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ABSTRACT
In this paper, we revisit the problem of route travel time estima-
tion on a road network and aim to boost its accuracy by captur-
ing and utilizing spatio-temporal features from four significant as-
pects: heterogeneity, proximity, periodicity and dynamicity.

Spatial-wise, we consider two forms of heterogeneity at link
level in a road network: the turning ways between different links
are heterogeneous which can make the travel time of the same
link various; different links contain heterogeneous attributes and
thereby lead to different travel time. In addition, we take into ac-
count the proximity: neighboring links have similar traffic patterns
and lead to similar travel speeds. To this end, we build a link-connection
graph to capture such heterogeneity and proximity.

Temporal-wise, the weekly/daily periodicity of temporal back-
ground information (e.g., rush hours) and dynamic traffic condi-
tions have significant impact on the travel time, which result in
static and dynamic spatio-temporal features respectively. To cap-
ture such impacts, we regard the travel time/speed as a combina-
tion of static and dynamic parts, and extract many spatio-temporal
relevant features for the prediction task.

Talking about the methodology, it remains an open problem to
build a generic learning model to boost the estimation accuracy.
Hence, we design a novel encoder-decoder framework – The en-
coder uses the sequence attention model to encode dynamic fea-
tures from the temporal-wise perspective. The decoder first uses
the heterogeneous graph attention model to decode the static part
of travel speed based on static spatio-temporal features, and then
leverages the sequence attention model to decode the estimated
travel time from spatial-wise perspective. Extensive experiments
on real datasets verify the superiority of our method as well as the
importance of the four aspects outlined above.
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Figure 1: Some Aspects Related to Travel Time Estimation

1 INTRODUCTION
Estimating the travel time for a given route on a road network,
as one of the most fundamental and frequently invoked operators
in intelligent transport systems, has drawn tremendous attentions.
When revisiting this problem, we find some critical yet missing
aspects that contribute to its accuracy boost.
1. Spatial heterogeneity: It behaves in at least two aspects. First,
the turning ways between different links in a road network are het-
erogeneous, which makes the travel time of the same link various
(in this paper, we put the turning/waiting time between two links
into the travel time of the former link). Taking the routes 𝑅1 and 𝑅2
in Fig. 1(b) as an example, 𝑅1 keeps going straight while 𝑅2 turns
left after passing the link 𝑙3, so the travel time of 𝑙3 is absolutely dif-
ferent for these two routes. Second, different links contain hetero-
geneous attributes (e.g., different links’ speed limits are different),
and hence intrinsically correspond to different travel time.
2. Spatial proximity and temporal periodicity: First, neigh-
boring links are under topological constraints of a road network,
which indicates the influence of spatial proximity. For example, the
top subfigure in Fig. 1(d) shows the travel time of four adjacent
links (𝑙10, 𝑙12, 𝑙13, 𝑙3) and we can find that they have similar patterns.
Second, as shown in the bottom subfigure in Fig. 1(d), the travel
time of each link exhibits periodic oscillation characteristics for a
week, which results from the periodicity of temporal background
(e.g., rush hours). In summary, the travel time should include a
static part that is deduced based on the spatial proximity in a road
network and the temporal periodicity.
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3. Dynamic traffic conditions:They refer to the traffic status of a
road network, where average travel speed is a natural indicator. As
shown in Fig. 1(c), the traffic conditions on the road network vary
over time, which reflects the influence from the so called dynamic
context. Hence, it is important to capture the changing tendency
of traffic condition via encoding the sequence of traffic conditions
at past time slots.

Unfortunately, existing studies have not thoroughly captured
or utilized most of the above aspects. For example, statistics-based
approaches [3, 31, 32] directly estimate the travel time of a given
route based on existing historical trajectories, while the influence
of dynamic traffic conditions are totally ignored. In addition, these
methods are not effective when historical trajectories are sparse: if
there are only few trajectories passing a link, the link’s travel time
cannot be estimated accurately. To alleviate this issue, learning-
based methods [16, 18, 30, 33, 41] have been proposed. They apply
sequence or graph encoding models to capture the ‘context’ of a
route or links in a road network. However, they ignore the spatial
heterogeneity when encoding relevant features. Worse still, they
cannot distinguish the influence of static (e.g. static proximity and
periodicity) and dynamic features (e.g. dynamic traffic conditions),
limiting their extension to fully exploit these features.

Actually, it remains an open problem to design a generic learn-
ing framework to incorporate all the above critical aspects, for
three reasons. First, the spatial heterogeneity and proximity play
opposite roles in the estimation task, which makes it difficult to
learn different links’ representations. Second, there are both con-
nections and differences between the influences of static and dy-
namic features on the travel time, so it is non-trivial to distinguish
them. Third, it remains a key challenge to design effective models
to capture complex spatio-temporal correlations.

We aim to design an end-to-end model to solve this problem.
First, we construct a heterogeneous graph, namely link-connection
graph (LCG), to describe the correlation among links in a road net-
work. To capture the spatial heterogeneity and proximity, we lever-
age a heterogeneous graph attention model, which can take all spa-
tial contexts into account, on LCG to learn each link’s representa-
tion. Second, we propose the concept of travel speed histogram
to represent the distribution of travel speed/time, based on which
each travel time/speed value can be divided into static and dy-
namic parts. Accordingly, we divide relevant spatio-temporal fea-
tures into two parts, namely sample-wise-general and sample-wise-
special features, based on which we can distinguish different influ-
ences to the travel time. Last, we design an encoder-decoder frame-
work to fuse static and dynamic parts of the model in both spatial
and temporal domains. In particular, we implement an encoder-
decoder framework based on the attention mechanism [29], which
can capture different spatio-temporal correlations. The encoder,
namely Temporal Encoder, uses the sequence self-attention mecha-
nism to encode dynamic temporal-wise features (e.g., traffic condi-
tions related to the route and temporal background information) to
get dynamic representations. In contrast, the decoder, namely Spa-
tial Decoder, first generates static representations (i.e., static travel
speed histograms) from static spatio-temporal features (e.g., link
and time slot representations) and then fuses static and dynamic
representationswith an encode-decode attention in the spatial-wise
perspective, based on which we can decode the estimated time.
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Neighboring Graph

In summary, we make the following technical contributions:
• We report four critical yet unexplored aspects towards accu-

rate route travel time estimation, i.e. spatial heterogeneity, spa-
tial proximity, temporal periodicity and dynamic traffic condi-
tions, and conduct a comprehensive profiling of relevant fea-
tures. (Sec. 2)
• We design a comprehensive neural network model, STHR, that

can fully exploit different spatio-temporal features to achieve
an accurate route travel time estimation. (Sec. 3)
• We leverage the self-attention mechanism to encode dynamic

traffic conditions and temporal background information at each
past time slot, by which we generate the dynamic part of travel
time. (Sec. 4)
• We leverage the heterogeneous graph attention to learn each

link’s representation in a road network and generate the static
part of travel time. In addition, we leverage an attention model
to fuse static and dynamic parts, and decode the effective spatio-
temporal representation. (Sec. 5 and Sec. 6)
• Weconduct a comprehensive evaluation on two real-world datasets

and find our method significantly outperforms state of the art
in terms of accuracy and robustness. (Sec. 7)

2 PRELIMINARIES
We first introduce some key concepts and features useful in profil-
ing the critical aspects towards an accurate estimation (outlined in
Section 1). Then we formalize the travel time estimation problem
and outline what a fine-grained estimation pipeline looks.

2.1 Basic Concepts
As shown in the left side of Fig. 2, a road network is modeled as
a directed graph ⟨𝑉 , 𝐿⟩, where 𝑉 is a vertex set and 𝐿 is a link set.
Each link 𝑙𝑖 ∈ 𝐿 represents a road segment linking two vertices.
Accordingly, a route is represented as a sequence of links on a road
network, which is denoted as 𝑅 = ⟨𝑙1, 𝑙2, · · · , 𝑙𝑚⟩.
Link-Connection Graph (LCG) & Route-Neighboring Graph
(RNG). As shown in the right side of Fig. 2, an LCG is built on the
road network and is also modeled as a directed graph 𝐺 = ⟨𝐿, 𝐸⟩.
𝐿 is the link set and 𝐸 is the edge set; an edge 𝑒 = ⟨𝑙𝑖 , 𝑙 𝑗 ⟩ in-
dicates people can directly drive from a link 𝑙𝑖 to a link 𝑙 𝑗 . No-
tably, there are at most four ways (i.e., left turn, right turn, u-turn
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and go straight) to turn from one link to another. Hence, the re-
lationship between different links in 𝐺 is heterogeneous. Given a
route 𝑅, we call its passed links as route links; we call the links
adjacent to those route links as route-neighboring links. The route-
neighboring graph (RNG) is built on these two kinds of links, de-
noted as 𝐺 (𝑅) = ⟨𝐿(𝑅), 𝐸 (𝑅)⟩, where 𝐿(𝑅) ⊆ 𝐿 and 𝐸 (𝑅) ⊆ 𝐸.
Hence, RNG is a subgraph of LCG.
Travel Time & Travel Speed (Histogram). Given a link 𝑙 , sup-
pose its travel time is 𝑡𝑙 , then its corresponding travel speed can be
computed as 𝑣 = |𝑙 |𝑡𝑙 , where |𝑙 | denotes the length of 𝑙 .The reason of
using travel speed is that each link’s speed corresponds to a range
while it is difficult to determine the range of travel time. Consid-
ering the speed range(e.g., 0 ∼ 60𝑘𝑚/ℎ), we split it into 𝑘 disjoint
parts (denoted as 𝑝1, · · · , 𝑝𝑘 ) to approximate the speed distribution
ℎ𝑖𝑠𝑡 = [𝛼1, · · · , 𝛼𝑘 ], where 0 ≤ 𝛼𝑖 ≤ 1 and

∑𝑘
𝑖=1 𝛼𝑖 = 1. For exam-

ple, given five speed values (i.e., 5, 2, 12, 15, 20) and the two parts
𝑝1 = [0, 10) and 𝑝2 = [10, 20], the corresponding histogram would
be ℎ𝑖𝑠𝑡 = [ 25 ,

3
5 ]. In addition, each speed value 𝑣 can be computed

with a speed histogram ℎ𝑖𝑠𝑡 = [𝛼1, · · · , 𝛼𝑘 ] and a bias sequence
Δ = [𝛿1, · · · , 𝛿𝑘 ](0 ≤ 𝛿𝑖 ≤ 1) as follows:

𝑣 =
𝑘∑
𝑖=1

𝛼𝑖 (𝑝⊳𝑖 + 𝛿𝑖𝑑𝑖 ) (1)

where 𝑝⊳𝑖 and 𝑝⊲𝑖 denote the left and right value of 𝑝𝑖 respectively,
and 𝑑𝑖 = 𝑝⊲𝑖 − 𝑝

⊳
𝑖 is the range of 𝑝𝑖 .

Request & Its Travel Time Estimation (TTE). Similar to the
definitions in [10], a request, 𝑟𝑒𝑞 = (𝑅, 𝑠), indicates a route 𝑅 that
departs at time 𝑠 . TTE is to estimate the travel time of 𝑅 departing
at time 𝑠 for a given request 𝑟𝑒𝑞 = (𝑅, 𝑠).

2.2 Key Features
Historical traffic conditions (Spatio-temporal features): We
use the minimum, the maximum, the median and the mean travel
speed (respectively denoted as 𝑣, 𝑣, 𝑣, 𝑣) of links at past time slots
to represent historical traffic conditions, where a time slot is set
as Δ𝑡 , whose default value is 5 minutes in this work. Moreover,
the number of past time slots is set as 𝑝 , whose default value is
12. For each route 𝑅, we consider its local traffic conditions, which
correspond to the links in the RNG (𝐺 (𝑅) = ⟨𝐿(𝑅), 𝐸 (𝑅)⟩), and the
features are hence denoted as 𝐶 = {(𝑣 𝑗

𝑙
, 𝑣
𝑗
𝑙
, 𝑣
𝑗
𝑙
, 𝑣
𝑗
𝑙
)} 𝑗 ∈[𝑠−𝑝 :𝑠−1]
𝑙 ∈𝐿 (𝑅) .

Road network (Spatial-only features): We consider the graph
structure of the road network by employing our link-connection
graph LCG that incorporates heterogeneous relationships (𝐺 =
⟨𝐿, 𝐸⟩). Also, we consider the properties 𝑓𝑙 (e.g., the length, the
width, the number of lanes, the type and the speed limit) for each
link 𝑙 in 𝐿, which is denoted as 𝐹 = {𝑓𝑙 }𝑙 ∈𝐿 . In addition, for links in
the RNG of a route 𝑅, we denote the features as 𝐹 (𝑅) = {𝑓𝑙 }𝑙 ∈𝐿 (𝑅) .
Temporal background (Temporal-only features): The tempo-
ral background information (such as rush hours, weekdays, and
other time-related information) is extracted as features. In partic-
ular, we denote such information at a time slot 𝑗 as 𝑥 𝑗 . Notably,
there exist 𝑝 + 1 time slots (i.e., 𝑝 past time slots and the time slot
𝑠 falls in) in each sample. Hence, the temporal background infor-
mation can be denoted as a sequence 𝑋 = {𝑥 𝑗 } 𝑗 ∈[𝑠−𝑝 :𝑠 ] . Last, to
capture the temporal periodicity, we consider all time slots of a
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Figure 3: A Fine-grained Pipeline of Travel Time Estimation

week and then project 𝑠 into one of these time slots [39, 40], where
we use 𝑇 = {𝑇 𝑗 } 𝑗 ∈[1, |𝑇 | ] and 𝑇 𝑠 to denote all time slots and the
projected time slot of 𝑠 , respectively.
Summary.The key features for a request include the spatio-temporal
features (𝐶 = {(𝑣 𝑗

𝑙
, 𝑣
𝑗
𝑙
, 𝑣
𝑗
𝑙
, 𝑣
𝑗
𝑙
)} 𝑗 ∈[𝑠−𝑝 :𝑠−1]
𝑙 ∈𝐿 (𝑅) ), the spatial-only features

(𝐹 = {𝑓𝑙 }𝑙 ∈𝐿 , 𝐺 = ⟨𝐿, 𝐸⟩, 𝐹 (𝑅) = {𝑓𝑙 }𝑙 ∈𝐿 (𝑅) , 𝐺 (𝑅) = ⟨𝐿(𝑅), 𝐸 (𝑅)⟩),
and the temporal-only features (𝑋 = {𝑥 𝑗 } 𝑗 ∈[𝑠−𝑝 :𝑠 ] , 𝑇 , 𝑇 𝑠 ). Intu-
itively, they can be further categorized into two parts: sample-wise-
general and sample-wise-special. (1) Since 𝐹,𝐺 and 𝑇 are indepen-
dent of samples, they are called sample-wise-general. (2) Other fea-
tures that rely on samples are thereby called sample-wise-special.

2.3 A Pipeline of Route Travel Time Estimation
ProblemDefinition. Given a request sample 𝑟𝑒𝑞 = ⟨𝑅, 𝑠⟩, assum-
ingwe can get the general features (𝐹,𝐺,𝑇 ) and the special features
(𝐶, 𝐹 (𝑅),𝐺 (𝑅), 𝑋,𝑇 𝑠 ); the TTE problem is to estimate the travel
time 𝑦 of the route 𝑅 based on these features by designing and
learning a modelM, where 𝑦 =M(𝐶, 𝐹 (𝑅),𝐺 (𝑅), 𝑋,𝑇 𝑠 ; 𝐹,𝐺,𝑇 ).

For designing the model, we propose the following pipeline of
generating the travel time from a request:

𝑟𝑒𝑞
1⃝−→ 𝐶, 𝐹 (𝑅),𝐺 (𝑅), 𝑋,𝑇 𝑠 , 𝐹 ,𝐺,𝑇

2⃝−→ ℎ𝑖𝑠𝑡𝑠𝑙1 · · ·ℎ𝑖𝑠𝑡
𝑠
𝑙𝑚
,Δ𝑠

𝑙1
· · ·Δ𝑠

𝑙𝑚

3⃝−→ 𝑡𝑙1 · · · 𝑡𝑙𝑚
4⃝−→ 𝑡𝑅 =

𝑚∑
𝑖=1

𝑡𝑙𝑖 . (2)

wherewe first estimate each passing link’s speed histogram (ℎ𝑖𝑠𝑡𝑠
𝑙𝑖
)

and bias sequence (Δ𝑠
𝑙𝑖
), and then deduce its travel time (𝑡𝑙𝑖 ) based

on Formula (1). Specifically, we further split each speed histogram
ℎ𝑖𝑠𝑡𝑠

𝑙𝑖
into two parts: the static-histogram ( ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 ) and the dynamic-

matrix (𝑷𝑠
𝑙𝑖
), where ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 ∈ R

𝑘 is independent of samples and 𝑷𝑠
𝑙𝑖
∈

R𝑘×𝑘 depends on each sample. Hence, we can compute ℎ𝑖𝑠𝑡𝑠
𝑙𝑖

as
follows:

ℎ𝑖𝑠𝑡𝑠𝑙𝑖 =
¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 × 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑷

𝑠
𝑙𝑖
), (3)

where × represents the matrix multiplication operator and the
use of 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) helps keep ℎ𝑖𝑠𝑡𝑠

𝑙𝑖
under the constraint of

∑
𝛼 =

1. Therefore, the four steps in Formula (2) can be refined as the
pipeline in Fig. 3. Firstly, the sample-wise-general features corre-
spond to the global information, which keeps static for different
samples, so we use them to generate the global static-histogram

{ ¯
ℎ𝑖𝑠𝑡

𝑗
𝑙
} 𝑗 ∈[1, |𝑇 | ]
𝑙 ∈𝐿 through the process “Static Generate”. Secondly,

for a given request with a special route 𝑅 and a corresponding
departure time slot 𝑇 𝑠 , we would fetch the local static-histogram
{ ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖

}𝑙𝑖 ∈𝑅 from the global static-histogram. Thirdly, we leverage
the sample-wise-special features and the local static-histogram to
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Figure 4: The Architecture and Pipeline of STHR

generate the dynamic-matrix {𝑷𝑠
𝑙𝑖
}𝑙𝑖 ∈𝑅 and bias sequence {Δ𝑠

𝑙𝑖
}𝑙𝑖 ∈𝑅

through the process “Dynamic Generate”. Finally, we use the lo-
cal static-histogram, dynamic-matrix and bias sequence to infer the
travel time through the process “Travel Time Generate”.

3 MODEL OVERVIEW
In this section, we follow the proposed pipeline in Sec. 2.3 to de-
scribe the architecture of our system STHR, as well as how it in-
corporates the desired properties outlined in Section 1. As shown
in Fig. 4, STHR is essentially a sequence encoder-decoder frame-
work. In the sequence encoding part, we regard all spatio-temporal
features as a temporal sequence whose length is the number of
historical time slots, so we denote the encoding part as Temporal
Encoder. As for the sequence decoding part, our goal is to gener-
ate the travel speed/time for each link in a given route. Hence, we
regard the route as a sequence of links whose length is the num-
ber of links in the route, so we denote the decoding part as Spatial
Decoder. Next, we will introduce them step by step.
1. Preparing data:Asmentioned in Sec. 2.2, we extract related fea-
tures for a given request 𝑟𝑒𝑞 = ⟨𝑅, 𝑠⟩. First, the sample-wise-general
features (𝐹,𝐺,𝑇 ) are extracted from road network and link proper-
ties. Second, the sample-wise-special features (𝐶, 𝐹 (𝑅),𝐺 (𝑅), 𝑋,𝑇 𝑠 )
are generated based on the given request. In particular, 𝐶 is ex-
tracted from historical trajectories, while 𝑋 is extracted from tem-
poral background information.
2. Encoding historical traffic conditions (𝐶) and temporal in-
formation (𝑋 ) : Given that the Temporal Encoder is designed to

encode the temporal sequence, whose features mainly include 𝐶
and 𝑋 , we design some modules to encode and fuse them. Specifi-
cally, it consists of three phases:

phase 1: Since historical traffic conditions (𝐶) are deduced based
on RNG, it is necessary to fuse traffic conditions of all links in RNG
at each historical time slot. Consequently, we design the Traffic
Condition Fusion module to convert 𝐶 𝑗 = {(𝑣 𝑗

𝑙
, 𝑣
𝑗
𝑙
, 𝑣
𝑗
𝑙
, 𝑣
𝑗
𝑙
)}𝑙 ∈𝐿 (𝑅)

into the hidden representation ℎ̄ 𝑗𝑐 . Accordingly, we can get the tem-
poral sequence ℎ̄𝐶 = ⟨ℎ̄𝑠−𝑝𝑐 , · · · , ℎ̄𝑠−1𝑐 ⟩ because the historical time
slots are from 𝑠−𝑝 to 𝑠−1. Notably, the related spatial features (i.e.,
𝐹 (𝑅),𝐺 (𝑅)) are taken into account when fusing traffic conditions.

phase 2: To capture the temporal correlation, we apply the self-
attentionmechanism to further encode the representation sequence
ℎ̄𝐶 , where themodule is called Temporal Self-Attention. In this mod-
ule, each representation ℎ̄ 𝑗𝑐 is transformed into another represen-
tation ℎ̂ 𝑗𝑐 , which incorporates the attention between ℎ̄ 𝑗𝑐 and each
element (including ℎ̄ 𝑗𝑐 ) in ℎ̄𝐶 . As a result, we get the new temporal
sequence ℎ̂𝐶 = ⟨ℎ̂𝑠−𝑝𝑐 , · · · , ℎ̂𝑠−1𝑐 ⟩.

phase 3: The above encoding phases only consider historical
time slots’ traffic conditions and their correlations; however, the
traffic conditions at different historical time slots would have dif-
ferent impacts on current time slot. Therefore, we design the Time-
Slot-Attention Fusionmodule to further fuse the temporal sequence
ℎ̂𝐶 with 𝑋 , where we further convert the sequence ℎ̄𝐶 into the se-
quence ℎ𝐶 = ⟨ℎ𝑠−𝑝𝑐 , · · · , ℎ𝑠−1𝑐 ⟩.
3. Generating local static-histograms: This corresponds to “Static
Generate” and “Fetch” in Fig. 3, aiming to generate a static-histogram
for every link of the given route at the given departure time slot.
There are two phases:

phase 1: We design the Global Static-histogram Generator mod-
ule to implement the “Static Generate” process. As a result, it gen-
erates the global static-histogram ( ¯ℎ𝑖𝑠𝑡 = { ¯ℎ𝑖𝑠𝑡 𝑗

𝑙
} 𝑗 ∈[1, |𝑇 | ]
𝑙 ∈𝐿 ). Notably,

¯ℎ𝑖𝑠𝑡 is a set of histograms with the size of |𝐿 | × |𝑇 |, where |𝐿 | and
|𝑇 | respectively represent the number of all links and the number
of all time slots in a week. For example, if we set the size of a time
slot as 10 minutes, the value of |𝑇 | would be 7×24×60

10 = 1008.
phase 2: From ¯ℎ𝑖𝑠𝑡 , we look for the local static-histograms ( ¯ℎ𝑖𝑠𝑡𝑠𝑅 =

⟨ ¯ℎ𝑖𝑠𝑡𝑠𝑙1 , · · · , ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑚 ⟩) via the route 𝑅 = ⟨𝑙1, · · · , 𝑙𝑚⟩ and the depar-
ture time slot 𝑇 𝑠 . Next, we can take the spatial sequence ¯ℎ𝑖𝑠𝑡𝑠𝑅 as
the input of Spatial Decoder.
4. Decoding dynamic-matrices and bias sequences: It essen-
tially corresponds to “Dynamic Generate” in Fig. 3, aiming to gen-
erate 𝑷𝑠

𝑙𝑖
and Δ𝑠

𝑙𝑖
for each link 𝑙𝑖 of the given route via fusing the

spatial sequence ¯ℎ𝑖𝑠𝑡𝑠𝑅 and the temporal encoding sequence ℎ𝐶 .
Specifically, it is implemented in two phases:

phase 1:We design the Spatio-Temporal Attentionmodule to fuse
the spatial sequence and the temporal sequence. In this module,
each spatial input element ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 is converted into a code ℎ𝑠

𝑙𝑖
by us-

ing the attention mechanism to fuse it with all elements in the tem-
poral sequenceℎ𝐶 .Thenwe get the final sequenceℎ𝑠𝑅 = ⟨ℎ𝑠

𝑙1
, · · · , ℎ𝑠

𝑙𝑚
⟩,

which incorporates all spatio-temporal features.
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phase 2:We design theDynamic-Speed Generator module to gen-
erate 𝑷𝑠

𝑙𝑖
and Δ𝑠

𝑙𝑖
based on ℎ𝑠

𝑙𝑖
. Specifically, we leverage a fully con-

nected neural network to implement this module.
5. Inferring the travel time: This corresponds to the “Travel
Time Generate” in Fig. 3, which is to estimate each link’s travel
time 𝑡𝑙1 for a given route 𝑅 = ⟨𝑙1, · · · , 𝑙𝑚⟩. In this module, we first
use Formula (3) to compute the speed histogramℎ𝑖𝑠𝑡𝑠

𝑙𝑖
and then use

Formula (1) to compute the speed value 𝑣𝑙𝑖 . Finally, we compute the
travel time 𝑡𝑙𝑖 with the formula 𝑡𝑙𝑖 =

|𝑙𝑖 |
𝑣𝑙𝑖

, where |𝑙𝑖 | represents the
length of 𝑙𝑖 .
6. Computing the losses: To make our system work, it is neces-
sary to use training data to learn the parameters in our system that
needs to compute losses. On the one hand, we measure the loss for
each link’s travel time, which is denoted as Link-wise Loss. On the
other hand, we measure the loss for the whole trip’s travel time,
which is denoted as Route Loss.

Roadmap. In what follows, we will elaborate the modules in
Temporal Encoder (Sec. 4) and Spatial Decoder (Sec. 5), how to infer
the travel time based on the encoded and decoded results (Sec. 6.1),
and how to train parameters in all these modules (Sec. 6.2).

4 TEMPORAL ENCODER
In this section, we present three key components of Temporal En-
coder : Traffic Condition Fusion; Temporal Self-Attention; Time-Slot-
Attention Fusion (see Fig. 5). First, we explain how to incorporate
the RNG 𝐺 (𝑅) and its link features 𝐹 (𝑅) to encode traffic condi-
tions 𝐶 𝑗 at each historical time slot 𝑗 in Sec. 4.1, where we fuse
all links’ traffic conditions for each time slot to get the fused re-
sults ℎ̄𝐶 = {ℎ̄𝑠−𝑝𝑐 , · · · , ℎ̄𝑠−1𝑐 }. Second, to capture the temporal cor-
relation, we explain how to leverage a self-attention mechanism
to further encode ℎ̄𝐶 into the code ℎ̂𝐶 in Sec. 4.2. Last, we explain
how to further encode ℎ̂𝐶 by fusing the temporal information 𝑋 ,
which incorporates different impacts of historical time slots on the
current time slot. Finally, we get the temporal encoding result ℎ𝐶 .

4.1 Traffic Condition Fusion With RNG
As shown in Fig. 5, the Traffic Condition Fusionmodule is designed
to generate the hidden representation ℎ̄𝐶 = {ℎ̄𝑠−𝑝𝑐 , · · · , ℎ̄𝑠−1𝑐 } from
the given historical traffic conditions𝐶 = {𝐶𝑠−𝑝 , · · · ,𝐶𝑠−1}. Specif-
ically, this procedure contians two steps: encoding traffic condi-
tions for each link inRNG (𝐺 (𝑅)) and fusing links’ representations.
Encoding Traffic Conditions. The goal of this step is to trans-
form each link’s traffic condition vector at each time slot into a
dense vector. To capture the proximity among links in the hetero-
geneous graph𝐺 (𝑅) = ⟨𝐿(𝑅), 𝐸 (𝑅)⟩, we use a graph attention net-
work (GAT) model in which we apply two graph attention layers.
Hence, at each time slot 𝑗 (𝑠 − 𝑞 ≤ 𝑗 ≤ 𝑠 − 1), we generate the cor-
responding representation ℎ̄ 𝑗𝑐 [𝑙𝑖 ] for each link 𝑙𝑖 (1 ≤ 𝑖 ≤ |𝐿(𝑅) |)
as follows:

ℎ 𝑗
𝑔1 [𝑖 ] =𝑾𝑔1 · [𝑣

𝑗
𝑙𝑖
, 𝑣 𝑗

𝑙𝑖
, �̃� 𝑗

𝑙𝑖
, 𝑣 𝑗

𝑙𝑖
] (4)

𝑒
𝐼 (𝑖1,2 )
𝑔1 [𝑖1, 𝑖2 ] =𝑾

𝐼 (𝑖1,2 )
𝑒1 · [𝐹 (𝑙𝑖1 ), 𝐹 (𝑙𝑖2 ) ], ⟨𝑙𝑖1 , 𝑙𝑖2 ⟩ ∈ 𝐸 (𝑅) (5)

𝛼 𝑗
𝑔1 [𝑖1, 𝑖2 ] =

𝑒𝑥𝑝 (𝑒𝐼 (𝑖1,2 )𝑔1 [𝑖1, 𝑖2 ] · [ℎ 𝑗
𝑔1 [𝑖1 ], ℎ

𝑗
𝑔1 [𝑖2 ] ])∑

𝑖3∈N(𝑖2 ) 𝑒𝑥𝑝 (𝑒
𝐼 (𝑖3,2 )
𝑔1 [𝑖3, 𝑖2 ] · [ℎ 𝑗

𝑔1 [𝑖3 ], ℎ
𝑗
𝑔1 [𝑖2 ] ])
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ṽ l1

l2

l3 l4

l5
l6

l7

l8
v̄

v̀
v́
ṽ
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ṽ

l1

l2

l3 l4

l5
l6

l7

l8
v̄

v̀
v́
ṽ
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Figure 5: Elaboration of the Modules in Temporal Encoder

⟨𝑙𝑖1 , 𝑙𝑖2 ⟩ ∈ 𝐸 (𝑅) (6)

ℎ 𝑗
𝑔2 [𝑖 ] =𝑾𝑔2 (ℎ

𝑗
𝑔1 [𝑖 ] +

∑
𝑖1∈N(𝑖 )

𝛼𝑔1 [𝑖1, 𝑖 ]ℎ
𝑗
𝑔1 [𝑖1 ]) (7)

𝑒
𝐼 (𝑖1,2 )
𝑔2 [𝑖1, 𝑖2 ] =𝑾

𝐼 (𝑖1,2 )
𝑒2 · [𝐹 (𝑙𝑖1 ), 𝐹 (𝑙𝑖2 ) ], ⟨𝑙𝑖1 , 𝑙𝑖2 ⟩ ∈ 𝐸 (𝑅) (8)

𝛼 𝑗
𝑔2 [𝑖1, 𝑖2 ] =

𝑒𝑥𝑝 (𝑒𝐼 (𝑖1,2 )𝑔2 [𝑖1, 𝑖2 ] · [ℎ 𝑗
𝑔2 [𝑖1 ], ℎ

𝑗
𝑔2 [𝑖2 ] ])∑

𝑖3∈N(𝑖2 ) 𝑒𝑥𝑝 (𝑒
𝐼 (𝑖3,2 )
𝑔2 [𝑖3, 𝑖2 ] · [ℎ 𝑗

𝑔2 [𝑖3 ], ℎ
𝑗
𝑔2 [𝑖2 ] ])

⟨𝑙𝑖1 , 𝑙𝑖2 ⟩ ∈ 𝐸 (𝑅) (9)

ℎ̄ 𝑗
𝑐 [𝑙𝑖 ] =ℎ 𝑗

𝑔2 [𝑖 ] +
∑

𝑖1∈N(𝑖 )
𝛼 𝑗
𝑔2 [𝑖1, 𝑖 ]ℎ

𝑗
𝑔2 [𝑖1 ] (10)

Here,𝑾𝑔1 ∈ R𝑑𝑔1×4 and𝑾 𝐼 ( ·)
𝑒1 ∈ R2𝑑𝑔1×2 |𝐹 ( ·) | (𝐼 (·) ∈ {1, 2, 3, 4} is

the edge type indicator) are parameters of the first graph attention
layer, 𝑾𝑔2 ∈ R𝑑𝑔2×𝑑𝑔1 and 𝑾 𝐼 ( ·)

𝑒2 ∈ R2𝑑𝑔2×2 |𝐹 | are parameters of
the second graph attention layer, and |𝐹 | denotes the number of
link properties’ dimension. More specifically, Formula (4) and (7)
leverage the parameters𝑾𝑔1 and𝑾𝑔2 to respectively generate the
two attention layers’ inputs; the input of the second layer relies
on the computed attentions in the first layer. Next, Formula (5)
and (8) aim to generate the attention weight for each edge (⟨𝑙𝑖1𝑙𝑖2 ⟩)
in the graph𝐺 (𝑅). Considering the influence of links, we first con-
catenate two corresponding links’ features into a vector and then
multiply it with parameters. Since each edge in 𝐺 (𝑅) belongs to
one type, which is determined by the indicator 𝐼 (·), we just com-
pute one type of weight for each edge. However, there might be no
edge between two nodes (links) in the graph𝐺 (𝑅), so we consider
the constraint ⟨𝑙𝑖1 , 𝑙𝑖2 ⟩ ∈ 𝐸 (𝑅) when computing attention weights.
Formula (6) and (9) correspond to computing the attentions in two
layers, respectively. Here, 𝑖3 ∈ N (𝑖2) indicates that the link 𝑙𝑖3
is adjacent to 𝑙𝑖2 and the edge ⟨𝑙𝑖3 , 𝑙𝑖2 ⟩ is in 𝐸 (𝑅). In addition, we
use an indicator 𝐼 (·) to accurately choose the attention weight. At
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last, we use neighbors’ representations and the computed atten-
tions to get each link’s final representation ℎ̄ 𝑗𝑐 [𝑙𝑖 ] ∈ R𝑑𝑔2 in For-
mula (10). For the sake of simplicity, the formulas (4)-(10) are de-
noted as ℎ̄ 𝑗𝑐 [𝑙𝑖 ] = 𝐺𝐴𝑇 (𝑙𝑖 ,𝐺 (𝑅), 𝐹 (𝑅) |𝑾𝑔1 ,𝑾𝑒1 ,𝑾𝑔2 ,𝑾𝑒2 ).
Link Fusion. At each time slot 𝑗 , after getting the encoding set
ℎ̄
𝑗
𝑐 [𝐺 (𝑅)] = [ℎ̄

𝑗
𝑐 [𝑙1], · · · ] for all links in the graph𝐺 (𝑅), we fuse the

set into a vector ℎ̄ 𝑗𝑐 of fixed-length. One simple way is to use the av-
erage pooling technique but different links play different influence
in the graph𝐺 (𝑅), so we need to measure each link’s influence. In-
tuitively, the influence naturally depends on the link features 𝐹 (𝑅).
Therefore, we first compute the cosine similarity 𝑐𝑜𝑠 (𝑓𝑙𝑖 , 𝑓𝑙𝑖′ ) be-
tween any two links’ features (𝑓𝑙𝑖 , 𝑓𝑙𝑖′ ∈ 𝐹 (𝑅)), and then measure
each link’s influence score by averaging its similarity to other links,
i.e., 𝑠𝑐𝑜𝑟𝑒 (𝑙𝑖 ) = 𝑎𝑣𝑔(∑𝑙𝑖′∈𝐿 (𝑅) 𝑐𝑜𝑠 (𝑓𝑙𝑖 , 𝑓𝑙𝑖′ )). Finally, we leverage a
Softmax function to normalize each link’s influence into a weight
( ¯𝑠𝑐𝑜𝑟𝑒 (𝑙𝑖 ) = 𝑠𝑐𝑜𝑟𝑒 (𝑙𝑖 )∑

𝑠𝑐𝑜𝑟𝑒 (𝑙 ′𝑖 )
) and get the fused fixed-length vector ℎ̄ 𝑗𝑐 by

a weighted sum, i.e., ℎ̄ 𝑗𝑐 =
∑
𝑙𝑖 ∈𝐿 (𝑅) ¯𝑠𝑐𝑜𝑟𝑒 (𝑙𝑖 )ℎ̄ 𝑗𝑐 [𝑙𝑖 ].

4.2 Temporal Self-Attention
To capture correlations among different time slots, we apply the
self-attention mechanism [29] to encode the sequence ℎ̄𝐶 . At first,
each element ℎ̄ 𝑗𝑐 in the sequence corresponds to a positional encod-
ing ℎ 𝑗𝑜 ∈ R𝑑𝑔2 , which is computed as follows:

ℎ 𝑗
𝑜 [2𝑑 ] = 𝑠𝑖𝑛 (

𝑗

1000
2𝑑
𝑑𝑔2

), ℎ 𝑗
𝑜 [2𝑑 + 1] = 𝑐𝑜𝑠 (

𝑗

1000
2𝑑
𝑑𝑔2

) (11)

where ℎ 𝑗𝑜 [2𝑑] and ℎ
𝑗
𝑜 [2𝑑 + 1] correspond to even and odd dimen-

sions ofℎ 𝑗𝑜 , respectively. Next, ℎ̄ 𝑗𝑐 would be updated by a point-wise
plus operator, i.e., ℎ̄ 𝑗𝑐 = ℎ̄

𝑗
𝑐 ⊕ℎ

𝑗
𝑜 . Hence, the updated representation

ℎ̄
𝑗
𝑐 contains the sequential order information. Next, we apply 𝐵 self-

attention blocks to convert the code ℎ̄ 𝑗𝑐 into the code ℎ̂ 𝑗𝑐 for each
time slot 𝑗 . In addition, each block includes the following steps:
1. Self-attention: For each code ℎ̄ 𝑗𝑐 , we first generate three objects
respectively: query(𝑄 𝑗𝑐 = 𝑾𝑞ℎ̄

𝑗
𝑐 ), key(𝐾

𝑗
𝑐 = 𝑾𝑘ℎ̄

𝑗
𝑐 ) and value(𝑉 𝑗𝑐 =

𝑾𝑣ℎ̄
𝑗
𝑐 ), where𝑾𝑞 ,𝑾𝑘 and𝑾𝑣 are learnedmatrix parameters. After-

wards, we compute the score between each query 𝑄 𝑗𝑐 and each key

𝐾
𝑗 ′
𝑐 with the formula 𝑠𝑐𝑜𝑟𝑒 ( 𝑗, 𝑗 ′) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄

𝑗
𝑐𝐾

𝑗′
𝑐√

𝑑𝑔2
). As a result,

each code corresponds to a new representation𝑧 𝑗𝑎 =
∑
𝑗 ′ 𝑠𝑐𝑜𝑟𝑒 ( 𝑗, 𝑗 ′)𝑉

𝑗 ′
𝑐

containing the temporal attentions. To summarize, the code ℎ̄ 𝑗𝑐 at
each time slot 𝑗 would be converted into a new representation 𝑧 𝑗𝑎
with a weighted summation of all codes, where each weight/atten-
tion measures the correlation between any two codes.
2. Add&Normalize: To relieve the gradient vanishing and explo-
sion, we leverage the short-cut structure in ResNet [15] that uses a
point-wise plus operator to update the code. In addition, we apply a
normalization technique to accelerate the training process. Specif-
ically, we leverage the layer-normalization [4] and denote the pro-
cess with the function 𝐿𝑁 (·) for simplicity. In summary, the code
would be updated with the following formula: ℎ̄ 𝑗𝑐 = 𝐿𝑁 (ℎ̄

𝑗
𝑐 ⊕ 𝑧

𝑗
𝑎).

3. Feed Forward: For each updated code, we further encode it
with a fully connected neural network, i.e., 𝑧 𝑗

𝑓
= 𝑅𝑒𝐿𝑈 (𝑾𝑓 ℎ̄

𝑗
𝑐 +

𝑏 𝑓 ), where 𝑾𝑓 and 𝑏 𝑓 are learned parameters and 𝑅𝑒𝐿𝑈 (·) is the
activation function.
4. Add&Normalize: Similar to the second step, we further update
the code as below: ℎ̄ 𝑗𝑐 = 𝐿𝑁 (ℎ̄

𝑗
𝑐 ⊕ 𝑧

𝑗
𝑓
).

For simplicity, we denote the above four steps in the 𝑖-th block
as the function 𝑆𝐴𝐵𝑖 (·), and denote the input and output of the 𝑖-th
block as ℎ𝑠𝑎𝑏𝑖−1 and ℎ𝑠𝑎𝑏𝑖 , respectively. Then we have ℎ𝑠𝑎𝑏0 = ℎ̄𝐶
and ℎ𝑠𝑎𝑏𝐵 = ℎ̂𝐶 . That is, the sequence ℎ̂𝐶 = {ℎ̂𝑠−𝑝𝑐 , · · · , ℎ̂𝑠−1𝑐 } is
generated based on 𝐵 self-attention blocks, which can be formu-
lated as ℎ̂𝐶 = 𝑆𝐴𝐵𝐵 (𝑆𝐴𝐵𝐵−1 (...𝑆𝐴𝐵1 (ℎ̄𝐶 )...)).

4.3 Time-Slot-Attention Fusion
So far, we have encoded the traffic conditions and captured their
spatio-temporal correlation at historical time slots. However, dif-
ferent historical time slots correspond to different impacts on the
departure time slot. An ideal way is to measure traffic conditions’
correlation between the departure time slot and others, but the
traffic conditions at the departure time slot cannot be immediately
counted. To address this issue, we exploit the temporal background
information 𝑋 . It can tell the similarity among different time slots,
such that historical time slots’ impacts on the departure time slot
can be indirectly measured. Therefore, as shown in Fig. 5, we first
compute the cosine similarity between the background informa-
tion 𝑥𝑠 of the departure time slot 𝑠 and the background informa-
tion 𝑥 𝑗 of each historical time slot 𝑗 , which is formulated as 𝑤 𝑗

𝑥 =
𝑐𝑜𝑠 (𝑥𝑠 , 𝑥 𝑗 ). Next, we regard each corresponding similarity as each
historical time slot’s impact, and then leverage the formula ℎ 𝑗𝑐 =
(𝑤 𝑗

𝑥 ℎ̂
𝑗
𝑐 ) ⊕ℎ̂ 𝑗

𝑐
2 to convert each code ℎ̂ 𝑗𝑐 into a fused code ℎ 𝑗𝑐 , where

𝑤
𝑗
𝑥 ∈ [−1, 1] helps distinguish different time slot’s impact on the

departure time slot by rescaling ℎ̂ 𝑗𝑐 . Consequently, when consider-
ing the sequence of historical time slots, we have the fused result
ℎ𝐶 = [ℎ𝑠−𝑝𝑐 , · · · , ℎ𝑠−1𝑐 ].

5 SPATIAL DECODER
In this section we describe how the Spatial Encoder works, which
includes three modules (Fig. 6): Global Static-histogram Generator,
Local Static-histogram Fetcher and Spatio-Temporal Attention. At
first, in Sec. 5.1 we generate the global static-histograms ¯ℎ𝑖𝑠𝑡 based
on the given LCG 𝐺 = ⟨𝐿, 𝐸⟩, the link features 𝐹 and all time
slots 𝑇 . Since the number of ¯ℎ𝑖𝑠𝑡 is |𝐿 | × |𝑇 |, we regard the ¯ℎ𝑖𝑠𝑡
as a tensor with the size |𝐿 | × |𝑇 | × 4. Next, we look up the lo-
cal static-histograms from ¯ℎ𝑖𝑠𝑡 . Here, given a request containing a
route𝑅 = ⟨𝑙1, · · · , 𝑙𝑚⟩ and a departure time 𝑠 falling in the time slot
𝑇 𝑠 , the extracted static-histograms would respectively be ¯ℎ𝑖𝑠𝑡𝑠𝑙1 ,
· · · , ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑚 . To capture the effect of Temporal Encoder, we apply
the spatio-temporal attention model to fuse the temporal encoding
code ℎ𝐶 = [ℎ𝑠−𝑝𝑐 , · · · , ℎ𝑠−1𝑐 ] in Sec. 5.2. As a result, we can get the
fused spatio-temporal representationℎ𝑠

𝑙𝑖
for each link 𝑙𝑖 .When con-

sidering all links in the given route, we have the spatio-temporal
sequence ℎ𝑠𝑅 = [ℎ𝑠

𝑙1
, · · · , ℎ𝑠

𝑙𝑚
].
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Figure 6: Elaboration of the Key Modules in Spatial Decoder

5.1 Generating Static-Histograms
As mentioned in Sec. 2.3, we first leverage the sample-wise-general
features (𝐺, 𝐹,𝑇 ) to generate the global static-histograms, fromwhich
we fetch local static-histograms for each given request.
(1) Generating global static-histograms: Spatially, the “global”
refers to all links in a road network. Hence, we consider encoding
all links’ features 𝐹 , which can be regarded as a matrix of |𝐿 | × |𝑓 |
size. One straightforward way is to design a function to transform
each link’s feature into a hidden representation; however, it can-
not capture the correlation across different links. To address this
issue, we leverage the graph neural network model GAT to en-
code each link’s feature based on our proposed link-connection
graph 𝐺 . Similar to Formula (4)-(10), the GAT model employed
here also contains two attention layers. For simplicity, we denote
the encoded result ℎ′𝐿 [𝑙𝑖 ] of each each link 𝑙𝑖 ∈ 𝐿 as ℎ′𝐿 [𝑙𝑖 ] =

𝐺𝐴𝑇 (𝑙𝑖 ,𝐺, 𝐹 |𝑾𝑔′1 ,𝑾𝑒′1 ,𝑾𝑔′2 ,𝑾𝑒′2 ). where𝑾𝑔′1 ∈ R
𝑑𝑔′1
×|𝐹 ( ·) | ,𝑾 𝐼 ( ·)

𝑒′1
∈

R
2𝑑𝑔′1 , 𝑾𝑔′2 ∈ R

𝑑𝑔′2
×𝑑𝑔′1 and 𝑾 𝐼 ( ·)

𝑒′2
∈ R2𝑑𝑔′2 are learned parameters.

Also, 𝐼 (·) ∈ {1, 2, 3, 4} indicates the type of the edge between two
links.

Temporally, the “global” refers to all time slots in a week. In-
spired by [40], we split each time slot’s embedding into two parts:
“day-in-week” and “time-in-day”, which are denoted asℎ𝑊 andℎ𝐷 ,
respectively. For example, when setting the time slot size as 5min-
utes, the embeddings of the time slot (Tue. 00:00-00:05AM) in “day-
in-week” and “time-in-day” are ℎ𝑊 [2] and ℎ𝐷 [1] because Tue is
the second day in a week and 00:00-0:05AM is the first time slot in
a day. Notably, both ℎ𝑊 ∈ R7×𝑑𝑤 and ℎ𝐷 ∈ R |ℎ𝐷 |×𝑑𝑑 are learned
parameters, where the dimension’s sizes𝑑𝑤 and𝑑𝑑 are set by users.
In addition, the number of ℎ𝐷 is computed as |ℎ𝐷 | = 24×60

Δ𝑡 , where
Δ𝑡 denotes the time slot’s size and is also set by users.

Last, we join the spatial encodings (ℎ̄′𝐿) and the two temporal
embeddings (ℎ𝑊 and ℎ𝐷 ) by a cartesian product, resulting in |𝐿 | ×
7× |ℎ𝐷 | spatio-temporal embeddings, which are denoted as ℎ𝑆𝑇 ∈

R
( |𝐿 |×7×|ℎ𝐷 |)×(𝑑𝑔′2+𝑑𝑑+𝑑𝑤 ) . To get the global static-histograms, we

further leverage the Feed Forward model to decode each spatio-
temporal embedding ℎ𝑆𝑇 [𝑖] into a static-histogram, which is de-
noted as ¯ℎ𝑖𝑠𝑡 [𝑖] = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑾𝑠𝑡ℎ𝑆𝑇 [𝑖] + 𝑏𝑠𝑡 ). In particular,𝑾𝑠𝑡 ∈
R
𝑘×(𝑑𝑔′2+𝑑𝑑+𝑑𝑤 ) and𝑏𝑠𝑡 ∈ R𝑘 are learned parameters and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·)

is the activation function. The reason of using 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) is that
we need to guarantee

∑
𝛼 𝑗 ∈ ¯ℎ𝑖𝑠𝑡 [𝑖 ] 𝛼 𝑗 = 1.

(2) Fetching local static-histograms.Given a route𝑅 = ⟨𝑙1, · · · , 𝑙𝑚⟩
and a departure time 𝑠 (its projected time slot is𝑇 𝑠 ), we can succes-
sively fetch the static-histogram ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 for each link 𝑙𝑖 in the route.
Specifically, the order of ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 in ¯ℎ𝑖𝑠𝑡 is computed as (𝐿(𝑙𝑖 ) − 1) ×
(7 × |ℎ𝐷 |) + 𝑇 𝑠 [𝑊 ] × |ℎ𝐷 | + 𝑇 𝑠 [𝐷], where 𝐿(𝑙𝑖 ) denotes the or-
der of 𝑙𝑖 in 𝐿, and 𝑇 𝑠 [𝑊 ] and 𝑇 𝑠 [𝐷] denote the order of 𝑇 𝑠 in
“day-in-week” and “time-in-day” respectively. Consequently, the
static-histogram sequence is ¯ℎ𝑖𝑠𝑡𝑠𝑅 = [ ¯ℎ𝑖𝑠𝑡𝑠𝑙1 , · · · , ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑚 ].

5.2 Spatio-Temporal Attention
In this section, we first leverage the feed forward model to trans-
form each ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 into a representation ℎ̂𝑠

𝑙𝑖
, denoted as ℎ̂𝑠

𝑙𝑖
= 𝑅𝑒𝐿𝑈 (

𝑾ℎ𝑟 ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 + 𝑏ℎ𝑟 ). Here, 𝑾ℎ𝑟 ∈ R𝑑ℎ𝑟×𝑘 and 𝑏ℎ𝑟 ∈ R𝑑ℎ𝑟 are learned
parameters, where 𝑏𝑏𝑟 is the dimension size of ℎ̂𝑠

𝑙𝑖
. Next, we use

Formula (11) to compute the positional encoding ℎ𝑖𝑜 for ℎ̄𝑠
𝑙𝑖
. In par-

ticular, we update ℎ̄𝑠
𝑙𝑖

with the formula ℎ̄𝑠
𝑙𝑖

= ℎ̄𝑠
𝑙𝑖
⊕ ℎ𝑖𝑜 . Then we

get the updated sequence ℎ̄𝑠𝑅 when considering all links in the
route. Afterwards, in order to capture the influence of Temporal
Encoder, we exploit the attention mechanism to fuse the temporal
sequence ℎ𝐶 and ℎ̄𝑠𝑅 . In particular, we design 𝐵 spatio-temporal
attention blocks and each block contains two sub-blocks: spatial
self-attention sub-block and encoder-decoder attention sub-block.
Next, we will explain these two sub-blocks.
(1) Spatial self-attention: Similar to Sec.4.2, we also use the self-
attention mechanism to capture the correlation of elements in the
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Algorithm 1: Model Learning for STHR
Input: training inputs 𝑍 , training labels 𝑌 , three parts of the

whole model (M𝑒𝑛𝑐 ,M𝑑𝑒𝑐 ,M𝑒𝑠𝑡 ), the time interval size
Δ𝑡 , learning rate 𝑙𝑟 , training epochs 𝑒𝑝 , batch size 𝑏𝑠 , loss
weight 𝜆.

Output: parameters 𝜃𝑒𝑛𝑐 , 𝜃𝑑𝑒𝑐 , 𝜃𝑒𝑠𝑡 for the three partsM𝑒𝑛𝑐 ,
M𝑑𝑒𝑐 andM𝑒𝑠𝑡

1 𝐺, 𝐹 ← generating LCG and link features based on road network;
2 𝑇 ← generating time slots for a week based on Δ𝑡 ;
3 initialize parameters 𝜃𝑒𝑛𝑐 , 𝜃𝑑𝑒𝑐 , 𝜃𝑒𝑠𝑡 with normal distribution;
4 for 𝑖 ← 1 · · · 𝑒𝑝 do
5 𝜃𝑒𝑛𝑐 , 𝜃𝑑𝑒𝑐 , 𝜃𝑒𝑠𝑡 ←

𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑎𝑖𝑛 (𝑍,𝑌,M𝑒𝑛𝑐 ,M𝑑𝑒𝑐 ,M𝑒𝑛𝑐 , 𝑙𝑟 , 𝑏𝑠, 𝜆,𝐺, 𝐹,𝑇 ) ;
using 𝜃𝑒𝑛𝑐 , 𝜃𝑑𝑒𝑐 , 𝜃𝑒𝑠𝑡 to updateM𝑒𝑛𝑐 ,M𝑑𝑒𝑐 andM𝑒𝑠𝑡 ;

Function ModelTrain
Input: 𝑍,𝑌,M𝑒𝑛𝑐 ,M𝑑𝑒𝑐 ,M𝑒𝑛𝑐 , 𝑙𝑟 , 𝑏𝑠, 𝜆,𝐺, 𝐹,𝑇

1 training iterations𝑇 𝐼 = ⌊ |𝑋 |𝑏𝑠
⌋, 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝑍,𝑌 ) ;

2 for 𝑖 ← 1 · · ·𝑇 𝐼 do
3 collect 𝑍 (𝑖−1)𝑏𝑠+1:𝑖×𝑏𝑠 , 𝑌(𝑖−1)𝑏𝑠+1:𝑖×𝑏𝑠 ;
4 [ (𝑅, 𝑠,𝐶,𝑋 ) ] ← 𝑍 (𝑖−1)𝑏𝑠+1:𝑖×𝑏𝑠 ;
5 [ (𝐹 (𝑅),𝐺 (𝑅),𝑇 𝑠 ) ] ← generating based on𝐺, 𝐹,𝑇 , [ (𝑅, 𝑠) ];
6 [ℎ𝐶 ] ← M𝑒𝑛𝑐 ( [ (𝐶, 𝐹 (𝑅),𝐺 (𝑅), 𝑋 ) ]) ;
7 [ℎ𝑠𝑅 ] ← M𝑑𝑒𝑐 ( [ (𝑅,𝑇 𝑠 , ℎ𝐶 ) ] |𝐺, 𝐹,𝑇 ) ;
8 [ (𝑡𝑙1 , · · · , 𝑡𝑙𝑚 ) ] ← M𝑒𝑠𝑡 ( [ℎ𝑠𝑅 ]) , [𝑡𝑅 ] = [

∑𝑚
𝑗 𝑡𝑙 𝑗 ];

9 𝑙𝑜𝑠𝑠 =
∑(𝜆∑

𝑗 |𝑡𝑙 𝑗 −𝑦 [ 𝑗 ] |
𝑚 + (1 − 𝜆) |𝑡𝑅 −

∑
𝑗 𝑦 [ 𝑗 ] |) ;

10 𝜃𝑒𝑛𝑐 , 𝜃𝑑𝑒𝑐 , 𝜃𝑒𝑠𝑡 ,← 𝐴𝑑𝑎𝑚𝑂𝑝𝑡 (𝑙𝑜𝑠𝑠, 𝑙𝑟 ) ;
11 return 𝜃𝑒𝑛𝑐 , 𝜃𝑑𝑒𝑐 , 𝜃𝑒𝑠𝑡 ;

spatial sequence ℎ̂𝑠𝑅 , which results in a representation sequence ℎ̄𝑠𝑅 .
This sub-block contains four steps: Self-attention→Add&Normalize
→Feed Forward→Add&Normalize. For simplicity, the above pro-
cess in the 𝑖-th block is denoted as ℎ̄𝑠𝑅 = 𝑆𝐴𝐵′𝑖 (ℎ̂

𝑠
𝑅).

(2) Encoder-decoder attention: As shown in Fig. 6, we take the
first sub-block’s output ℎ̄𝑠𝑅 as the query object and take the tem-
poral representation sequence ℎ𝐶 as both key and value objects.
That is, we aim to capture the attention of ℎ𝐶 on each element in
ℎ̄𝑠𝑅 . This sub-block also contains four steps: Encoder-encoder Atten-
tion→Add&Normalize→Feed Forward→Add&Normalize. Notably,
the difference with the self-attention is the first step. For simplicity,
the above process in the 𝑖-th block is denoted as ℎ̂𝑠𝑅 = 𝐸𝐷𝐴′𝑖 (ℎ̄

𝑠
𝑅, ℎ𝐶 ).

To summarize, the process in the 𝑖-th spatio-temporal block can
be formulated as ℎ̂𝑠𝑅 = 𝐸𝐷𝐴′𝑖 (𝑆𝐴𝐵

′
𝑖 (ℎ̂

𝑠
𝑅), ℎ𝐶 ). Considering that we

have 𝐵 blocks, the 𝐵-th block’s output corresponds to the final
spatio-temporal sequence ℎ𝑠𝑅 .

6 ROUTE TRAVEL TIME ESTIMATION
Wefirst explain how to generate the travel time based on the spatio-
temporal sequenceℎ𝑠𝑅 and the local static-histograms ¯ℎ𝑖𝑠𝑡𝑠𝑅 (Sec. 6.1),
and then describe the training process (Sec. 6.2).

6.1 Inferring Travel Time
As shown in Fig. 4, we design two modules, “Dynamic-Speed Gen-
erator” and “Travel Time Generator”, to infer the travel time based
onℎ𝑠𝑅 and ¯ℎ𝑖𝑠𝑡𝑠𝑅 .The firstmodule aims to generate the speed-dynamic
factors (i.e., dynamic-matrices {𝑷𝑠

𝑙𝑖
}𝑖∈[1,𝑚] and the bias sequences

{Δ𝑠
𝑙𝑖
}𝑖∈[1,𝑚] ).The secondmodule at first generates the travel speed

for each link 𝑙𝑖 based on its static-histogram ¯ℎ𝑖𝑠𝑡𝑠𝑙𝑖 and speed-dynamic
factor (𝑷𝑠

𝑙𝑖
and Δ𝑠

𝑙𝑖
), and then infers its travel time based on the gen-

erated travel speed and its length. Details are presented below.
(1) Generating dynamic factors: In this part, we leverage two
feed forward models to generate 𝑷𝑠𝑅 = {𝑷𝑠

𝑙𝑖
}𝑖∈[1,𝑚] and Δ𝑠𝑅 =

{Δ𝑠
𝑙𝑖
}𝑖∈[1,𝑚] respectively based on the spatio-temporal sequence

ℎ𝑠𝑅 . That is, given a spatio-temporal code ℎ𝑠
𝑙𝑖

in the sequence ℎ𝑠𝑅 ,
the two corresponding dynamic factors are computed as follows:

𝑷𝑠𝑙𝑖 =𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝑾𝑃ℎ
𝑠
𝑙𝑖
+ 𝑏𝑃 , 𝑘 × 𝑘) (12)

Δ𝑠𝑙𝑖 =𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑾Δℎ
𝑠
𝑙𝑖
+ 𝑏Δ) (13)

where 𝑾𝑃 ∈ R(𝑘
2×𝑑ℎ𝑟 ) , 𝑏𝑃 ∈ R𝑑ℎ𝑟 , 𝑾Δ ∈ R(𝑘×𝑑ℎ𝑟 ) , 𝑏Δ ∈ R𝑘

are learned parameters. 𝑘 denotes the dimension size of speed his-
togram, 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝐴,𝑘 × 𝑘) is to convert the vector 𝐴 ∈ R𝑘2 into
a matrix of size 𝑘 × 𝑘 , and the function 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑧) = 1

1+𝑒−𝑧 helps
keep Δ𝑠

𝑙𝑖
under the constraint of 0 ≤ 𝛿𝑠

𝑙𝑖
≤ 1, ∀𝛿𝑠

𝑙𝑖
∈ Δ𝑠

𝑙𝑖
.

(2) Generating travel time: At first, according to Formula (3), for
each link 𝑙𝑖 , we generate the dynamic-histogramℎ𝑖𝑠𝑡𝑠

𝑙𝑖
based on the

static-histogram and the dynamic-matrix. Next, according to For-
mula (1), we generate its corresponding estimated speed 𝑣𝑙𝑖 based
on ℎ𝑖𝑠𝑡𝑠

𝑙𝑖
and Δ𝑠

𝑙𝑖
. At last, we can compute the estimated travel time

with the formula 𝑡𝑙𝑖 = |𝑙𝑖 |
𝑣𝑙𝑖

. By considering all links in the given
route, we have the total travel time 𝑡𝑅 =

∑𝑚
𝑖=1 𝑡𝑙𝑖 .

6.2 Learning Model
Offline training. Algorithm 1 outlines the training process. At
first, we extract the global spatio-temporal features (𝐺, 𝐹,𝑇 ). Specif-
ically,𝐺 and 𝐹 are extracted from the whole road network while 𝐹
is computed based on the given time slot size Δ𝑡 . Next, we initial-
ize all parameters 𝜃𝑒𝑛𝑐 , 𝜃𝑑𝑒𝑐 and 𝜃𝑒𝑠𝑡 for the whole model with a
normal distribution (lines 1-3). Then we iteratively train the whole
model with the given epochs 𝑒𝑝 (lines 4-5). ModelTrain explains
the training process for each epoch. We first compute the train-
ing iterations 𝑇 𝐼 based on a given batch size 𝑏𝑠 , and then shuf-
fle all training data 𝑋,𝑌 (line 1). In each iteration, we extract 𝑏𝑠
training data from 𝑍,𝑌 . Each element of 𝑍 is composed of the re-
quest (the route 𝑅 and the departure time 𝑠), the historical traf-
fic conditions 𝐶 , and the temporal background 𝑋 . In addition, we
build the local graph RNG (𝐺 (𝑅)), and extract local link features
(𝐹 (𝑅)) and the current time slot (𝑇 𝑠 ) based on the global infor-
mation 𝐺, 𝐹,𝑇 and each element’s 𝑅 and 𝑠 (lines 2-5). In particu-
lar, we first use the part M𝑒𝑛𝑐 (see Sec. 4) to generate the code
ℎ𝐶 to represent spatial encoding results, and then use the part
M𝑑𝑒𝑐 (see Sec. 5) to decode the representation ℎ𝑠𝑅 . Afterwards,
we use the part M𝑒𝑠𝑡 (see Sec. 6.1) to generate each link’s esti-
mated travel time and then compute the overall travel time for the
given route (line 6-8). At last, we design the following loss func-

tion: 𝑙𝑜𝑠𝑠 =
∑(𝜆∑𝑗 |𝑡𝑙 𝑗 −𝑦 [ 𝑗 ] |

𝑚 + (1− 𝜆) |𝑡𝑅 −
∑
𝑗 𝑦 [ 𝑗] |). It consists of

two types of mean absolute losses: link-wise and route-wise. The
former can help the model learning in a fine-grained mode. We uti-
lize AdamOptimizer [20] to optimize all parameters byminimizing
the total loss 𝑙𝑜𝑠𝑠 (lines 9-10).
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7 EXPERIMENTS
In this section, we would like to evaluate the effectiveness, effi-
ciency and scalability of our model STHR.

7.1 Experimental Setup
Datasets. (1) Road Networks & Time Intervals. We use two
road networks: Chengdu Road Network (CRN) and Xi’an Road Net-
work (XRN) extracted fromOpenStreetMap [2].CRN includes 3, 191
vertices and 9, 468 edges; XRN contains 4, 576 vertices and 12, 668
edges. To verify the scalability, we use a larger road network, Nan-
jing RoadNetwork (NRN), which includes 121, 271 vertives and 343, 276
edges. We set the size of a time slot (Δ𝑡 ) as 5, 10, 30 and 60minutes
for robustness evaluation, where the default is 10 minutes.
(2)Requests &TrafficConditions.We extract the requests based
on the taxi orders in Chengdu (CD) and Xi’an (XA), collected from
Didi Chuxing [1]. Each order corresponds to a trajectory and we
can extract its request and departure time as the request. There are
5.8𝑀 and 3.4𝑀 orders in CD and XA [39, 40] respectively, both
from 10/01/2016 to 11/30/2016. In addition, we collect 13𝑀 orders
on NRN from 01/01/2011 to 31/01/2011, which is called Nanjing
(NJ).The total number of time slots can be calculated via 𝑘×24×60𝑚𝑖𝑛Δ𝑡 ,
where 𝑘 is set as 61 for CD/XA and 31 for NJ . Hence, we can com-
pute each link’s travel speed at each time slot and use it as the
traffic conditions based on these trajectories. We set 𝑝 , the num-
ber of past time slots, as 6, 12, 24, 48 for robustness evaluation, and
the default is 12.
(3) Temporal Background Information. Two types of temporal
information, namely holiday/weekend indicator (1 for holiday/week-
end, 0 otherwise) and rush-hour indicator (1 for rush hour, 0 oth-
erwise), are used.
(4) Training, Validation and Test. Since we can get 24×61×60𝑚𝑖𝑛

Δ𝑡
time slots for each dataset, we divide a dataset into training, vali-
dation and test data by splitting the time intervals with the ratios
of 70%:10%:20%.
Baseline methods. We compare our models with six methods:
• Avg: We estimate the travel time by averaging the travel time

of all historical trajectories falling in the same time slot for each
link, whose default travel time is set as the average value of
records during all time slots.
• Sim [31]: This is a nearest neighbor based approach, which esti-

mates the travel time by averaging the travel time of all histor-
ical trajectories falling in the same departure time with similar
origin and destination points, where the road distance between
two similar points is less than 100 meters. For better estimation,
we ignore those trajectories whose routes are different from the
given route based on the similarity function LCRS ([37]), and the
default similarity threshold is 0.5.
• DTravel [41]:This is an end-to-end method. It first extracts spa-

tial and temporal features and then employs bidirectional LSTM
and auxiliary tasks based on dual intervals.
• STANN [16]: This is a spatio-temporal graph neural network.

It first encodes the spatial information by graph attention and
then encodes the temporal information by LSTM and attention
mechanism.
• ConST [10]: This is also a spatio-temporal graph neural net-

work. It captures the local contextual spatio-temporal features
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Figure 7: MAPE(%) vs. Hyper-parameters

for each link, and then applies themulti-task learning to capture
the correlation between different links.
• Ens [18]: This method is an ensemble of traditional learning

methods (e.g., GBDT) and deep learningmethods (e.g., CNN and
LSTM). It is worth mentioning that this method won the first
place in the 2021 SIGSPATIAL Cup .
Notably, the last four methods are learning-based methods. For

fair comparison, we make their parameter scale (a.k.a., model size)
similar to ours, which is shown in Sec. 7.5.
Environment settings. All deep learning methods were imple-
mented with PyTorch 1.0 and Python 3.6, and trained with a Tesla
K40 GPU. The platform ran on Ubuntu 16.04 OS. In addition, we
used Adam [20] as the optimization method with the mini-batch
size of 500. The initial learning rate was 0.001.
Evaluationmetrics.We evaluate our proposedmethods and base-
line methods based on three metrics: MSE (Mean Square Error),
MAE (Mean Absolute Error) and MAPE (Mean Absolute Percent
Error), which are widely adopted by the baselines we compare
with. Specifically, suppose the ground truth is represented as y =
{𝑦𝑖 } and the predicted result is denoted as ŷ = {𝑦𝑖 }, where 1 ≤ 𝑖 ≤
𝑁 , these metrics are computed as follows:𝑀𝑆𝐸 (y, ŷ) = 1

𝑁

∑𝑁
𝑖=1 (𝑦𝑖 −

�̂�𝑖 )2; 𝑀𝐴𝐸 (y, ŷ) = 1
𝑁

∑𝑁
𝑖=1 |𝑦𝑖 − �̂�𝑖 |; 𝑀𝐴𝑃𝐸 (y, ŷ) = 1

𝑁

∑𝑁
𝑖=1 |

𝑦𝑖−�̂�𝑖
𝑦𝑖
|.

7.2 Setting of Model’s Hyper-parameters
we consider the following hyper-parameters: (1) the size (𝑘) of each
speed histogram; (2) the sizes (𝑑𝑔1 , 𝑑𝑔2 , 𝑑𝑔′1 , 𝑑𝑔′2 ) of different layers’
neural networks in two GAT models; (3) the settable-dimension
sizes (𝑑𝑞, 𝑑𝑘 , 𝑑𝑣, 𝑑𝑓 ) of parameters (𝑾𝑞,𝑾𝑘 ,𝑾𝑣,𝑾𝑓 ) in sequence
attention models, where 𝑑𝑞 = 𝑑𝑘 and 𝑑𝑓 = 𝑑𝑣 ; (4) the settable-
dimension size (𝑑ℎ𝑟 ) of parameters (𝑾𝑃 ,𝑾Δ), where 𝑑ℎ𝑟 = 𝑑𝑓 ; (5)
the embedding sizes (𝑑𝑤 , 𝑑𝑑 ) of time slots. In particular, given a
hyper-parameter, we first select its value range according to the ex-
perience under some constraints (e.g., the limitation of GPU mem-
ory). Then, we conduct experiments on the validation CD, XA and
NJ to determine its optimal value. As shown in Fig. 7, we plot the
MAPE for different hyper-parameters. In summary, we set each
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Figure 9: MSE & MAE & MAPE vs. Variables Δ𝑡 & 𝑝. (The title of
each subfigure is labelled in form of “A, B”, where “A” and “B” re-
spectively refer to one kind of variable and a metric. Each legend
“C@D” means the method “C” evaluated on the dataset “D”.)

hyper-parameter with the value corresponding to the optimal per-
formance as follows: (1) For CD, we have 𝑘 = 5, 𝑑𝑔1 = 64, 𝑑𝑔2 = 16,
𝑑𝑔′1 = 32, 𝑑𝑔′2 = 32, 𝑑𝑞 = 𝑑𝑘 = 12, 𝑑𝑣 = 𝑑𝑓 = 𝑑ℎ𝑟 = 24, 𝑑𝑤 = 4,
𝑑𝑑 = 2. (2) For XA, we have 𝑘 = 15, 𝑑𝑔1 = 64, 𝑑𝑔2 = 32, 𝑑𝑔′1 = 8,
𝑑𝑔′2 = 32, 𝑑𝑞 = 𝑑𝑘 = 24, 𝑑𝑣 = 𝑑𝑓 = 𝑑ℎ𝑟 = 12, 𝑑𝑤 = 3, 𝑑𝑑 = 2.
(3) For NJ, we have 𝑘 = 20, 𝑑𝑔1 = 16, 𝑑𝑔2 = 16, 𝑑𝑔′1 = 8, 𝑑𝑔′2 = 32,
𝑑𝑞 = 𝑑𝑘 = 24, 𝑑𝑣 = 𝑑𝑓 = 𝑑ℎ𝑟 = 48, 𝑑𝑤 = 3, 𝑑𝑑 = 5.

7.3 Effectiveness of Loss Weight
To fine-tune the loss weight 𝜆, we vary it from 0 to 1when training
STHR. We compute the three metrics for the validation data. The
result is plotted in Figure 8 from which we find: the performance
first improves with the increase of 𝜆 but is much worsened when
exceeding a certain threshold. This is because there is a trade-off
between the link-wise loss and the route-wise loss. Based on the
majority voting rule, the best values of 𝜆 for CD, XA and NJ are
respectively 0.5, 0.1 and 0.3, which are also set as the default values
in subsequent experiments.

7.4 Effectiveness Comparison
Apart from comparing STHR with baseline methods, we replace
our STHR by four variations, namelyNR,NL,NT andNS, to eval-
uate the effectiveness of different parts of encodings in STHR. In
NR, we leverage fully connected neural networks (FCN) to fuse
traffic conditions (i.e., the GATmodel on RNG). InNL, we use FCN
to generate static-histograms (i.e., the GAT model on LCG). InNT,
we use FCN to replace temporal self-attention networks. InNS, we
use FCN to replace spatio-temporal attention networks.

Table 1: Effectiveness Results on Test Data(Δ𝑡 = 5𝑚𝑖𝑛, 𝑝 = 12)

CD XA
Method MSE MAE MAPE(%) MSE MAE MAPE(%)
Avg 9.79 1.94 21.49 11.40 2.08 21.58
Sim 9.89 1.99 22.54 18.09 2.80 30.44

DTravel 8.74 1.35 19.45 13.25 1.69 19.99
STANN 8.66 1.35 18.98 15.39 1.80 19.65
ConST 8.39 1.30 19.22 10.13 1.40 17.94
Ens 7.96 1.26 18.85 14.25 1.51 18.03
NR 6.90 1.07 15.60 8.72 1.22 15.74
NL 6.95 1.09 15.48 8.44 1.20 15.65
NT 7.03 1.11 16.32 8.53 1.24 16.78
NS 7.09 1.10 16.45 8.98 1.28 16.72

STHR 6.43 1.04 15.53 8.43 1.19 15.58

Table 1 reports the evaluation results of all methods with the de-
fault settings of Δ𝑡 and 𝑝 , and we have the following observations:
(1) Avg and Sim are worse than deep learning based methods, be-
cause the former can approximately fit any function. In addition,
it is not good enough to give accurate predictions when historical
data are sparse for Avg and Sim.
(2) When looking into the results of NR, NL, NT, NS and STHR,
we find that the spatial-temporal attention is the most critical part
of STHR, followed by the temporal self-attention, and the GAT
models on RNG and LCG.
(3) STHR performs the best on all metrics. For example, STHR
outperforms the best existing methods (i.g., ConST and Ens) by
20% on MAE for the test data of CD. The reason is that our method
can capture heterogeneity, proximity, periodicity and dynamicity.
(4) When comparing errors on CD and XA, the performance of all
methods on CD is better than that on XA. The reason is two-fold:
first, most routes of XA are longer than those of CD, and intuitively
it is more difficult to accurately estimate longer travel time; second,
the size of CD is larger than that of XA and more data often lead
to better training results for neural networks.

Furthermore, we evaluate the robustness of different models by
respectively varying the values of Δ𝑡 and 𝑝 in Figure 9. We have
the following observations:
(1) With the increase of Δ𝑡 , the errors of almost all methods in-
crease, because the traffic status at bigger time slots would be more
dynamic, which could improve the prediction difficulty. However,
the method Avg’s performance would be better when the size of
Δ𝑡 exceeds 10; the reason is that larger time slots correspond to
more trips for each link and hence make it more credible to use
the average of historical travel time.
(2) With the increase of the size 𝑝 , all three metrics show the same
trend for each method: the performance first improves and then is
much worsened when exceeding a certain value. This is because
there is a trade-off between the accuracy of large 𝑝 and small 𝑝 .
A bigger 𝑝 leads to more data, making it more accurate to predict
the travel time. However, the longest past traffic data have less
influence to future traffics, so the bigger 𝑝 would lead tomore noisy
inputs for the prediction.
(3) Nomatter how Δ𝑡 and 𝑙 change, our method STHR consistently
has the best performance.
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Table 2: Efficiency of Test Result (Δ𝑡=5𝑚𝑖𝑛, 𝑝=12)
dataset Avg Sim DTravel STANN ConST Ens STHR

memory CD 147M 147M 501K 1.5M 1.4M 1.4M 1.5M
(MByte) XA 98M 73M 501K 1.4M 1.3M 1.3M 1.3M
training CD - - 8.88 6.17 12.98 10.34 11.13

(minutes/ep) XA - - 4.47 3.17 6.76 5.13 5.16
estimation CD 0.03 0.22 0.20 0.58 0.67 0.35 0.39
(seconds/K) XA 0.01 0.03 0.23 0.27 0.37 0.25 0.31

Figure 10: MAPE & MARE & RMSE vs. the Scalability. (The title of
each subfigure is labelled in form of “A, B”, where “A” refers to the
metric and “B” refers to the dataset.)

7.5 Efficiency Comparison
We use the memory usage, training time and estimation time for
efficiency evaluation. The memory usage represents the size of re-
quired memory for applying correspondingmethods, and it is used
to evaluate thememory efficiency.The training time is used to eval-
uate the offline learning efficiency for neural network based meth-
ods. In particular, we compute the average time of an epoch for
each method. The estimation time can evaluate the online predic-
tion efficiency. Specifically, we use different methods to estimate
the results for 1,000 routes and record the latency respectively.The
results are reported in Table 2. We observe the following:
(1) Avg and Sim require more memory than others. The reason is
that they need to load data info whose size is proportional to the
size of historical trajectories, while other learning methods only
need to load model parameters whose size is smaller.
(2) DTravel has the same model size for all datasets, but other
learning methods are different. The reason is that other methods
consider the size of road network, which varies from one city to
another. As a result, the model size of DTravel is much less than
that of other learning methods.
(3) Due to the computation complexity of graph neural network,
ConST and STHR consume more training and estimation time
than DTravel, STANN and Ens.

7.6 Scalability Comparison
We evaluate the scalability of all methods by varying the training
data size. In particular, we sample 20%, 40%, 60% and 80% from the
training data, and collect the associated MAPE, RMSE and MARE
of the online prediction over the test data. From Figure 10, we have
the following observations:
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Figure 11: Estimated time vs. actual time
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Figure 12: Estimated time vs. actual time on MAPE

(1) All methods perform better if more training data is used. The
reason is that more data indicates more situations, making the
model learned better.
(2) Deep learning methods are more stable and effective than Avg
and Sim. For example, the MAPE of Avg on CD is increased by
28.15−21.49

21.49 = 30.99% when we only use 20% training data, while
the ratio is only 17.00−15.53

15.53 = 9.47% for STHR.
(3) Our STHR consistently has the best performance. In addition,
in many cases (e.g., the MAE and MAPE metrics on CD and XA),
with the sampling rate decreased, the gap between our STHR and
other methods becomes larger.

7.7 Case Study
We first randomly sample 50 test data from CD and XA respec-
tively, and then use different methods to generate the estimated
travel time. After that, we get 50 pairs of the actual time and the
estimated time for each method. We illustrate all pairs with scatter
points, as plotted in Figure 11. In each figure, we draw an auxiliary
line 𝑦 = 𝑥 as reference. We can find:
(1) Most of our STHR model’s points are closer to the reference
line than other methods. (2) With the increase of actual time dura-
tion, the errors of estimated time also increase for all methods, but
STHR has the smallest degree of increase.

To study the performance of each method in the worst case, we
select 50 worst-performing cases for each method. Similarly, we
draw them in Figure 12. Specifically, we compare them based on
theMAPE loss. According to the definition ofMAPE, shorter actual
travel time and longer estimated travel time would cause a bigger
MAPE loss. Therefore, almost all selected cases were located in the
upper left corner of the corresponding figures.We can find that our
method STHR is closer to the reference line than other methods
in most cases.
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8 RELATEDWORK
8.1 Travel Time Estimation
There are two broad categories of work – travel time estimation
for OD (Origin-Destination) and travel time estimation for routes.
Travel time estimation for OD inputs. The problem of travel
time estimation for OD inputs [5, 9, 17, 19, 22, 23, 39] aims to esti-
mate the arrival time for a given origin and destination points, and
the only available data are the two points and the departure time.
In particular, the authors in [19] propose a multi-layer neural net-
work called STNN. They first predict the travel distance based on a
given origin and a given destination, and then they combine the
predicted distance with the given temporal information to predict
the travel time. However, they neglect the information about road
network. Hence, Li et al. [23] leverage road topological structure
and spatio-temporal information of road network to predict travel
time. However, they directly embed the longitude and latitude of
the origin and the destination, which cannot accurately capture
the spatial features on the road network. In addition, they ignore
historical trajectories, which are useful for travel time estimation.
Therefore, Yuan et al. [39] propose a novel neural network based
prediction model, which can be trained with historical trajectories
and can be used to estimate without trajectories.
Travel time estimation for routes. The method of estimating
travel time for paths can be divided into two groups: statistics-
based and learning-based. The statistics-free approaches estimate
the travel time of a route based on historical recorded trajectories.
For example, Wang et al. [30] and Amirian et al. [3] first lever-
age historical trajectories to estimate the travel time of each link,
and then deduce a route’s travel time with the summation of its
covered links’ travel time. However, they cannot capture the cor-
relation between adjacent links, which plays an important role on
the travel time. For instance, the traffic lights in link intersections
determine the waiting time on the corresponding road segments.
To address this issue, Wang et al. [31] use similar historical trajec-
tories to estimate the travel time for a given route, but this method
is not effective when there are only few similar historical trajecto-
ries.Therefore, some learning-based methods [10, 16, 30, 33, 41] are
proposed to solve the problem. In particular, they design different
models, which are trained based on historical trajectories, to gen-
erate travel time for given routes. At first, some people [30, 33, 41]
regard the route as a sequence of links, and apply some sequence
encoding model (e.g., LSTM) to achieve the goal. In addition, con-
sidering the constraint of road network, He et al. [16] first apply the
graph model to encode spatial information, and then apply the se-
quence model to generate travel time. However, sequence models
are inefficient due to its recurrent-based structure, especially for
the route containing hundreds of links. To address this issue, Fang
et al. [10] leverage the graph attentionmodel to independently cap-
ture each link’s contextual features for a given route. In addition,
Huang et al. [18] design an ensemble framework to integrate tra-
ditional and deep learning methods. However, existing methods
cannot fully exploit spatio-temporal features from the following as-
pects: heterogeneity, proximity, periodicity and dynamicity. These
inspire us to design our efficient models. Some deep learning ap-
proaches [24, 40] are designed to forecast traffic, but they need to

fix the number of future time intervals, such as one hour or 10
minutes, which is essentially different from the ETA problem.
8.2 Deep Learning for Spatio-temporal Data
With the development of artificial intelligence, there is an increas-
ing growth of deep learning applications in spatio-temporal data
management or mining. First, Recurrent Neural Network (RNN) is
recently applied to trajectorymodeling. For example,Wu et al. [34]
predict next movement through modeling trajectory with RNN
and outperforms existing shallow models. The authors in [13] rep-
resent and identify the semantics of user mobility patterns by em-
bedding trajectories with RNN model. In addition, Dong et al. [8]
design a stacked RNNmodel to characterize the driving style of dif-
ferent drivers. Second, many studies focus on Convolutional Neu-
ral Network (CNN). Song et al. [28] propose an intelligent trans-
portation system to simulate the human mobility and transporta-
tion mode. The authors in [42] regard the crowd density on road
network as pictures and then propose a deep spatio-temporal resid-
ual network to predict the crowd flows.Third, considering the graph
structure of road network, some people try to apply graph neu-
ral networks to solve traffic prediction problems, such as travel
demand prediction [35] and traffic flow prediction [26]. Fourth,
the attention mechanism is also applied to capture complex spatio-
temporal correlations among different features. For example, Yuan
et al. [40] jointly predict travel demands and traffic flows by captur-
ing different spatio-temporal correlations with the attention mech-
anism. Last but not least, Multi-Layer Perception (MLP) is also used
to design learned models to replace spatio-temporal data struc-
tures. For example, Kraska et al. [21] replace the index structure
with a learned recursive model. To further support data updating,
many recent studies [7, 11, 12, 14, 38] leverage different methods to
design adaptive learned index. However, they cannot be extended
to replace multi-dimensional index which is more useful for spatio-
temporal data management, so some work [6, 25, 27, 36] further
study how to build learned index for multi-dimensional data.

9 CONCLUSIONS
We studied the ETA problem on a road network. We proposed a
comprehensive and novel neural network based approach that is
able to fully exploit spatio-temporal features extracted from four
significant aspects: heterogeneity, proximity, periodicity and dy-
namicity. We built a link-connection graph to capture each route’s
static contexts (i.e., spatial proximity and temporal periodicity),
and we collect historical traffic conditions as its dynamic contexts.
We applied different attention mechanisms (i.e., sequence atten-
tion and graph attention) in a encoder-decoder framework to en-
code all spatio-temporal features and decode estimated travel time.
Extensive experiments on real datasets verified effectiveness, effi-
ciency and scalability of our model. In future, we will study how to
transfer the learned ETA model from one city to another, and how
to learn an effective model when being given few training data.
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