
FastMosaic in Action: A New Mosaic Operator for Array DBMSs
Ramon Antonio Rodriges Zalipynis

HSE University
Moscow, Russia
rodriges@gis.land

ABSTRACT

Array DBMSs operate on 𝑁 -d arrays. During the Data Ingestion
phase, the widely used mosaic operator ingests a massive collection
of overlapping arrays into a single large array, called mosaic. The
operator can utilize sophisticated statistical and machine learning
techniques, e.g. Canonical Correlation Analysis (CCA), to produce
a high quality seamless mosaic where the contrasts between the
values of cells taken from input overlapping arrays are minimized.
However, the performance bottleneck becomes a major challenge
when applying such advanced techniques over increasingly grow-
ing array volumes. We introduce a new, scalable way to perform
CCA that is orders of magnitude faster than the popular Python’s
scikit-learn library for the purpose of array mosaicking. Further-
more, we developed a hybrid web-desktop application to showcase
our novel FastMosaic operator, based on this new CCA. A rich
GUI enables users to comprehensively investigate in/out arrays,
interactively guides through an end-to-end mosaic construction on
real-world geospatial arrays using FastMosaic, facilitating a con-
venient exploration of the FastMosaic pipeline and its internals.

PVLDB Reference Format:

Ramon Antonio Rodriges Zalipynis. FastMosaic in Action: A New Mosaic
Operator for Array DBMSs. PVLDB, 16(12): 3938 - 3941, 2023.
doi:10.14778/3611540.3611590

1 INTRODUCTION

Array DBMSs are becoming increasingly comprehensive systems,
enabling 𝑁 -d array storage, processing, and even visualization [10].

The Data Management Problem we tackle is the improvement
of the speed and quality of the Data Ingestion phase in Array
DBMSs, a mandatory data life cycle stage for all arrays that ar-
rive under the control of Array DBMSs. Specifically, we focus on
the well-known mosaic operator of Array DBMSs. For example,
Oracle Spatial provides the SDO_GEOR_AGGR.mosaicSubset pro-
cedure [7], ChronosDB has the mosaic command [9], and RasDa-
Man is equipped with the mosaic recipe [6].

𝑁 -d arrays are natural models for many important data types [1],
of which Earth remote sensing data constitute one of the most
significant Array DBMS workloads [6, 7, 9, 10]. Hence, consider a
practical example related to real-world geospatial arrays. A single
array, e.g. a satellite scene, often does not fully cover the area of
interest. In this case, the mosaic operator, equipped by Data Science

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611590

Figure 1: CCA: FastMosaic VS. Python’s "scikit-learn" [8]

techniques, is used to fuse a large collection of input arrays into a
single seamless mosaic (a large 𝑁 -d array where the visibility of
stitches between individual input arrays is minimized; visual quality
evaluation prevails, no numerical metrics are routinely applied [4]).

Hence, mosaic is an essential Data Ingestion step that helps to
solve vital daily tasks like urban planning, agriculture monitoring,
forestry control, and rapid-response in disaster management [1].

To produce high quality mosaics, algorithms resort to advanced
techniques. For example, IR-MAD relies on Canonical Correlation
Analysis (CCA) [4], a popular method for finding correlations in
multidimensional datasets [2]. CCA is widely used in Data Science
for dimensionality reduction and discovering latent variables.

The major challenge in using CCA or other advanced approaches
comes from rapidly growing data volumes (array sizes) that require
ever more scalable algorithms. For instance, CCA must consider
billions of array cells for an averagely-sized mosaic [4]. However,
available CCA implementations like [8] are compute-intensive and
do not scale with contemporary array data volumes, fig. 1.

Recent surveys indicate that little techniques focus on the mo-
saicking scalability, so the speed is set out as a key challenge and
improvement aspect of next generation mosaicking schemes [4, 5].

To date, Array DBMSs support basic or no value normalization in
array mosaicking. Oracle Spatial provides Linear Stretching, Sta-
tistics Matching, and HistogramMatching options [7]. ChronosDB
does not perform color correction for the mosaic operation [9], sim-
ilarly to RasDaMan [6]. Due to limited color or value correction
algorithms, users tend to ingest mosaics into Array DBMSs cre-
ated outside. To avoid costly data movements, Array DBMSs must
directly support high-quality and scalable mosaic algorithms.

Novelty and Contributions.
(1) We introduce a new, scalable way to perform Canonical

Correlation Analysis (CCA), a popular Data Science tech-
nique, in linear time in the context of the Data Ingestion
phase in Array DBMSs (the mosaic operator).

3938

https://doi.org/10.14778/3611540.3611590
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611590


(a) CCA Compute Graph: Proposed Approach

IR-MAD: Iteratively Re-weighted MAD
MAD: Multivariate Alteration Detection
CCA: Canonical Correlation Analysis

(b) FastMosaic Structure

Figure 2: Compute Graph of the Proposed CCA Algorithm and FastMosaic Structure

(2) We showcase FastMosaic, a new Array DBMS mosaic
operator, equipped with our CCA algorithmwhich is orders
of magnitude faster for the purpose of array mosaicking
compared to the popular Python implementation, fig. 1.

(3) We built a web-desktop application to engage interested
users in a vivid inspection of FastMosaic via an end-to-end
mosaic creation on real-world data in a rich GUI.

2 FASTMOSAIC: AN ARRAY DBMS OPERATOR

FastMosaic improves IR-MAD, because it runs with no or little
manual interaction: an important property for Big Data applications.
In addition, it can generate high quality array mosaics, even for very
complex value distributions of overlapping input array cells [4].

The FastMosaic structure appears in fig. 2b. This section pro-
vides core theoretical foundations of FastMosaic. Section 3 de-
scribes an end-to-end mosaic construction on real-world geospatial
arrays, complementing the FastMosaic description.

As input, FastMosaic accepts a set of 3-d overlapping arrays
shaped 𝑙𝑎𝑡 × 𝑙𝑜𝑛𝑔 × 𝑘 , where 𝑘 is the number of bands. Typically,
𝑙𝑎𝑡 ≈ 𝑙𝑜𝑛𝑔 ≈ 8000 and 𝑘 ≈ 10. For a pair of input arrays (refer-
ence and subject), we estimate the probability 𝑃 (no change) for
their overlapping cells using CCA. Invariant cells should have
𝑃 (no change) > 0.95. Next, the relative normalization is performed:
on the invariant cells an orthogonal regression is built, whose 𝑘
pairs of coefficients are applied to all cells of the subject array. The
resulting array is merged with the reference array, this larger ar-
ray replaces the array pair in the input set, and the procedure is
repeated until there is only 1 array left: the resulting array mosaic.

2.1 Collecting Statistics

At this early stage, to speedup subsequent stages, we collect statis-
tics that will serve as “building blocks” for the main formulae.

We treat 𝑁 cell pairs of two overlapping arrays as a pair of ran-
dom variables 𝑋 and 𝑌 of dimension 𝑘 : 𝑋𝑖 = {𝑋𝑖,1, 𝑋𝑖,2, . . . , 𝑋𝑖,𝑁 },
where 𝑋𝑖, 𝑗 is the value of cell 𝑗 ∈ [1, 𝑁 ] from band 𝑖 ∈ [1, 𝑘]. We

define 𝑌 in the same way. We treat the output array of weights as a
1-d vector𝑤 of size 𝑁 . We let𝑤𝑖 = 1 before the first iteration ∀ 𝑖:
𝑤 = {𝑤1,𝑤2, ...,𝑤𝑁 }.

Now, we present the statistics formulae and the calculation of
covariance matrices for 𝑋 (the formulae for 𝑌 are analogues). First,
we compute 𝜎𝑋,𝑖 =

˝𝑁
𝑗 𝑋𝑖, 𝑗𝑤 𝑗 , the weighted sum of cells from

band 𝑖: 𝜎𝑋 = {𝜎𝑋1 , 𝜎𝑋2 , . . . , 𝜎𝑋𝑘
}.

Then, we compute 𝜎𝑋𝑌 , a matrix of weighted sums of products𝑋
and 𝑌 : 𝜎𝑋𝑌 = 𝑋𝑇

𝑖
(𝑌𝑖 ⊙𝑤), 𝜎𝑋𝑋 = 𝑋𝑇

𝑖
(𝑋𝑖 ⊙𝑤), 𝜎𝑌𝑌 = 𝑌𝑇

𝑖
(𝑌𝑖 ⊙𝑤),

where ⊙ is a cell-wise product.
In addition, we compute Σ𝑋𝑌 , a matrix of a weighted covariance

of variables 𝑋 and 𝑌 :

Σ𝑋𝑌 =
𝜎𝑋𝑌˝
𝑤 − 1 −

𝜎𝑋𝜎
𝑇
𝑌˝

𝑤 (˝𝑤 − 1) (1)

Similarly, Σ𝑋𝑋 and Σ𝑌𝑌 are computed as

Σ𝑋𝑋 =
𝜎𝑋𝑋˝
𝑤 − 1 −

𝜎𝑋𝜎
𝑇
𝑋˝

𝑤 (˝𝑤 − 1) (2)

Σ𝑌𝑌 =
𝜎𝑌𝑌˝
𝑤 − 1 −

𝜎𝑌𝜎
𝑇
𝑌˝

𝑤 (˝𝑤 − 1) (3)

In the compute graph, the collection of statistics takes over 95%
of the CCA runtime, fig. 2a. Other approaches do not work in one
pass over the input data, so their iterations are very expensive.

2.2 Proposed Linear Algorithm for CCA

We now present our linear-time formulae to compute CCA, fig. 2a.
We designed the formulae such that it is possible to use the previ-
ously collected statistics (section 2.1) and perform the calculations
of both CCA canonical variables (𝑈 and 𝑉 ) and the normalization
coefficients (𝛽𝑖 and 𝜖𝑖 ) in a single pass over the input data.

Recall that CCA maximizes the correlation 𝑐𝑜𝑟𝑟 (𝑎𝑇𝑋,𝑏𝑇𝑌 ) by
seeking coefficients 𝑎 and 𝑏. Random variables 𝑈 = 𝑎𝑇𝑋,𝑉 = 𝑏𝑇𝑌

are called a pair of canonical variables. We can find coefficients
𝑎, 𝑏 by decomposing the covariance matrix on eigenvectors and

3939



eigenvalues. Then, we can get a pair of coefficients 𝑎𝑖 , 𝑏𝑖 from each
eigenvector. Eigenvectors that correspond to the largest eigenvalues
will correspond to the largest values of 𝑐𝑜𝑟𝑟 (𝑎𝑇

𝑖
𝑋,𝑏𝑇

𝑖
𝑌 ).

When computing CCA, we perform the decomposition of covari-
ance matrices on eigenvectors. We compute matrices𝑚𝑎 and𝑚𝑏

as follows:

𝑚𝑎 = Σ
−1/2
𝑋𝑋

Σ𝑋𝑌 Σ
−1
𝑌𝑌 Σ

𝑇
𝑋𝑌 Σ

−1/2
𝑋𝑋

(4)

𝑚𝑏 = Σ
−1/2
𝑌𝑌

Σ𝑇𝑋𝑌 Σ
−1
𝑋𝑋 Σ𝑋𝑌 Σ

−1/2
𝑌𝑌

(5)

Then, we compute vectors 𝑎0 and 𝑏 as eigenvectors of matrices
𝑚𝑎 and𝑚𝑏 (4), (5):

𝑎0 = 𝑒𝑖𝑔𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑚𝑎)Σ−1/2𝑋𝑋
(6)

𝑏 = 𝑒𝑖𝑔𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑚𝑏 )Σ
−1/2
𝑌𝑌

(7)

Now, consider the following observation. The resulting vectors
𝑎0 and 𝑏 are proportional to true vectors: 𝑎𝑡𝑟𝑢𝑒 = 𝜁𝑎, 𝑏𝑡𝑟𝑢𝑒 = 𝜔𝑏.
However, for the correct functioning of the mosaic operator, we
have to find overlapping array cells whose value differences cannot
be explained by linear dependencies. In other words, we have to
find array cells whose canonical variables do not correlate. If we
find coefficients 𝑎, 𝑏 that look like 𝑎 = 𝛾𝑎𝑡𝑟𝑢𝑒 , 𝑏 = 𝛾𝑏𝑡𝑟𝑢𝑒 , then
array cells with the largest values of (𝑎𝑇𝑋 −𝑏𝑇𝑌 )2 will be the cells
we are looking for. The coefficient 𝛾 will be canceled during the
subsequent normalization of𝑈𝑖 −𝑉𝑖 . To achieve this effect, we can
multiply one of the variables on the correction factor:

𝑎 = 𝛽𝑎0

We can obtain the coefficient 𝛽 using a linear regression on the
variables𝑈 and 𝑉 :

𝑎 = 𝛽𝑎0 = (𝑈𝑇𝑊𝑈 )−1𝑈𝑇𝑊𝑉𝑎0 (8)

where

𝑊 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 [{𝑤1,𝑤2, ...,𝑤𝑘 }]

As long as our algorithm does not keep𝑈 and𝑉 in the operating
memory during the computation of CCA, we can express the linear
regression using the previously collected statistics, section 2.1:

𝑈𝑇𝑊𝑈 =

˝
𝑤𝑖

˝
𝑤𝑖𝑢𝑖˝

𝑤𝑖𝑢𝑖
˝
𝑤𝑖𝑢

2
𝑖

=

˝
𝑤𝑖 𝑎𝑇𝜎𝑋

𝑎𝑇𝜎𝑋 𝑔𝑟𝑎𝑛𝑑𝑠𝑢𝑚[(𝑎𝑎𝑇 ) ⊙ Σ𝑋𝑋 ]

(9)

𝑈𝑇𝑊𝑉 =

˝
𝑤𝑖𝑣𝑖˝
𝑤𝑖𝑢𝑖𝑣𝑖

=
𝑏𝑇𝜎𝑌

𝑔𝑟𝑎𝑛𝑑𝑠𝑢𝑚[(𝑎𝑏𝑇 ) ⊙ Σ𝑋𝑌 ]
(10)

As an alternative, it is also possible to implement a “regularized”
CCA by summing up the covariance matrices with an identity
matrix, multiplied by the regularization coefficient.

2.3 Constructing the Statistical Test

For each cell of the resulting mosaic array, the probability of the
cell invariability (stationarity) is estimated with the 𝜒2 distribution:

𝑃 (no change) = 𝜒2
𝑐𝑑 𝑓

∑︁
𝑀2
𝑖 (11)

where 𝑀 = {𝑀1, 𝑀2, ..., 𝑀𝑘 } is a vector of 𝑘 standardly dis-
tributed random variables, obtained from the normalized difference
of 𝑘 pairs of canonical variables:

𝑀𝑖 =
(𝑈𝑖 −𝑉𝑖 ) −𝑀𝑖

𝑠𝑡𝑑 (𝑀𝑖 )
(12)

Every member in eq. (12) can be expressed using the previously
collected statistics (section 2.1), and vectors 𝑎, 𝑏, computed by
our linear CCA algorithm, section 2.2:𝑀𝑖 = 𝑈𝑖 −𝑉𝑖 such that

𝑈𝑖 = 𝑎𝑇
𝜎𝑋˝
𝑤

and 𝑉𝑖 = 𝑏𝑇
𝜎𝑌˝
𝑤

Furthermore,𝑈𝑉𝑐𝑜𝑣 = 𝑑𝑖𝑎𝑔(𝑎𝑇 Σ𝑋𝑌𝑏) such that

𝑈𝑣𝑎𝑟 = 𝑑𝑖𝑎𝑔(𝑎𝑇 Σ𝑋𝑋𝑎) and 𝑉𝑣𝑎𝑟 = 𝑑𝑖𝑎𝑔(𝑏𝑇 Σ𝑌𝑌𝑏)
Now we can find cells 𝑃 (no change) > Θ ∈ [0.95, 0.99] and

build orthogonal regression only on these invariant cells: 𝑌𝑖 =

𝛽𝑖𝑋𝑖 +𝜖𝑖 . Note that transformations superimpose during the mosaic
construction, leading to a non-linear transformation of input arrays.

3 FASTMOSAIC IN ACTION

3.1 Illustrative Dataset

We prepared a dataset using real-world geospatial arrays: Landsat 8
satellite scenes. Landsat is one of the most popular and the longest
continuous space-based record of Earth’s land [3]. We selected an
interesting agricultural area featuring central pivot irrigation fields
(Saudi Arabia): a set of 3×4 scenes, bands 1−7, paths 166−169, rows
41 − 43, GeoTIFF, fig. 3. We deliberately selected scenes acquired
on the 22 of February and 15, 16, 17 of March and 2023 (different
dates) to explore diverse conditions for the mosaicking algorithm.

Figure 3: A collection of input arrays (natural colors)

3940



3.2 FastMosaic Interactive GUI

The application guides users through the end-to-end workflow
(fig. 4) of constructing a seamless mosaic (fig. 5) on raw input
arrays (fig. 3) via an interactive and rich GUI: see below.

Sampling 
Tool

Interactive
Map Tool

𝑋

𝑌

NetCDF

𝑘

𝑁

𝐴
𝐵 𝐴

𝐵′

Input Output: Seam-
less mosaic

Slider Tool

𝑃(𝑛𝑜
𝑐ℎ𝑎𝑛𝑔𝑒)

Heatmap 
Tool

Figure 4: FastMosaicWorkflow Overview (2 input arrays)

Two mosaicking modes are available, both resulting in a mosaic:
(1) manual plan, batch run on all input arrays, and (2) step-by-step,
two input arrays. Mode №1 (breadth-first) invites playing with the
impact caused by the order of adding arrays to the overall, final
mosaic. On the contrary, Mode№2 (depth-first) enables an in-depth
investigation of the FastMosaic workflow on an array pair, fig. 4.

Interactive Map Tool makes it possible to explore raw input
arrays, intermediate and final mosaicking results for both modes.
The user starts by examining the Interactive Map with the input
arrays: overlapping areas have varying contrasts and rich contents
(clouds, sand, urban settlements, agricultural fields), section 3.1.

Mosaic Plan Tool (Mode№1). The user interactively builds a
tree (mosaic execution plan) by drawing arrows to connect array
pairs (snapping supported) and set the fusion order, fig. 6. At step
№𝑖 , the array at the start of arrow №𝑖 joins the mosaic built so far.

Slider Tool is useful for comparing the input and the resulting
mosaic for an overlapping area (both modes). The user can select a
rectangular region and collate the input to the left vs. the output to
the right of the slider (the blue circle; draggable left↔right), fig. 5.

Figure 5: Slider Tool in Action: Collating Input and Output

In Mode№2, the user selects a pair of overlapping 3-d arrays and
creates 𝑋,𝑌 arrays with the Sampling Tool: the CCA input. Then,
the user sets the FastMosaic options to generate 𝑃 (no change),
section 2.3: (1) CCA implementation: this paper or Python, fig. 1,
(2) correlation threshold (the significance of the change in corre-
lations 𝑐𝑜𝑟𝑟 (𝑈 ,𝑉 )), or (3) the max number of iterations, fig. 2b.
The user will assess the FastMosaic outputs (𝑃 (no change) and
the resulting mosaic) on any iteration number by tuning the last
parameter and see that choice (1) does not affect the mosaic quality.

Correlation Plot Tool. During the CCA execution, the user can
visually track the convergence of the algorithm with the highly in-
teractive plot updated at each iteration step, fig. 6. The line number 𝑖
plots the correlation of canonical variables 𝑐𝑜𝑟𝑟 (𝑈𝑖 ,𝑉𝑖 ), fig. 6.

𝑃
(n
o
ch
an

ge
)c

ol
or

m
ap

Figure 6: 𝑃 (no change) Heatmap (for fig. 5), Mosaic Execution

Plan, Interactive Plot (Correlations of Canonical Variables)

Heatmap Tool plots 𝑃 (no change), so the user can thoroughly
inspect cells in the overlapping area that are likely invariant, fig. 6.

Finally, the user provides a 𝑃 (no change) threshold in [0.95, 0.99]
to compute the regression coefficients on the invariant cells, build
the final mosaic, and study it with the Map and Slider Tools, fig. 4.

Paper homepage: https://wikience.github.io/fastmosaic2023

REFERENCES

[1] ArcGIS Book 2023. https://learn.arcgis.com/en/arcgis-imagery-book/.
[2] Harold Hotelling. 1936. Relations between two sets of variates. Biometrika 28,

3/4 (1936), 321–377.
[3] Landsat. 2023. https://www.usgs.gov/landsat-missions.
[4] Xinghua Li et al. 2019. Remote sensing image mosaicking: Achievements and

challenges. IEEE Geoscience and Remote Sensing Magazine 7, 4 (2019), 8–22.
[5] Bose Alex Lungisani et al. 2022. The Current State on Usage of Image Mosaic

Algorithms. Scientific African (2022), e01419.
[6] RasDaMan Mosaic. 2023. https://doc.rasdaman.org/05_geo-services-guide.html#

data-import-recipe-mosaic-map.
[7] Oracle Database Release 21c. https://docs.oracle.com/en/database/oracle/oracle-

database/21/geors/image-processing-virtual-mosaic.html.
[8] Python scikit-learn: sklearn.cross_decomposition.CCA 2023. http://scikit-learn.

org/stable/modules/generated/sklearn.cross_decomposition.CCA.html.
[9] Ramon Antonio Rodriges Zalipynis. 2018. ChronosDB: Distributed, File Based,

Geospatial Array DBMS. PVLDB 11, 10 (2018), 1247–1261.
[10] Ramon Antonio Rodriges Zalipynis. 2021. Array DBMS: Past, Present, and (Near)

Future. PVLDB 14, 12 (2021), 3186–3189.

3941

https://wikience.github.io/fastmosaic2023
https://learn.arcgis.com/en/arcgis-imagery-book/
https://www.usgs.gov/landsat-missions
https://doc.rasdaman.org/05_geo-services-guide.html#data-import-recipe-mosaic-map
https://doc.rasdaman.org/05_geo-services-guide.html#data-import-recipe-mosaic-map
https://docs.oracle.com/en/database/oracle/oracle-database/21/geors/image-processing-virtual-mosaic.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/geors/image-processing-virtual-mosaic.html
http://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.CCA.html
http://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.CCA.html

	Abstract
	1 Introduction
	2 FastMosaic: An Array DBMS Operator
	2.1 Collecting Statistics
	2.2 Proposed Linear Algorithm for CCA
	2.3 Constructing the Statistical Test

	3 FastMosaic In Action
	3.1 Illustrative Dataset
	3.2 FastMosaic Interactive GUI

	References

