
On-the-fly Data Transformation in Action
Ju Hyoung Mun

Konstantinos Karatsenidis
Boston University
jmun@bu.edu
karatse@bu.edu

Tarikul Islam Papon
Shahin Roozkhosh
Boston University
papon@bu.edu
shahin@bu.edu

Denis Hoornaert
Technical University of Munich

denis.hoornaert@tum.de

Ulrich Drepper
Ahmed Sanaullah

Red Hat
asanaull@redhat.com
drepper@redhat.com

Renato Mancuso
Manos Athanassoulis

Boston University
rmancuso@bu.edu
mathan@bu.edu

ABSTRACT
Transactional and analytical database management systems (DBMS)
typically employ different data layouts: row-stores for the first and
column-stores for the latter. In order to bridge the requirements
of the two without maintaining two systems and two (or more)
copies of the data, our proposed system Relational Memory em-
ploys specialized hardware that transforms the base row table into
arbitrary column groups at query execution time. This approach
maximizes the cache locality and is easy to use via a simple ab-
straction that allows transparent on-the-fly data transformation.
Here, we demonstrate how to deploy and use Relational Memory
via four representative scenarios. The demonstration uses the full-
stack implementation of Relational Memory on the Xilinx Zynq
UltraScale+ MPSoC platform. Conference participants will interact
with Relational Memory deployed in the actual platform.

PVLDB Reference Format:
Ju Hyoung Mun, Konstantinos Karatsenidis, Tarikul Islam Papon, Shahin
Roozkhosh, Denis Hoornaert, Ulrich Drepper, Ahmed Sanaullah, Renato
Mancuso, and Manos Athanassoulis. On-the-fly Data Transformation in
Action. PVLDB, 16(12): 3950 - 3953, 2023.
doi:10.14778/3611540.3611593

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/BU-DiSC/relational-memory/blob/master/vldb2023.

1 INTRODUCTION
Data Layout: Row-Store vs Column-Store. A major design deci-
sion for any data system is whether they follow the row-store or
the column-store paradigm. This decision has a profound impact
on the entire data system architecture. Transactional systems
typically employ row-stores, i.e., data blocks are physically orga-
nized in memory as contiguous rows. Row-stores provide better
performance for transactional workloads (append/update a row, or

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611593

Relational Memory Engine

Core (ARM, X86)

•

classical variable
ephemeral variable

•

CACHE

struct row {
long key,
char text_field[8],
long num_field

};

ephemeral struct columns {
long num_field

};

Main MemoryProgrammable Logic
reorganizes the
layout on the fly

cache pollution
with unnecessary

attributes

Figure 1: RME pushes projection closer to data to provide the
optimal layout via on-the-fly data transformation.

access all attributes). In contrast, most analytical systems store
data in a columnar fashion. Since column-stores group together the
same attribute of different rows, they allow fast scans and efficient
analytical query processing [1]. The several-decade-long journey of
these two systems has led to a new family of hybrid transaction-
al/analytical processing (HTAP) architectures [4]. Recent efforts
for HTAP systems attempt to bridge the transactional and ana-
lytical requirements by proposing systems that maintain multiple
copies of data in different physical layouts and convert them into
the desired layout as required [2, 3]. Because of data duplication,
the additional bookkeeping, and the cost of converting data across
different layouts, these systems compromise between efficient ana-
lytics and data freshness, which leads to runtime inefficiency, less
scalability, and poor maintainability.
Hardware Specialization can Help. The idea of hardware spe-
cialization, although recurring every few years, has not been able
to achieve its true potential because of the historically exponential
growth of processor speed. However, with the tapering of Moore’s
law and the exponential growth of data processing needs along
with the advancements in reconfigurable logic, hardware special-
ization is now becoming a more feasible and scalable alternative to
general-purpose computing [7]. We ask the question:
Can we access any arbitrary data layout using near-data

processing via specialized hardware?
In other words, “Can we access the optimal data layout using

hardware specialization?”. This removes the need to maintain mul-
tiple layouts and the overheads associated with it. Further, we can
perform efficient analytics over the fresh data without any dupli-
cation or conversion. Thus, such a specialized hardware can blend

3950

https://doi.org/10.14778/3611540.3611593
https://github.com/BU-DiSC/relational-memory/blob/master/vldb2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611593
https://www.acm.org/publications/policies/artifact-review-and-badging-current

the benefits of both row-stores and column-stores by accessing
only the relevant data (without accessing unnecessary data and
without paying a tuple reconstruction cost) while maintaining a
single layout, consequently leading to better cache utilization.
Our Approach. The research that led to this demo paper proposes
a novel hardware design for on-the-fly data transformation that
intercepts CPU-originated memory requests and generates the op-
timal layout, while the source data are always stored as a row store
in physical memory. We refer to the ability to provide an on-the-
fly representation from rows stored in memory to any group of
columns asRelational Memory [6]. We utilize commercially avail-
able systems-on-chip (SoCs) that include both programmable logic
(PL) and a traditional multi-core processing subsystem (PS), where
we implement programmable logic between the memory and the
processor as Relational Memory Engine (RME) (Figure 1). RME
exposes a carefully designed API, termed ephemeral variables that
enable accessing arbitrary column groups using simple abstractions
to transparently use the underlying machinery. The API creates
non-materialized aliases of column-groups, which supports both
efficient column- and row-oriented accesses while minimizing CPU
cache pollution without any data duplication.
Demonstration. Conference participants can interact with RME
deployed in a commercially available PS-PL platform. Participants
will be able to see (i) how to configure RME based on the database
geometry (number of rows and columns, column widths, column
types, etc.), (ii) how to run sample benchmark queries (aggregation,
selection/projection, join over two tables) using RME and ephemeral
variables, and (iii) how RME compares with classical row-stores
and column-stores under different scenarios.

2 RELATIONAL MEMORY
Relational Memory is a novel hardware/software co-design for
on-the-fly data transformation [5, 6]. Figure 1 shows a high-level
diagram of Relational Memory Engine (RME), which is special-
ized hardware for on-the-fly data transformation that sits on the
programmable logic in between the CPU and main memory. RME
provides effortless locality for any queries without accessing unnec-
essary data via a simple abstraction called Ephemeral variable. We
now discuss the details of RME and ephemeral variables.
Relational Memory Engine (RME). RME offers contiguous ac-
cess to a specific set of columns in memory since RME reorganizes
data on the fly in a format that maximizes the cache locality. In other
words, RME transforms the row-oriented base table into the opti-
mal data layout for any query. Figure 2 presents the birds-eye-view
hardware architecture of RME. There are four modules: Trapper,
Monitor-Bypass, Requestor, and Fetch-Unit, and two Scratch Pad
Memories (SPMs) to buffer reorganized data (Data SPM) and its
availability (Metadata SPM). RME needs to know the geometry of
DB and the set of columns to be transformed. Thus, configuring
RME is the first step before accessing the reorganized data (0
in Figure 2). Trapper is the interface between the CPU and RME
that intercepts read requests (1) from the CPU. Trapper notifies
Monitor-Bypass (2) to check the availability of the requested data
(3). When the requested data are already in Data SPM, Monitor-
Bypass sends the data to Trapper (4), and then, the CPU receives
the requested data via RME (5). If the requested data is not in the

Core
Trapper Monitor-

Bypass

Fetch-UnitRequestor

M
ain M

em
ory

(D
RA

M
)

PS PL PS

0

1
2

45

A

B
C

D

Metadata
SPM

Data
SPM3

E

PL

CoreCoreCore

Figure 2: The architecture and workflow of RME.

Data SPM, Monitor-Bypass lets Requestor know about missing data
(A). Based on the DB geometry, Requestor creates descriptors that
identify the location of the desired columns (B). Fetch-Unit reads
the bus line that contains useful data and extracts the relevant part
only (C) and sends the extracted part to Monitor-Bypass (D) so
that it can be stored in Data SPM (E). Thus, RME transforms data
in a format that minimizes cache pollution.
Ephemeral Variables. Ephemeral variable is a lightweight abstrac-
tion to access the reconstructed tuple by RME. Ephemeral variable
creates memory alias that is never instantiated in main memory;
however, it acts like a regular variable from the CPU’s perspective,
so the CPU can use as if the data already exist in main memory. Upon
accessing such a variable, the underlying RME is set in motion and
generates an on-the-fly projection of the requested columns. Thus,
ephemeral variable points to the layout that maximizes data locality.
This enables transparent data transformation to better efficiency
for the query at hand and lower cache pollution. Figure 3 shows
an example code in C-style using ephemeral variables. The main
benefit of ephemeral variable is that the software does not need
to control the underlying hardware, instead, RME intercepts the
CPU-oriented read requests and transparently reorganizes the data.

1 // layout of the full relational table
2 struct row {
3 long key; /* 8 bytes */
4 char text_fld1 [12]; /* 12 bytes */
5 char text_fld2 [16]; /* 16 bytes */
6 long num_fld1; /* 8 bytes */
7 long num_fld2; /* 8 bytes */
8 long num_fld3; /* 8 bytes */
9 long num_fld4; /* 8 bytes */
10 };
11 // the variable that holds the full relational table
12 struct row the_table [];
13 // the SQL query to execute
14 char* QUERY = 'SELECT SUM(num_fld1 * num_fld4) FROM the_table ←↪

WHERE key > 10';
15 // the ephemeral variable of the SQL query to execute
16 ephemeral struct column_group {
17 long key;
18 long num_fld1;
19 long num_fld4;
20 };
21 // configuring the ephemeral variable 's geometry
22 struct column_group* cg;
23 cg = configure(the_table , QUERY);
24 // executing the query using the ephemeral variable
25 long sum = 0;
26 for (int i = 0; i < cg.length; i++) {
27 if (cg[i].key > 10) {
28 sum += cg[i]. num_fld1 * cg[i]. num_fld4; } }

Figure 3: An example C-style code snippet with an ephemeral
variable. Line 23 configures the ephemeral variable. Upon ac-
cessing it (line 28), the hardware fetches the relevant columns
as if they already exist as a column group in memory.

3951

Figure 4: Demonstration Setup using Xilinx Zynq UltraScale+ MPSoC platform.

3 DEMONSTRATION
3.1 Target Platform
We implement RME on a Xilinx Zynq UltraScale+ MPSoC platform
(ZCU102) as shown on the right side of Figure 4. This board is
equipped with 4 ARM Cortex-A53 1.5 GHz cores, 4 GB DDR4 mem-
ory, and an FPGA. Each core has a private 32+32 KB L1 I+D cache
and all four cores share a unified 1 MB L2 cache. The operating
system is Linux 4.14, and all codes are in C/C++ and compiled using
GCC 7.3.1 for AArch64. RME is integrated on the FPGA on the
board and operating at 100 MHz frequency.

3.2 Demonstration Methodology
Relational Memory Benchmark.We choose a synthetic bench-
mark to demonstrate the usage of Relational Memory under various
access patterns. Listing 1 shows the benchmark with four template
queries that consist of projection, selection, aggregation, and join
query on two tables where all data are in main memory.

𝑄1 is the simplest query that calculates the average of a single
column. 𝑄2 is a projection of 𝑘 columns (non-contiguous or con-
tiguous), where 𝑘 can be varied. 𝑄3 is a generalization of 𝑄2 and
imposes a selection of 𝑖 columns, where 𝑘, 𝑖 can be varied. Finally,
𝑄4 performs a join query over two tables.

Listing 1: Relational Memory Benchmark
Q1: SELECT avg(A1) FROM S;
Q2: SELECT A1, A2, ..., Ak FROM S;
Q3: SELECT A1, A2, ..., Ak FROM S WHERE C1, C2, ..., Ci;
Q4: SELECT S.A1, R.A3 FROM S JOIN R ON S.A2 = R.A2;

Implementation.We compare the performance of RelationalMem-
ory with custom-implemented in-memory row-store (based on the
Volcano-style tuple-at-a-time processing model) and column-store
(following the column-at-a-time processing model).
Demonstration Setup. Throughout our demonstration, we vary
the tunable parameters to highlight their impact on the performance
of RME. By default, the size of each column is 4 bytes, and the size

Table 1: The configurable parameters of DB generator.
symbols options description

S r | c row store (r) or column store (c)
r int row width in byte (64)
R int number of row counts (32)
C int number of columns in each row (16)
W int array of column width (4)
T s | r | z array of column type
m int minimum value for random type (0)
M int maximum value for random type (1000)
V bool supporting MVCC (false)
P bool print the generated table (false)

of each row is 64 bytes unless otherwise stated. The procedure to
run queries using RME consists of three steps, as shown in Listing 2:
populating DB, configuring RME, and then performing the query.

Listing 2: RME configuration
./ db_generator -r $ROW_SIZE -R $ROW_COUNT -M $MAX
./ config_rme -r $ROW_SIZE -R $ROW_COUNT -C $proj_col_num -W ←↪

$width -O $col_off -F $frame_off
./ query_i -r $ROW_SIZE -R $ROW_COUNT -C $proj_col_num -W $width ←↪

-O $col_off -F $frame_off

DB Generator. We implement a DB generator that takes ten param-
eters (Table 1) from the user to generate a base table to run the
queries: the layout (row store or column store), the row width, the
number of rows, the number of columns in a row, the widths of
each column, the types of each column (sorted, random, or zero-
padded), the minimum value for the random type and the maximum
value for the random type. Note that the DB generator does not
support variable length since the current implementation of RME
does not support variable length columns, while RME is capable
of supporting arbitrary length columns. The DB generator allows
controlling the query selectivity by setting the appropriate values
for the minimum and maximum values. Finally, the DB generator
supports MVCC by adding two timestamp fields for every row.

3952

Figure 5: Demonstration interface for Relational Memory. Users will be able to select among the queries and vary different
parameters to compare RME’s performance with a row-store and column-store implementation.

Configuring RME. RME needs the following information for config-
uration: 1) the geometry of the base table, such as the address of the
base raw table, the width of the row, and the number of rows in the
table, and 2) the information about the query, such as the number of
columns that the query needs, and the size of each desired column,
and the position of each column within a row. According to this
configuration setup, RME generates the descriptors to fetch the data
from main memory and store the necessary parts only. The second
line of Listing 2 shows the bash script to use the configuration.
Performing Queries. RME is now ready to transform the data. There
can be query-specific parameters, however, the default set of pa-
rameters is identical to the configuration. The details about each
query will be described in Section 3.3.

3.3 Demonstration Scenarios
We developed a web-based (Jupyter Notebook style) interface as
shown in Figure 5 where conference participants will explore four
demo scenarios (Listing 1) while modifying various parameters to
analyze RME’s performance. The interface creates a bash script
(Listing 2) according to the parameters and sends it to the board
for execution. The participants will be able to observe the live
demonstration of the results in two ways: a graph that compares
the execution time and the live signals captured using Xilinx Vivado.
S1. Overhead of Fetching Data through RME. This scenario
shows the overhead of data fetching through RME by running 𝑄1,
which calculates the average of a single column. In addition to the
row-wise and columnar accesses, we run two sets of experiments
for RME: hot and cold. The hot case is when the desired column
data is already in the data buffer inside RME, while RME needs to
fetch the data for the cold case. We present live results.
S2. MVCC Transactions. RME supports multi-version concur-
rency control (MVCC) transactions through snapshot isolation. The
ephemeral variable is read-only; thus RMEupdates the row-oriented
base data by using two timestamps for each row to support multiple
versions. The first timestamp indicates the beginning of the validity
of the row, while the second timestamp is set to mark the end of its
validity. Here, we use 𝑄2 to demonstrate the MVCC transactions
compared to row-wise and columnar accesses.
S3. Scalability of RME. RME supports data transformation of
arbitrary data size even though the size of data SPM is only 2 MB.
𝑄3 is executed to evaluate the scalability of Relational Memory
while increasing the data size up to 1 GB. Note that the row-wise
and columnar accesses perform the query at once regardless of the
data size. However, RME needs to perform an invalidation process

whenever the data SPM is full which is done within a single clock
cycle. In this scenario, the participants will observe how RME can
handle arbitrary data size without affecting its performance.
S4. Join Queries. This scenario performs𝑄4 to highlight that RME
supports join queries. We implement join using a state-of-the-art
hash-based join algorithm with a single-pass hash table generation.
Note that half of the entries of the outer relation have a match in
the inner relation. In addition, the CPU cost for 𝑄4 is notably high
compared to𝑄1−𝑄3 due to hash calculation. We also demonstrate
the benefit of using RME for CPU and data movement separately.

4 CONCLUSION
In this demonstration, we show how to interact with Relational
Memory Engine (RME), an on-the-fly vertical partitioner that al-
lows to access optimal data layout while keeping the base data in
row format only. Participants will be able to interact with RME
implemented in a real PS-PL platform, configure it, write multi-
ple queries with it and analyze the performance comparison with
respect to row-store and column-store via a web-based interface.

ACKNOWLEDGMENTS
This work is funded by a RedHat Research Incubation Award, a
RedHat Research Award, a Cisco gift, and partially supported by the
National Science Foundation (NSF) under grant number IIS-2144547,
CCF-2008799 and CNS-2238476.

REFERENCES
[1] Daniel J Abadi, Peter A Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends in Databases 5, 3 (2013), 197–280.

[2] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O: A Hands-
free Adaptive Store. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 1103–1114.

[3] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid Workloads. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 583–598.

[4] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid Transactional/An-
alytical Processing: A Survey. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 1771–1775.

[5] Tarikul Islam Papon, Ju Hyoung Mun, Shahin Roozkhosh, Denis Hoornaert,
Ahmed Sanaullah, Ulrich Drepper, Renato Mancuso, and Manos Athanassoulis.
2023. Relational Fabric: Transparent Data Transformation. In Proceedings of the
IEEE International Conference on Data Engineering (ICDE).

[6] Shahin Roozkhosh, Denis Hoornaert, Ju Hyoung Mun, Tarikul Islam Papon,
Ahmed Sanaullah, Ulrich Drepper, Renato Mancuso, and Manos Athanassoulis.
2023. Relational Memory: Native In-Memory Accesses on Rows and Columns.
In Proceedings of the International Conference on Extending Database Technology
(EDBT). 66–79.

[7] Neil C Thompson and Svenja Spanuth. 2021. The decline of computers as a general
purpose technology. Commun. ACM 64, 3 (2021), 64–72.

3953

	Abstract
	1 Introduction
	2 Relational Memory
	3 Demonstration
	3.1 Target Platform
	3.2 Demonstration Methodology
	3.3 Demonstration Scenarios

	4 Conclusion
	Acknowledgments
	References

