
KGNav: A Knowledge Graph Navigational VisualQuery System
Xiang Wang

Tianjin University
Tianjin, China

xiang_w@tju.edu.cn

Xin Wang
Tianjin University
Tianjin, China

wangx@tju.edu.cn

Zhaozhuo Li
Tianjin University
Tianjin, China

lizhaozhuo@tju.edu.cn

Dong Han
Tianjin Academy of Fine Arts

Tianjin, China
winter1976@hotmail.com

ABSTRACT
Visual query is a vital technique for comprehending and analyzing
knowledge graphs, which provides an effective method to lower the
barrier of querying knowledge graphs for non-professional users.
Nevertheless, visual query techniques for knowledge graphs and
ontologies that have emerged in recent years cannot bridge the
gap between global information provided by the knowledge graph
schema and underlying data of knowledge graph. Thus it cannot
fully exploit the global information to navigate users for query-
ing knowledge graphs. This demonstration showcases KGNav, a
Knowledge Graph Navigational visual query system. KGNav (1)
redefines the minimal unit of operation to abstract the conceptual
hierarchy, i.e., Knowledge Graph Schema, in the domain from the
original knowledge graph in an offline semi-automatic way through
the equivalence relations between these units; it also (2) provides
a series of operators and an interactive GUI to capture user query
intentions, guiding users to explore the Knowledge Graph Schema
to achieve in-depth analysis of knowledge graphs. We will demon-
strate the capability of KGNav in reducing tedious queries, enabling
users to swiftly grasp the structure of the knowledge graph, and
performing queries through several fundamental scenarios.

PVLDB Reference Format:
Xiang Wang, Xin Wang, Zhaozhuo Li, and Dong Han. KGNav: A
Knowledge Graph Navigational Visual Query System. PVLDB, 16(12): 3946
- 3949, 2023.
doi:10.14778/3611540.3611592

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/XiangLovin/KGNav.

1 INTRODUCTION
Querying is a vital tool for data exploration in the era of big data.
With Knowledge Graphs (KG) having been widely adopted in var-
ious domains, an effective and efficient querying mechanism on
large-scale KGs, e.g., DBpedia and Wikidata, is an essential require-
ment for users’ evolving exploration demand over KGs to find the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611592

information of their interests. Hence, how to effectively, quickly,
and accurately query such KGs with diverse and complex patterns
poses a significant challenge to the KG community. And thus far,
the most representative query languages for KGs are SPARQL and
Cypher, for RDF graphs and property graphs, respectively. How-
ever, using such KG query languages is quite challenging for non-
professional users. On one hand, users have to learn sophisticated
techniques to customize expressive queries using these languages;
on the other hand, it is difficult for users to construct useful query
patterns without the guidance from KG structure information.

In recent years, visual querymethods of KGs for non-professional
users have emerged. RDF-GL [2] and QueryVOWL [1] are visual
query languages that map syntax symbols to graphical elements and
thus enhance user-friendliness to some extent, however, which can-
not support logical combinations of filtering criteria. The keyword-
based query system GQBE [3] simplifies the user input and the
need of background knowledge about KG, but can only perform
simple tuple pattern queries, which cannot precisely express users’
query intention. The facet-based query system Grafa [5] can make
the final results meet the user query intention, but can only support
simple star-shaped query patterns. VISAGE [7] constructs query
graph templates with different types of nodes representing differ-
ent ontology instances, which can partially reflect the associations
between entities and simplify the construction process of query
patterns, nevertheless, the limited number of templates hinders
fine-grained expression of users’ query intention.

However, the existing visual query methods merely focus more
on the detailed construction process of query patterns, which ig-
nores global information in schema layers, i.e., ontology layer, of
KGs. Meanwhile, it is hard for users to understand overview of KGs
due to rapid update of underlying data. Although ontology visual-
ization tools, such as Protégé [6] and OntoPlot [8], can help to show
hierarchical relations of ontologies, they only visualize schema of
KGs and neglect the data layers, causing the difficulty for users to
leverage ontologies to guide their queries on KGs. Therefore, in the
state-of-the-art KG visual query methods, there is an obvious gap
between the schema layer and the data layer.

To this end, we propose KGNav, a novel navigational interactive
query system, which can guide users to easily understand structures
of KGs and conduct queries on KGs by constructing a visualized
Knowledge Graph Schema (KGS). The core idea of KGNav is to
first redefine the minimum basic operation unit of KGS, then use

3946

https://doi.org/10.14778/3611540.3611592
https://github.com/XiangLovin/KGNav
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611592
https://www.acm.org/publications/policies/artifact-review-and-badging-current


the equivalence relation between these units to automatically ex-
tract the conceptual hierarchy in a domain, and thus condense the
original KG to a much smaller scale that can be perceived by users
at a glance. We call this condensed graph “schema graph”, which
achieves a degree of domain knowledge reuse. In another words,
when users encounter a new KG, the constructed schema graph,
i.e., the instance of a KGS, will guide them to easily recognize the
structure of KG, maximize the efficiency of knowledge sharing, and
reduce the redundancy of knowledge.

In addition, we offer a succinct and user-friendly interactive
graphical user interface (GUI) and a series of useful operators,
which enable users to comprehend schema of KGs and execute
query operations on underlying KG data, thus effectively utilizing
the hierarchical relations in schema layer (refer to Sec 2.2) while
keeping the query processing capability in data layer. Our demon-
stration visualizes various query intentions that users may request,
provides three scenarios, and showcases the well performance of
KGNav in guiding users to successfully construct queries of their
interests. The system can be accessed and manipulated through the
website (http://152.136.45.252/kgnav/).

2 KGNAV OVERVIEW
Figure 1 shows the system architecture of KGNav, which consists of
three main components, i.e., AGG, KGSC, and SN, and an interactive
graphical user interface (GUI). We will introduce the core ideas of
each component and their technical contributions.

2.1 Atomic Graph Generator (AGG)
AGG plays a vital role in cleansing and structuring the data of KGs.
In the KGS, each entity node is termed as “hypernode”, which is
essentially an entity recursively consisting of a set of other hypern-
odes with equivalence relations. When AGG first obtains raw data
of a KG, each entity in the KG, by itself, is identified as a hypern-
ode, so that the KG can be wrapped as a KGS, ensuring that AGG
performs consistent operations when processing KG or KGS data.

We define “atomic graph” as a primitive operation unit in KGNav.
An atomic graph consists of a hypernode and its entire set 𝑆 of
incoming and outgoing edge labels. In a KGS, each hypernode
uniquely maps to an atomic graph and the labels in 𝑆 constitute
the feature of the hypernode. For instance, given an entity 𝑒 , i.e., a
hypernode, its 𝑛 incoming edges form the incoming edge label set
𝐿𝑖𝑛 = {𝑎1, 𝑎2, ..., 𝑎𝑛} and its𝑚 outgoing edges form the outgoing
edge set 𝐿𝑜𝑢𝑡 = {𝑏1, 𝑏2, ..., 𝑏𝑚}, respectively, then the semantic
description of its atomic graph can be defined as 𝐴(𝑒) = ⟨𝑒, 𝐹 ⟩,
where 𝐹 = ⟨𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 ⟩ jointly form the feature of 𝐴(𝑒).

After each round of inputting a KG (or KGS) 𝐺 into AGG, a
structured data will be outputted, which primarily consists of a set
of atomic graphs, and their corresponding edges in 𝐺 , respectively.

2.2 KGS Constructor (KGSC)
The schema is an important data modelling facility to define meta-
data. In relational databases, a schema defines all structural aspects
of a database, including relation and attribute names, attribute types,
and various other constraints on relations. For KGs, a schema is an
explicit specification of the structural constraints on entities (nodes)
and relationships (edges) in a KG. Generally, a KG schema is quite

Figure 1: The overall architecture of KGNav

helpful for users to have an overall understanding of a KG (esp.
of large-scale). However, unlike a schema of a relational database,
a schema of a KG is not necessarily a requirement. While, it is
labor-intensive and error-prone for non-expert users to manually
construct a schema over an existing large-scale KG. Therefore,
KGSC adopts an iterative “bottom-up” construction method to help
users construct a schema, i.e., KGSC is iteratively utilized to abstract
and aggregate atomic graphs generated by AGG, so that the scale
of final generated KGS will be much smaller than that of original
KG (see AGG and KGSC in Figure 1).

More specifically, given a KG 𝐺 , after data processing of AGG, a
set of atomic graphs𝐴1 will be forwarded to KGSC. Then, KGSC au-
tomatically computes and generates a similarity matrix 𝑀1, which
is used to classify the hypernodes in 𝐴1 into different sets of equiv-
alent hypernodes, based on the equivalence similarity between
any two hypernodes in 𝐴1. Each set of equivalent hypernodes is
then abstracted into a new hypernode to generate a new KGS 𝐷1.
Then, KGSC passes 𝐷1 back to AGG to generate a new set of atomic
graphs𝐴2, and continue for the next iteration. Except for𝐴1, which
is derived from KG 𝐺 , 𝐴𝑖 (𝑖 = 2, ..., 𝑘) are derived from KGS 𝐷𝑖−1
generated by KGSC in the previous iteration. The whole process
ends when 𝐴𝑖 no longer changes for the consecutive rounds of iter-
ations, and we refer to the final generated KGS 𝐷𝑖 as the “schema
graph” G, which is abstracted from the original “data graph” 𝐺 .

Subsequently, the final schema graph G will be forwarded to the
GUI of KGNav for rendering. It allows users to more intuitively
understand and manipulate the generated KGS G, which is a more
succinct graph compared to the original KG 𝐺 .

2.3 Schema Navigator (SN)
The Schema Navigator (SN) is a crucial component of KGNav that
is directly related to the users’ interaction with KGNav, whose
theoretical foundation is derived from KGVQL [4]. By defining
operators that can be manipulated by users, KGNav can implement
the set of queries on KGs introduced in KGVQL, such that different
query intentions of users can be satisfied. These operators include:

Meta operators: Meta operators consist of “union”, “intersec-
tion”, and “difference”, which are applied on atomic graphs. Their
primary functions are to execute simple queries on hypernodes, and
the results that can be reused in the subsequent queries. Figure 2(a)
shows the graphical and semantic descriptions of meta operators,
denoted by OP. Let 𝐴(𝑁1) and 𝐴(𝑁2) denote the atomic graphs

3947



Figure 2: Graphical and semantic descriptions of meta operators and query operators in Schema Navigator

of hypernodes 𝑁1 and 𝑁2, respectively, 𝐿𝑖𝑛𝑖 and 𝐿𝑜𝑢𝑡𝑖 (𝑖 = 1, 2)
indicate the incoming and outgoing edge label set of each hypern-
ode, respectively. A newly generated hypernode 𝑁 = 𝑁1 OP 𝑁2 is
a set of hypernodes constructed by operating on the original KG
that 𝑁1 and 𝑁2 correspond to, respectively, using meta operators.
And the feature ⟨𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 ⟩ of its atomic graph 𝐴(𝑁 ) = ⟨𝑁, 𝐹 ⟩ is
extracted from the entire sets of incoming and outgoing edge labels
of hypernodes in 𝑁 .

Query operators: Query operators are applied on a schema
graph G, and include of “complete query operator (cqo)” and “partial
query operator (pqo)”, which are depicted in Figure 2(b). Let 𝐴(?𝑁 )
denote the atomic graphs of hypernodes in results variable ?𝑁 , and
suppose that the expected feature of 𝐴(?𝑁 ) is 𝐹 = ⟨𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 ⟩ and
that L∗

𝑖𝑛
and L∗

𝑜𝑢𝑡 are Kleene closures of 𝐿𝑖𝑛 and 𝐿𝑜𝑢𝑡 , respectively.
For the cqo, ?𝑁 contains all hypernodes in the data layer whose
feature of 𝐴(?𝑁 ) is 𝐹 = ⟨𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡 ⟩, while the pqo only requires
that features of atomic graphs corresponding to hypernodes in ?𝑁
match ⟨𝐿′

𝑖𝑛
, 𝐿′𝑜𝑢𝑡 ⟩, where 𝐿′𝑖𝑛 ∈ L∗

𝑖𝑛
and 𝐿′𝑜𝑢𝑡 ∈ L∗

𝑜𝑢𝑡 .
Meta operators allow users to quickly construct simple set-based

queries, which provides more possibilities for reusing query re-
sults. In addition, query operators adopt faceted search to allow
users to query with edge labels, which further compensates for
the shortcomings of meta operators that are unable to effectively
utilize edge information. By leveraging both types of operators,
KGNav can dynamically record user actions and automatically pro-
cess the underlying KG to give users feedback. These two types of
operators reduce the difficulties in constructing complex queries
through simple operations, which allows users to flexibly adjust
query orders and combine query results according to their specific
needs and query intentions, which is not available in the existing
KG (or ontology) visual methods.

3 DEMONSTRATION SCENARIOS
KGNav employs Vue framework andAnt Design, AntVG6 graphical
visualization components to implement a friendly GUI and all the
aforementioned interactive effects. For our demonstration, we use
the interactive GUI of the snapshot, as shown in Figure 3, which
simulates three typical query scenarios to reflect diverse query
intentions of users in KG queries. We guide the participants to
operate and experience KGNav according to the following steps.

KGSExploration. Tomake full use of the structural information
offered by KGS, we can locate the entity “Michael Jackson” by steps
described with the green labels in Figure 3.

1○ Hover the mouse over the hypernode “human” to highlight
the associated edges and hypernodes. We can find the hypernode
“singer” under “human” in the Content Preview Panel.

2○ Choose one of the three methods to access “singer”: right-
click on “human” to expand, click “singer” in the Content Preview
Panel, or click and expand “human” on the KGS List Panel.

3○ Keep exploring until finding and clicking on “Michael Jack-
son”. All the properties and triples of “Michael Jackson” will be
displayed in the Entity Information Panel. Meanwhile, all the hyper-
nodes that directly include “Michael Jackson” will be highlighted
in the KGS Display Panel.

4○ Click on a triple in the Entity Information Panel to view its
corresponding hypernodes and edges in the KGS Display Panel.

Thus, these four steps constitute a round of KGS exploration. If
users would like to specify a target entity, they are allowed to enter
“Michael” or “MJ” in the search bar on the top of the KGS List Panel.
KGNav will perform fuzzy search and provide options for users to
directly locate “Michael Jackson”.

Simple Query. It is obvious that the steps in above KGS Explo-
ration alone are insufficient to satisfy various users’ query inten-
tions. Therefore, we can use “meta operators” to construct more
expressive queries according to the following steps, which are de-
noted by the blue labels in Figure 3.

1○ The process usually starts with two hypernodes. After ex-
panding the hypernode “human”, hold down the “Shift” key, and
simultaneously select two hypernodes “singer” and “actor”. The
Meta Operator Panel will become active.

2○ Click on the “union” operator on the Meta Operator Panel
to retrieve all singers and actors in the KG. Alternatively, we can
also select “intersection” operator to retrieve individuals (entities)
who are both singers and actors.

3○ KGNav will generate a new hypernode, which will be auto-
matically labeled as “singer or actor”, on the KGS Display Panel.

4○ Query results are reusable, e.g., using “singer or actor” and
“director” to execute the “difference” operation can also retrieve all
the actors or singers who are not directors.

These four steps constitute a round of simple query. The result
of a query can be retained as a hypernode in the KGS and the steps
in KG Exploration can be recursively performed on this hypernode.

Complex Query. Next, we show how to use “query operators”,
by the following steps in the red labels, to query with edge labels
and gradually expand from simple to complex queries.

1○ In the Query Operator Panel, select the designated node
category “All” to start querying. The system will automatically
generate suggested label based on the selection.

3948



Figure 3: KGNav User Interface: main panels and demonstration scenarios

Figure 4: User Engagement Result

2○ Continue to specify any number of incoming and outgoing
edge labels as an expected atomic graph feature, while KGNav can
automatically filter out invalid conditions.

3○ Select “Weak”, i.e. partial query operator, as the query opera-
tor to be used for querying. the system will automatically construct
a target atomic graph pattern to get the result match from the
schema graph in the KGS Display Panel.

4○ The results will be presented in the Result Panel. Moreover,
the KGS Display Panel and the KGS List Panel will synchronously
display this result as a hypernode named “Query1”.

5○ Perform an “intersection” operation on the results produced
in the previous steps, i.e., “Query1” and “(singer or actor) but not
director”, can obtain all the actors or singers who are not directors
and satisfy the current condition query “Query1”.

These results can be arbitrarily combined according to users’
query intentions, allowing the generation of arbitrarily complex
queries, and enabling to stop a query when it becomes meaningless.

Demonstration Engagement.We recruited non-professional
participants to accomplish several predefined query tasks using
KGNav and three other KG query methods (i.e., SPARQL, Grafa, and
QueryVOWL) for system evaluation. Regarding these four methods,
user experiences are highly dependent on the their own subjectiv-
ity, and since the existing KG schema evaluations lack standard

benchmarks, we resort to questionnaires to assess the following
dimensions of the systems: usability, professionalism, interactivity,
practicality, and learnability. The results are illustrated in Figure 4.
It is evident that KGNav is inferior to SPARQL and QueryVOWL in
more complex and professional query capabilities, but it is more
user-friendly and easy to learn, and has higher practicality than or-
dinary visual query methods. Therefore, the system evaluation have
verified the advantage of KGNav in facilitating users to understand
KGs in a more comprehensive way.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-
ment Program of China (2019YFE0198600), and the National Natural
Science Foundation of China (61972275). We also thank Huawei for
contribution. Xin Wang is the corresponding author of this paper.

REFERENCES
[1] Florian Haag, Steffen Lohmann, Stefan Siek, and Thomas Ertl. 2015. QueryVOWL:

A Visual Query Notation for Linked Data. In The Semantic Web. Latest Advances
and New Domains, Vol. 9341. 387–402.

[2] Frederik Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak. 2010.
RDF-GL: A SPARQL-Based Graphical Query Language for RDF. In Emergent Web
Intelligence: Advanced Information Retrieval. 87–116.

[3] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez Elmasri. 2015.
Querying Knowledge Graphs by Example Entity Tuples. IEEE Transactions on
Knowledge and Data Engineering 27, 10 (2015), 2797–2811.

[4] Pengkai Liu, Xin Wang, Qiang Fu, Yajun Yang, Yuan Fang Li, and Qingpeng
Zhang. 2022. KGVQL: a knowledge graph visual query language with bidirectional
transformations. Knowledge-Based Systems 250 (2022), 108870.

[5] José Moreno-Vega and Aidan Hogan. 2018. GraFa: Scalable Faceted Browsing for
RDF Graphs. In The Semantic Web – ISWC 2018, Vol. 11136. 301–317.

[6] N.F. Noy, R.W. Fergerson, andM.A. Musen. 2000. The KnowledgeModel of Protégé-
2000: Combining Interoperability and Flexibility. In Knowledge Engineering and
Knowledge Management Methods, Models, and Tools, Vol. 1937. 17–32.

[7] Robert Pienta, Acar Tamersoy, Alex Endert, Shamkant Navathe, Hanghang Tong,
and Duen Horng Chau. 2016. VISAGE: Interactive Visual Graph Querying. In
Proceedings of the International Working Conference on Advanced Visual Interfaces
(AVI’16). 272–279. https://doi.org/10.1145/2909132.2909246

[8] Ying Yang, Michael Wybrow, Yuan-Fang Li, Tobias Czauderna, and Yongqun He.
2020. OntoPlot: A Novel Visualisation for Non-hierarchical Associations in Large
Ontologies. IEEE Transactions on Visualization and Computer Graphics 26, 1 (2020),
1140–1150.

3949

https://doi.org/10.1145/2909132.2909246

	Abstract
	1 Introduction
	2 KGNav OVERVIEW
	2.1 Atomic Graph Generator (AGG)
	2.2 KGS Constructor (KGSC)
	2.3 Schema Navigator (SN)

	3 DEMONSTRATION SCENARIOS
	Acknowledgments
	References

