los Angeles, where the

latitude values were [33.8449489, 34.3242765], and the longitude

values were [−118.7660027,−117.7932931]. Moving objects were

generated on the roads based on the concept of an episode. An

episode was de�ned as follows. |10B4 | objects were placed on ran-

dom roads or at the last positions of the previous episode and ran-

domly moved along roads. We gradually inserted |A0=3>< | objects

on random roads and |24=C4A | objects around the center of the geo-

graphical space, while the objects already in the space kept moving.

After inserting |A0=3>< | and |24=C4A | objects, we randomly moved

|10B4 |, |A0=3>< |, and |24=C4A | objects. Then, we gradually deleted

|A0=3>< | and |24=C4A | objects from the space, and one episode was

completed. We used |10B4 | = 100, 000, |A0=3>< | = 900, 000, and

|24=C4A | = 1, 000, 000. In themiddle of insertion and deletion queries,

we inserted a range or k-NN query in the same manner as that of

the work [4]. The example object distributions are shown in Figure

3 6.

3https://reactjs.org/
4https://www.chartjs.org/
5https://github.com/Corvusoft/restbed
6In the interface, we excluded visualization of object distribution because of the
overhead from visualizing millions of objects, which is a future work.

(a) |10B4 | (b) |10B4 | + |A0=3>< | + |24=C4A |

Figure 3: Object distribution in LA dataset

We generated multiple episodes of queries and stored them on

storage. Wa�e read and processed the queries one by one. Wa�e

can be extended to receive queries through network.

3.2 User Scenarios

A user manages moving objects from Uber, Lyft, Lime, Bird, Google

Maps, Waze, Grubhub, DoorDash, Uber Eats, Postmates, and Tesla.

Step (1) User Preference. A user provides preference:FC8<4 ,

F<4<>A~ , and G . FC8<4 and F<4<>A~ determine a trade-o� be-

tween query processing times and memory usage, whereFC8<4 +

F<4<>A~ = 1. IfFC8<4 is set higher thanF<4<>A~ , Wa�e tries to

reduce query latency while giving less consideration to memory

usage. A user also provides G as a condition to start a new regrid.

Step (2) Tuning Hyperparameters. Wa�e provides a mecha-

nism to tune hyperparameters including a learning rate and |10C2ℎ |.

The main purpose of the mechanism is to reduce user e�orts and

to tune hyperparameters while processing user queries. The mech-

anism to tune hyperparameters is as follows.

Step (2-1). Wa�e suggests hyperparameter values when a user

clicks ‘Try’ button. For each hyperparameter, Wa�e randomly

samples a value from the prede�ned range [3] 7. For the �rst hyper-

parameter values only, Wa�e tries random knob settings without

considering the exploration method until collecting base experi-

ences. Wa�e follows the work�ow in Figure 2(a) with the selected

hyperparameter values.

A user can check the current knob setting from the interface.

The interface shows the average values of query processing times,

memory usage, rewards, and losses during an episode to help a user

to monitor the performance of Wa�e. A user can recognize that

the performance of Wa�e is getting better as time goes on because

of appropriate knob settings. The number of objects in the space,

that of performed regrids, and that of processed user queries are

also shown in the interface to share the progress with a user.

Step (2-2). A user evaluates the hyperparameter values by click-

ing ‘Evaluate’ button when the Wa�eMaker model converges.

Based on the graphs, especially for rewards and losses, a user can

easily determine convergence when the performance of Wa�e

no longer improves. Wa�e follows the work�ow in Figure 2(b)

and observes the performance of Wa�e. Speci�cally, Wa�e keeps

recording rewards during the evaluation as performance measures.

After evaluating the hyperparameter values, a user determines

7Di�erent techniques can be applied instead of random search, and this is out of the
main focus of this paper.
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Figure 4: The Wa�le interface

whether to try new hyperparameter values (Step (2-1)) or to select

the best hyperparameter values among the previous trials (Step (3)),

and Wa�e records the average reward during the evaluation with

the evaluated hyperparameter values.

Before proceeding to Step (2-1) or Step (3), Wa�e initializes the

Wa�eMaker model. Experiences from previous hyperparameter

values, except for the base experiences, are not reused for the next

step to improve fairness and to remove dependency on previous

hyperparameter values.

Discussion. The mechanism to tune hyperparameters is per-

formed while processing user queries. In other words, Wa�e does

not tune hyperparameters using �xed training / validation / test

dataset, and the tuningmechanism could be unfair for some selected

hyperparameter values. It is an option to tune hyperparameters

for pre-prepared dataset before starting Wa�e. However, Wa�e

focuses on minimizing user e�orts and increasing usability, and the

tuning process is performed based on actual user queries.

Step (3) Running Wa�le with the Best Hyperparameter

Values. Wa�e selects the best-performed hyperparameter among

the trials at Step (2) by clicking ‘Best’ button. Wa�e �rst follows the

work�ow in Figure 2(a). After the Wa�eMaker model converges, a

user can stop training the model by clicking ‘Stop training’ button,

and then Wa�e follows the work�ow in Figure 2(b). Wa�e keeps

reporting the performance measures excluding a loss, and a user

can restart training the Wa�eMaker model if the performance

is not satisfying by clicking ‘Restart training’ button, which was

originally ‘Stop training’ button.

4 RELATED WORK

Learned spatial indexes based on a recursive model index [6] have

been researched [8, 10]. Wa�e de�nes index optimization as a con-

�guration tuning problem while considering location-updates as

the primary goal. Automatic database con�guration has been stud-

ied [1, 2, 7, 11, 12]. Wa�eMaker determines when to change a knob

setting as well as a knob setting considering object distribution.

5 CONCLUSION

We demonstrated Wa�e, a self-driving grid indexing system for

moving objects. We introduced the system internals, work�ow, and

user scenarios. An attendee will be able to experience a novel ap-

proach to managing moving objects with less human e�ort. An

attendee can intuitively interact with Wa�e by inputting user pref-

erence, tuning hyperparameters, observing performance measures,

and determining convergence of a Wa�eMaker model.

For update-intensive workloads, especially from moving objects,

Wa�e proposes a novel approach to optimizing indexes by de�ning

the optimization as a con�guration tuning problem. This approach

may be applied to di�erent kinds of indexes, which require knob

settings, in case of handling a lot of updates. To apply the approach,

Wa�eMaker may have di�erent types of states and rewards. The

mechanism for rede�ning an index, called a regrid, may be modi�ed

according to an index structure.

In addition, the paradigm of Wa�eMaker, which maps continu-

ous knob space to discrete knob space, may be utilized for a database

con�guration tuning problem. If a single knob setting is inappro-

priate because of changing data or workloads, the paradigm can

naturally determine when to change a knob setting.
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