
Sniffer: A Novel Model Type Detection System against
Machine-Learning-as-a-Service Platforms

Zhuo Ma
Xidian University

mazhuo@mail.xidian.edu.cn

Yilong Yang
Xidian University

yangyilong@stu.xidian.edu.cn

Bin Xiao
Chongqing University of

Posts and
Telecommunications
xiaobin@cqupt.edu.cn

Yang Liu
Xidian University

bcds2018@foxmail.com

Xinjing Liu
Xidian University

liuxinjing_j@163.com

Zhuoran Ma
Xidian University
emmazhr@163.com

Tong Yang
Peking University

yangtongemail@gmail.com

ABSTRACT
Recent works explore several attacks against Machine-Learning-
as-a-Service (MLaaS) platforms (e.g., the model stealing attack),
allegedly posing potential real-world threats beyond viability in
laboratories. However, hampered by model-type-sensitive, most of
the attacks can hardly break mainstream real-world MLaaS plat-
forms. That is, many MLaaS attacks are designed against only one
certain type of model, such as tree models or neural networks. As
the black-box MLaaS interface hides model type info, the attacker
cannot choose a proper attack method with confidence, limiting
the attack performance. In this paper, we demonstrate a system,
named Sniffer, that is capable of making model-type-sensitive at-
tacks “great again” in real-world applications. Specifically, Sniffer
consists of four components: Generator, Querier, Probe, and Arse-
nal. The first two components work for preparing attack samples.
Probe, as the most characteristic component in Sniffer, implements
a series of self-designed algorithms to determine the type of models
hidden behind the black-box MLaaS interfaces. With model type
info unraveled, an optimum method can be selected from Arsenal
(containing multiple attack methods) to accomplish its attack. Our
demonstration shows how the audience can interact with Sniffer
in a web-based interface against five mainstream MLaaS platforms.

PVLDB Reference Format:
Zhuo Ma, Yilong Yang, Bin Xiao, Yang Liu, Xinjing Liu, Zhuoran Ma,
and Tong Yang. Sniffer: A Novel Model Type Detection System against
Machine-Learning-as-a-Service Platforms. PVLDB, 16(12): 3942 - 3945,
2023.
doi:10.14778/3611540.3611591

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Echotoken/Sniffer.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611591

1 INTRODUCTION
Machine-Learning-as-a-Service (MLaaS) is one of the most popular
forms of machine learning inference service [4, 5]. Through user-
friendly pay-for-query interfaces, MLaaS can make the service of
top ML scientists accessible to any user. The great success of MLaaS
attracts interest of many security researchers. A series of novel
attacks are explored against the models hidden behind the black-
box MLaaS interfaces, such as model extraction attack (MEA) [3]
and membership inference attack (MIA) [1, 9].

Commonly, to fit real-world attack scenarios, these MLaaS at-
tacks are claimed to be executable with “no” prior knowledge of
the victim model. However, the fact is that most of the attacks are
model-type-sensitive, and thus, require model type info to ensure
attack effectiveness. For example, in [2], Varun et al. proposed three
MEA methods, each of which can only be used for extracting the
parameters of one certain type of model (like linear SVMs, kernel
SVMs, or tree models).

With regards to this, Model-type-sensitive evidently limits the
universality of most MLaaS attacks. For instance, according to
our observation, most mainstream real-world platforms, such as
Amazon SageMaker1 and Google Cloud2, do not provide model
type info in the response packages of their interfaces. As the result,
the model-type-sensitive attacks suffer from severe performance
degradation including failure.

Contributions. In this paper, we demonstrate a model type
detection (MTD) system, named Sniffer, that is capable of mak-
ing model-type-sensitive attacks “great again” in real-world appli-
cations. Specifically, Sniffer consists of four components, includ-
ing an attack samples generator (Generator), an automatic MLaaS
querier (Querier), a set of detection probes (Probe), and an “arse-
nal” equipped with varying MLaaS attacks (Arsenal). Generator
maintains an attack pool containing numerous synthesized or pub-
licly available (unlabeled) data points for launching MTD attacks.
Querier interacts with the victim interface to obtain the prediction
scores of the data in Generator. Probe, as the main module of Sniffer,
contains multiple probes designed for different model types, each
of which can output whether or not the victim model belongs to a
specific model type. Based on the result of Probe, an appropriate
method can be selected to accomplish the black-box MLaaS attack.

1https://aws.amazon.com/sagemaker/
2https://cloud.google.com/vertex-ai

3942

https://doi.org/10.14778/3611540.3611591
https://github.com/Echotoken/Sniffer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611591
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Figure 1: The workflow of Sniffer: 1) Generator synthesizes unlabeled attack samples. 2) Querier interacts with the MLaaS
platform to obtain predictions of the attack samples and put them in the attack pool. 3) Each probe outputs whether the victim
model belongs to a certain model type. 4) In Arsenal, according to the detection result, an appropriate MLaaS attack method is
selected.

For a first attempt, Sniffer mainly focuses on four mainstream
model types, sufficiently covering the scope of most state-of-the-art
MLaaS attacks. Four probes, namely Decision Trees probe (DTp),
Linear Models probe (LMp), Models with the non-linear Kernel
probe (KMp), and Neural Networks probe (NNp), are included to
complete the MTD attack. NNp can also further predict the possible
network architecture, including convolutional NN (CNN), fully-
connected NN (FNN) or recurrent NN (RNN).

In the demonstration, Sniffer provides an users-friendly graphical
user interface based on the browser, requiring only two main pieces
of info: a prediction API of the victim model and the description of
valid input space. We illustrate the meaning of each interaction and
the attack workflow of Sniffer in detail for the audience. Moreover,
Sniffer provides the following functions: 1) MLaaS platform attack
and local simulation 2) retention of processing log, 3) visualization
of results, and 4) review of detection history.

2 MODEL TYPE DETECTION ATTACK
Our research mainly focuses on the typical MLaaS scenario. That is,
a server trains a model 𝑓 and provides it as a prediction service for
users. From the interface, the user can only gain info about its own
input and the corresponding prediction score output by 𝑓 . MTD
attack is the process where an adversary A tries to answer what
the type of model 𝑓 is, by interacting with the interface within
the maximum query budget 𝑞. The following outlines the attack
process of the MTD attack.

Denote a set of possible model types as C, which contains the
alternative model types in real-world applications. Assume that
an MLaaS platform obtains a well-trained model 𝑓𝑐 and provides
a pay-per-query interface for users, where 𝑐 ∈ C is the type of 𝑓 .
During the attack process, A is capable of crafting specific data
points and obtaining at most 𝑞 predictions of them by querying 𝑓𝑐 .
The querying results are recorded as an attack pool (X,Y) where
𝑦𝑖 = 𝑓𝑐 (𝑥𝑖 ) ∈ Y, 𝑥𝑖 ∈ X and 1 ≤ 𝑖 ≤ 𝑞. By analyzing (X,Y),
A outputs 𝑐′ ∈ C. If 𝑐′ is equal to 𝑐 , we say that A launches a
successful attack, otherwise, the attack fails.

3 SYSTEM OVERVIEW
As shown in Figure 1, Sniffer is composed of four components:
Generator, Querier, Probe and Arsenal.

Generator.Generator is responsible for generating data samples
for usage in Probe as the first step of the attack. To reduce query
budget, the adversary carefully crafts the data points to ensure
the maximum info gain for each query. Normally speaking, the
queries of MLaaS attacks can be crafted with the data collected
from public data resources, or directly synthesized according to
specific rules [2, 6]. Especially, Sniffer adopts hybrid rules to cover
the requirements of multiple probes against different model types.
For an overall view, Generator in Sniffer is designed to generate
data points with minimal query budgets and comprehensive rules
and maintain an attack data points pool.

Querier. This component is mainly used to assist Generator to
label the generated data by querying the MLaaS interface of the
victim model. While implementing Sniffer, we notice that MLaaS
platforms set different access rules for machine learning inference
queries, such as limiting the maximum query number per minute
and different data transmission formats. In these scenarios, Querier
is required to automatically launch queries according to the rules to
circumvent the defense strategy. Denote a data point in the attack
pool as (x, y), where x represents the crafted data features and y is
the prediction from the victim model in MLaaS platform.

Probe. Probe is the core component of Sniffer to discover the
model types. In our implementation, four probes against six popular
types of models are considered, including the LM probe, DT probe,
KM probe, and NN probe. NNp can also further predict the possible
network architecture, and answer whether the victim model type
is CNN, FNN or RNN. Each probe can independently answer the
confidence that the victim model belongs to a specific type of model.
Next, we discuss each probe in detail:

Probe for Decision Trees (or Forest). For models with a decision-
tree-type structure, the prediction scores of the victimmodel are the
values of their leaf nodes. Thus, a unique property of such models is
the output space being a finite discrete set due to a finite number of

3943



leaf nodes. To simplify, the decision trees (DTs) can be formulated as
a key-value table, where a continuous segment of keys (features of
data points) is mapped to a definite value (victim model prediction).
When the features of data points are within this continuous range,
the output value is constant. Utilizing this observation, the DT
probe in Sniffer uses discreteness test to distinguish DTs from other
models. Specifically, a data point (x, y) is randomly selected in the
attack pool, where x𝑖 is 𝑖-th feature of x. Given a fixed interval 𝑠 ,
the prediction sample returned by Querier is (x𝑖 + 𝑠, y′). If y′ is the
same as y, DTp considers this feature to have discrete properties
within this interval. Repeating the above discreteness test beyond
a given threshold T, if the discreteness always holds, the victim
model is considered to be DTs.

Probe for Non-Linear Kernel Models. By adding nonlinear kernels
transforming the data points to a higher-dimensional space, e.g.,
Gaussian kernel, KMs are able to solve nonlinear problems. Basi-
cally, KMs can be represented as 𝑓𝐾 = 𝜔 · 𝐾 (x) + 𝑏, where 𝐾 (·)
denotes the nonlinear kernel function. Taking the Gaussian Kernel
as an example, when the absolute value of one feature x𝑖 exceeds a
given huge number ℎ, 𝐾 (x) and its change rate both decay rapidly.
We observe that they change very little even when the random
perturbation 𝑝 is given again. In Sniffer. KMp modifies data sample
(x𝑖 + ℎ, y) in the attack pool into (x𝑖 + ℎ + 𝑝, y′). If y ≈ y′, Sniffer
considers the victim model as KMs.

Probe for Linear Models. Linear models, e.g., logistic regression,
with classification classes 𝐶 can be formulated as 𝑓𝐿 = 𝜔 ∗ 𝑥 + 𝑏,
where𝜔, x ∈ R𝐶 ·𝑛 , 𝑏 ∈ R𝐶 , 𝑛 indicates the feature number. Inspired
by [7], Sniffer can get the parameters of the model by solving the
equations about𝐶 ·𝑛+𝐶 input-output pairs, guaranteeing the predic-
tion error is less than the given bound 𝜖 . Literally speaking, Sniffer
categorizes the victim model as LMs if the simultaneous equations
are resolvable. Significantly, the predictions of real-world MLaaS
platforms are usually masked by the Softmax function, which can
be unmasked by the inverse algorithm in Querier, as discussed
in [7].

Probe for Neural Networks. To determine the specific type of
NN, Sniffer introduces the idea of transferability-based adversarial
example (AE) attacks. In brief, given a fixed attack pool and an AE
algorithm, the more similar the local model structure is to the victim
model, the higher the attack success rate (ASR) of the AE attack is.
Specifically, NNp first generates three types of local substitution
NN models: FNN, CNN, RNN, and locally maintains three different
attack data point pools through an AE algorithm, e,g., L-BFGS [8]
in Sniffer. Then, the ASRs of the three attack pools against the
victim model are computed respectively. Finally, NNp categorizes
the victim model to the type with the largest ASR.

Although the probes are independent of each other, the detection
order is principled: priority is given to judging a particular model
with the characteristic of exclusivity. Exclusivity here means that
each probe has a definite result and will not affect the judgment of
subsequent probes3. Based on the principle, the order of running
the probes in Sniffer is DTp → KMp → LMp → NNp. The order
is designed to make full use of the exclusivity of DTs and KMs
to prevent the misjudgment of LMs approximating DTs and KMs.

3To prevent misclassification, this guideline should be followed if the audience wants
to add probes for unknown models.

Additionally, Sniffer supports outputting the confidence level of
each probe. Specifically, suppose that the total number of data
points for a given test is Σ. The confidence output by each probe is
calculated by 𝜎

Σ × 100%, where 𝜎 is the number of data points that
pass the test algorithm.

Arsenal. As the name manifests, “Arsenal” contains multiple
attack methods for the adversary to attack the victim models with
various model types in MLaaS, such as MEA-DT [2]. The adversary
can choose appropriate MLaaS attacks based on the model type
confidence provided by Probe. Also, Arsenal takes the responsibility
for the NN probe to pick appropriate MLaaS adversarial example
attacks for transferability testing.

4 DEMONSTRATION
In this demonstration, we describe the web-based user interface
(UI) of Sniffer and how the audience can use this pipeline, as shown
in Figure 2. Sniffer can automatically detect the type of the victim
model deployed on the MLaaS platforms, only requiring the MLaaS
query interface and the feature info of valid inputs. The following
presents the audience with the meaning of each interaction in turn.

Figure 2-a): ① The audience gives this attack a name. ② Snif-
fer has five pre-built options corresponding to public MLaaS cloud
platforms, namely Google Cloud, Amazon Sagemaker, Aliyun4, Ten-
cent Cloud 5, Huawei Cloud6. Their access rules are integrated into
Querier and entirely transparent to the audience. ③ The audience
needs to specify the prediction API to invoke the MLaaS service.
The prediction API represents the query interface of the victim
model obtained from the ML inference serving provider. ④ Also,
Sniffer allows the audience to choose which model types to probe.
In particular, assuming the existence of some foreground knowl-
edge that a particular model is not suitable to handle the current
target task, the audience can skip the corresponding probing. ⑤

Next, in order to interact with the MLaaS interface correctly, the
audience needs to provide Sniffer with the number of features and
their approximate value ranges. ⑥ By default, Sniffer builds in eight
common datasets, which are Iris, Adult, MNIST, CIFAR10, Cancer,
Digits, Fashion-MNIST and Wine. If the input of the target MLaaS
platform shares common features with datasets above, the audi-
ence can select it directly. ⑦ Also, Sniffer provides the option of
Manual Input, which allows the audience to input the description
of valid samples. ⑧ For example, if data samples in the Iris dataset
are valid to the victim model, the audience inputs “4” features and
their respective approximate feature ranges are “(5, 7)(2, 4)(1, 6)(1,
2.5)”. We can reasonably expect to know the approximate ranges
of features in the real-world MLaaS scenario, where users are suf-
ficiently informed of how to provide valid inputs for the usage of
the service. Especially, if all ranges of the features are identical,
the audience can add the keyword “all” in the front of the range,
i.e., “all(-1,1)”. After filling in the above info, the audience clicks
“ATTACK” button to launch the MTD attack.

Figure 2-b) shows the processing log during the whole MTD
attack, containing key adjustment parameters, attack samples, the
schedule of detection, etc. Finally, as shown in Figure 2-c), Sniffer

4https://ai.aliyun.com/
5https://cloud.tencent.com/product/ai-class
6https://www.huaweicloud.com/product/modelarts.html

3944



Figure 2: The visual web-based interface of Sniffer: the interactions of a) MLaaS Platform Attack and b) Local Simulation; c)
processing log; d) model type detection results; e) attack histories.

will give a final model type detection result (i.e., “Results: Linear
Model”) to launch a real black-box MLaaS attack. The specific confi-
dence output by each probe is plotted in the bar chart. Besides, the
query times between different probes with MLaaS platforms and
the running times during the whole attack are presented in two pie
charts, respectively. Figure 2-d) saves the histories of attack (e.g.,
results and the processing log) for reviewing.

Figure 2-e): In addition to attacking MLaaS platforms, Sniffer
also provides a local testbed by introducing Local Simulation, e.g.,
testing attack baseline. ⑨ Different fromMLaaS Platform Attack, Lo-
cal Simulation allows the audiences to choose our built-in models or
upload the model (.pkl) trained by themselves to test the algorithms.
To enable users to experience the MTD attack pipeline locally, we
provide six types of models in “Existing” options, covering all model
types that Sniffer supports. When the audience chooses to upload
the model, it is necessary to ensure that its input and output are
both Tensors. Moreover, the user interaction, experiment result
display, and processing log are basically identical to those of the
MLaaS platform attack function.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China (U21A20464, 62261160651), the Natural Science Basic
Research Program of Shaanxi (No. 2021JC-22), Key Research and
Development Program of Shaanxi (No.2022GY-029), the China 111
Project (No.B16037).

REFERENCES
[1] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and

Florian Tramèr. 2022. Membership Inference Attacks From First Principles. In
2022 IEEE Symposium on Security and Privacy (SP). 1897–1914. https://doi.org/10.
1109/SP46214.2022.9833649

[2] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli, Somesh Jha, and
Songbai Yan. 2020. Exploring Connections between Active Learning and Model
Extraction. In Proceedings of the 29th USENIX Conference on Security Symposium
(SEC’20). USENIX Association, USA, Article 74, 18 pages.

[3] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, and Yang Liu. 2021.
Stealing Deep Reinforcement Learning Models for Fun and Profit. In Proceedings
of the 2021 ACM Asia Conference on Computer and Communications Security (ASIA
CCS ’21). Association for Computing Machinery, 307–319.

[4] Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, and
Matei Zaharia. 2020. A Demonstration of Willump: A Statistically-Aware End-to-
End Optimizer for Machine Learning Inference. Proc. VLDB Endow. 13, 12 (aug
2020), 2833–2836.

[5] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, and
Konstantinos Karanasos. 2022. End-to-End Optimization of Machine Learning Pre-
diction Queries. In Proceedings of the 2022 International Conference on Management
of Data (SIGMOD ’22). Association for Computing Machinery, 587–601.

[6] Sunandini Sanyal, Sravanti Addepalli, and R Venkatesh Babu. 2022. Towards
data-free model stealing in a hard label setting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 15284–15293.

[7] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. In 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association, 601–618.

[8] Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho, and Yier Jin.
2020. CloudLeak: Large-Scale Deep LearningModels Stealing ThroughAdversarial
Examples.. In NDSS.

[9] Xiaoyong Yuan and Lan Zhang. 2022. Membership Inference Attacks and Defenses
in Neural Network Pruning. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, 4561–4578.

3945

https://doi.org/10.1109/SP46214.2022.9833649
https://doi.org/10.1109/SP46214.2022.9833649

	Abstract
	1 Introduction
	2 Model Type Detection Attack
	3 System Overview
	4 Demonstration
	Acknowledgments
	References

