
CEDA: Learned Cardinality Estimation with Domain Adaptation
Zilong Wang∗

Beijing Jiaotong University, China
zilongwang@bjtu.edu.cn

Qixiong Zeng∗
Beijing Jiaotong University, China

zengqixiong@bjtu.edu.cn

Ning Wang#
Beijing Jiaotong University, China

nwang@bjtu.edu.cn

Haowen Lu
Beijing Jiaotong University, China

haowenlu@bjtu.edu.cn

Yue Zhang
Beijing Jiaotong University, China

yuezhang@bjtu.edu.cn

ABSTRACT
Cardinality Estimation (CE) is a fundamental but critical problem
in DBMS query optimization, while deep learning techniques have
made significant breakthroughs in the research of CE. However,
apart from requiring sufficiently large training data to cover all pos-
sible query regions for accurate estimation, current query-driven
CE methods also suffer from workload drifts. In fact, retraining or
fine-tuning needs cardinality labels as ground truth and obtaining
the labels through DBMS is also expensive. Therefore, we propose
CEDA, a novel domain-adaptive CE system. CEDA can achieve
more accurate estimations by automatically generating workloads
as training data according to the data distribution in the database,
and incorporating histogram information into an attention-based
cardinality estimator. To solve the problem of workload drifts in real-
world environments, CEDA adopts a domain adaptation strategy,
making the model more robust and perform well on an unlabeled
workload with a large difference from the feature distribution of
the training set.

PVLDB Reference Format:
Zilong Wang, Qixiong Zeng, Ning Wang, Haowen Lu, and Yue Zhang.
CEDA: Learned Cardinality Estimation with Domain Adaptation. PVLDB,
16(12): 3934 - 3937, 2023.
doi:10.14778/3611540.3611589

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Donny-350/CEDA.

1 INTRODUCTION
The query optimizer is an important component of a DBMS that
aims to improve query execution efficiency based on cardinality
estimation [4]. The errors of cardinality estimation (CE) can have a
significant impact on query performance. Traditional DBMSs like
PostgreSQL use histograms for CE while making the assumption
of independence across columns. Especially when estimating the
cardinality of multi-table join queries, the q-error can be more
significant. With the application of machine learning in the DB

∗ The first two authors contribute equally to this paper.
Ning Wang is the corresponding auther.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611589

community, researchers have begun to explore how to use machine
learning to solve the problems of CE errors.

Existing deep learning-based CE methods can be classified as
data-driven and query-driven. Generally speaking, query-driven
models are more efficient than data-driven models in terms of in-
ference time [6]. Data-driven model Naru [9] treats CE as a density
estimation problem and learns the joint data distribution of each
data point. However, it suffers from long training and inferencing
time, as well as high resource consumption when processing com-
plex queries. Query-driven models LW-NN/XGB [2] and MSCN [3]
can compete with traditional DBMSs in terms of inference time. Es-
pecially, MSCN is effective for cardinality estimation of multi-table
join while LW-NN/XGB can only process the query with single
table. However, all the query-driven models suffer from workload
drifts, i.e., they tend to perform poorly when the feature distribution
of the actual workload significantly differs from that of the training
workload. To improve their generalization ability, these models
need to be fine-tuned or retrained, which will consume significant
computing resources and time. Furthermore, the training work-
load is critical for query-driven models. For accurate estimation, a
large training dataset covering as many query regions as possible
is helpful. In practical DBMS, the overhead of query optimization
should be small, so improving the generalization ability of the CE
model to obtain accurate CE results on unlabeled workload is a key
challenge.

To address the aforementioned challenges, we propose to tackle
the problem from two aspects. 1) Workload generation, for generat-
ing queries, which can cover nearly all possible query regions in the
database. It is able to solve the cold-start problemwhile enabling the
trained model to have good adaptability. Existing workload genera-
tion methods, such as random generation [5] and template-based
generation [1], have not taken the data distribution of database
into account, so it is difficult to cover all possible query regions.
In addition, for different databases will have different workloads
depending on user needs, it is important to customize workload for
specific user demands. 2) Domain adaptation, a transfer learning
technique, which can improve the generalization performance of
the model when the training set and the real workload come from
different distributions. Although Domain adaptation has achieved
great success in entity resolution [7], we are the first to explore
domain adaptation in CE for addressing workload drifts.

In this paper, we propose a query-driven CE approach based
on database metadata and domain adaptation. We also developed
an operational system, CEDA, and integrated the entire lifecycle
of our CE approach into an end-to-end system. Specifically, it in-
cludes generating workload to solve the cold start problem, training

3934

https://doi.org/10.14778/3611540.3611589
https://github.com/Donny-350/CEDA
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611589
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: The Architecture of CEDA.

lightweight CE model, and domain adaptation for workload drifts.
CEDA has the following new features:

(1) CEDA has a customizable workload generation module
for overcoming the cold-start problem and enhancing the
adaptability of the model for complex scenarios.

(2) CEDA is equipped with an attention-based cardinality esti-
mator, which can produce accurate estimation results by
incorporating histogram information in the database.

(3) CEDA adopts the domain adaptation strategy, making the
model more robust and perform well on a real workload
with a large difference from the feature distribution of the
training set.

2 SYSTEM OVERVIEW
Our cardinality estimation system CEDA is composed of two main
components: web service and server, as shown in Figure 1.

Web Service. To assist users in performing CE for SQL queries,
we provide four main functions in the web interface: 1) Connecting
to the database; 2) Generating customizable workload according to
the data feature distribution in the database; 3) Performing accurate
cardinality estimation and providing visualized results; 4) Using
domain adaptation techniques to process workload drifts.

Server. An end-to-end cardinality estimation pipeline is sup-
ported by three modules:

(1) Data Preparationmodule is utilized to overcome the cold-start
problem for the query-driven CE model. In general, the CE model
can use historical database workload as the initial training corpus.
To accommodate complex and changeable database business scenar-
ios, the workload generator of CEDA can be customized to generate
workload based on user specifications. Specifically, it can generate
a large number of queries according to the data features obtained
from the metadata (e.g., tablename, attname, histogram_bounds,
most_common_vals, etc.) to form the final corpus for CE model
training.

(2) Attention-based Cardinality Estimator module is designed
to provide accurate cardinality estimation. We use materialized
samples and histograms to mitigate the impact of data skewness

on training and improve the generalization of our model. The in-
troduction of the attention mechanism enables a more accurate
representation of the predicate vector. For reducing time costs, the
cardinality estimator module can be trained offline.

(3) DAmodule is aimed at addressing the issue of workload drifts.
The performance of the CE model is often compromised when there
is a significant difference in the feature distributions between the
source and target workload. To address this problem, we adopt a
domain adaptation strategy, introducing a domain classifier and
employing the Gradient Reversal Layer (GRL) to enable adversarial
training between the feature extractor and domain classifier, which
helps to align the feature distributions of the source and target
workload.

3 DEMONSTRATION OVERVIEW
In this section, we will demonstrate how to easily use the CEDA
system for an end-to-end cardinality estimation. Figure 2 displays
a screenshot of the CEDA front-end system. Users can navigate
to the corresponding functional page by clicking on the left-hand
navigation bar.

Step 1 (Database Connection.) Users need to input the corre-
sponding database connection information on the "Database Detail"
page (see Fig.2-1) and click the "Connect" button, and then the de-
tailed information of the database will be displayed on the page.

Step 2 (Workload Generation.) When there is no enough
historical workload available for training, CEDA can generate a
comprehensive workload according to user needs on the "Workload
Generator" page (see Fig. 2-2). To avoid an explosion in the number
of predicate and join combinations during SQL generation, users
can select the number of SQL statements, the maximum number
of joins, and the maximum number of predicates in the "Basic
Settings" section of the page. Customized services are also provided
for different user requirements under different business scenarios
by selecting Table Name and Column Name in the "More Settings"
section. If the user does not specify anything, the workload will
be generated based on metadata in database. After clicking the
"Generate" button, the workload will be generated and shown in

3935

Figure 2: A Screenshot of CEDA.

"The Generated Workload" list, while the generating progress is
displayed in the upper-right corner of the page. Users can also click
the "Export" button to export the workload generated.

Step 3 (Model Training & Cardinality Estimation.) Users
can import training data by clicking the "Load Train Data" button
on the "Cardinality Estimation" page (see Fig.2-3). In addition to
importing the workload generated in Step 2, users can also import
their own workload. After setting epoch, batch size, learning rate,
and hidden units, users can control whether to add the materialized
samples and histogram information for model training by selecting
the "samples" and "histogram" checkboxes. After clicking the "Run"
button, the training logs and progress will be displayed in real-
time on the "Training Logs" and "Training Progress" sections. Once
the training is completed, users can view the visualized results of
cardinality estimation for single or batch SQL statements. Users
can input an SQL statement in the text box and click the "Execute"
button to view the true value and estimated cardinalities by various
methods in the "Result" section, as well as the estimation time by
each method. In addition, users can import SQL files and view the
q-error line chart or q-error box plot by selecting the corresponding
options.

Step 4 (Domain Adaptation.) Users can perform domain adap-
tation on two workloads with significant differences in feature
distributions on the "Domain Adaptation" page (see Fig.2-4). First,
users import the source and target workload at the "Source Domain"
and "Target Domain" respectively. To show the changes in feature
distributions before and after alignment, t-SNE [8] is used to map

the features of the source and target domain to a two-dimensional
space and is displayed in the "Comparison" section. By clicking
the "Run" button, users can observe the difference between feature
distributions of the source and target domain before domain adap-
tation. Due to workload drifts, the q-error of cardinality estimation
may increase significantly when the model trained on the source
domain is directly applied to the target domain. The feature dis-
tributions will be aligned by clicking the "Workload DA" button
and displayed in the "After DA" section. Meanwhile, users can see
a noticeable decrease in overall q-error after performing workload
domain adaptation.

4 CORE TECHNIQUES
In this section, we will introduce the key techniques of DA for
attention-based cardinality estimator. As shown in Figure 3, it con-
sists of three key components: Feature Extractor, Cardinality Pre-
dictor and Domain Classifier.

Feature Extractor(F). Feature Extractor is used to extract fea-
tures and learn representations for SQL queries, which consists of
MLP and attention mechanism. Firstly, we divide the SQL query
into three parts: table names, join relations, and predicates. Then,
the table names and join relations are encoded independently using
a two-layer MLP with ReLU as the activation function to get their
feature representations, respectively. To mitigate the impact of data
skewness on training, histogram information is introduced, and the
histogram vector is obtained by matching the relevant columns of
the predicate with the boundary value set of their corresponding

3936

Figure 3: The Structure of DA for Attention-based Cardinality
Estimator.

histograms. In order to improve estimation accuracy for predicates
never seen before, we obtain the vector representation of the predi-
cate by concatenating the vector of triple <column, op, value> and
the vector of histogram to help the model better understand the
data distribution. Furthermore, to better capture the correlation
among predicates, we employ an attention mechanism layer that
takes the predicate vectors as input, and computes the similarity
between each predicate pair. The similarities are then converted
into weight coefficients, which are used to compute the weighted
sum of all predicates through a fully connected layer for a compre-
hensive and accurate representation of the Where clause. Finally,
after concatenating the table vector, join vector and predicates vec-
tor obtained, we feed them into another fully connected layer to
get the accurate vector representation X of the SQL statement.

Cardinality Predictor(CP). CP is a regression predictor com-
posed of two fully connected layers, with the final layer utilizing
a Sigmoid activation function. It takes the SQL feature vector X
obtained from F as input and predicts a scalar value between 0
and 1, which is then denormalized to obtain the cardinality value.
The q-error comparison results in Table 1 demonstrate that our
model is effective in giving more accurate cardinality estimation
compared with existing methods. In these comparison methods,
LW-NN cannot handle the cardinality estimation of multiple tables.

Domain Classifier(DC). DC is a domain discriminator consist-
ing of two fully connected layers, with the ReLU and LogSoftmax
activation functions used in the middle and output layer, respec-
tively. It takes the SQL feature vector X extracted from F as input
and determines whether X belongs to the source or target domain.
The output of DC can be used to compute the adaptation loss and
adjust the parameters of F for domain adaptation purposes.

Adversarial-based Training. Our model employs adversarial
training for domain adaptation, in which only the labeled data from
the source domain is used to train F and CP , without involving any
labeled data from the target domain. During the training process,
we use the q-error loss function 𝐿𝐶𝑃 to optimize F and CP . Here,
we denote the target value as 𝑦 and the predicted value as �̂�.

𝐿𝐶𝑃 =
1
𝑁𝑠

𝑁𝑠∑︂
𝑖=1

𝑚𝑎𝑥 (𝑦𝑖 , 𝑦�̂�)
𝑚𝑖𝑛(𝑦𝑖 , 𝑦�̂�)

(1)

Simultaneously, F and DC are trained using mixed data from the
source and target domain to enable F to learn domain-invariant

Table 1: Estimation errors on two Real-World datasets.

Dataset Estimator 25th median 90th 95th 99th max mean
PostgreSQL 2.38 6.79 162.80 825.94 2983.92 3534.75 162.15
LW-NN - - - - - - -
MSCN 1.74 3.28 34.62 174.77 670.14 673.46 35.56IMDB

Ours 1.43 3.09 20.00 57.48 339.82 469.28 18.94
PostgreSQL 1.10 1.35 11.00 29.97 299.02 7719.00 22.16
LW-NN 1.24 1.78 5.12 9.39 34.21 186.83 3.52
MSCN 1.10 1.5 4.58 6.62 20.01 187.00 3.01Forest

Ours 1.09 1.34 3.37 5.05 14.30 214.0 2.36

Table 2: Comparison of q-error before and after Domain
Adaptation.

25th median 90th 95th 99th max mean

NoDA 2.47 8.36 117.48 334.26 1406.90 3200.11 93.00
DA 1.78 4.87 30.18 68.60 203.67 314.63 17.61

feature representations. In this process, we use a GRL to confuse
domain labels as much as possible, making it difficult for DC to
differentiate between the source and target domain. The adaptive
loss function 𝐿𝐷 is used to optimize F and DC, resulting in a good
performance in the target domain. The quantities 𝑁𝑠 and 𝑁𝑡 denote
the number of samples in the source domain and target domain,
respectively.

𝐿𝐷 = − 1
𝑁𝑠

𝑁𝑠∑︂
𝑖=1

𝑙𝑜𝑔(𝐷𝐶 (𝐹 (𝑋 𝑖
𝑠))) −

1
𝑁𝑡

𝑁𝑡∑︂
𝑗=1

𝑙𝑜𝑔(1−𝐷𝐶 (𝐹 (𝑋 𝑗
𝑡))) (2)

The loss function for the overall model in the adversarial training
is expressed as:

𝐿 = 𝐿𝐶𝑃 − 𝐿𝐷 (3)
We conducted experiments on two workloads with significantly
different feature distributions and compared the q-error before and
after domain adaptation in Table 2. We can see that DA can reduce
q-error and improve the accuracy of cardinality estimation results
on the target domain significantly.

REFERENCES
[1] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas. 2006. Generating queries

with cardinality constraints for dbms testing. IEEE Transactions on Knowledge and
Data Engineering 18, 12 (2006), 1721–1725.

[2] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using
lightweight models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044–1057.

[3] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Al-
fons Kemper. 2018. Learned cardinalities: Estimating correlated joins with deep
learning. arXiv preprint arXiv:1809.00677 (2018).

[4] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the VLDB Endowment 9, 3 (2015), 204–215.

[5] Donald R Slutz. 1998. Massive stochastic testing of SQL. In VLDB, Vol. 98. Citeseer,
618–622.

[6] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned
cardinality estimation: A design space exploration and a comparative evaluation.
Proceedings of the VLDB Endowment 15, 1 (2021), 85–97.

[7] Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Chengliang Chai, Guoliang Li, Ruixue
Fan, and Xiaoyong Du. 2022. Domain adaptation for deep entity resolution. In
Proceedings of the 2022 International Conference on Management of Data. 443–457.

[8] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[9] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
unsupervised cardinality estimation. arXiv preprint arXiv:1905.04278 (2019).

3937

	Abstract
	1 Introduction
	2 SYSTEM OVERVIEW
	3 DEMONSTRATION OVERVIEW
	4 CORE TECHNIQUES
	References

