
Lynx: A GraphQuery Framework for Multiple Heterogeneous
Data Sources

Zhihong Shen
Computer Network Information

Center, Chinese Academy of Sciences
Beijing, China
bluejoe@cnic.cn

Chuan Hu
Computer Network Information

Center, Chinese Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

huchuan@cnic.cn

Zihao Zhao
Computer Network Information

Center, Chinese Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

zhaozihao@cnic.cn

ABSTRACT
Graph model are increasingly popular among modern applications
for its ability tomodel complex relationships between entities. Users
tend to query the data as a graph with graph operations (e.g., graph
navigation and exploration). However, a large fraction of the data
resides in relational databases or other storage systems. Challenges
arise in uniformly querying multiple heterogeneous data sources
as a graph. Traditional solutions are limited by time-consuming
data integration, expensive development effort, and incomplete
query requirements. Thus, we developed Lynx, a general graph
query framework, to simplify querying graph data by converting
complex statements into basic graph operations. Instead of con-
necting directly to the data sources, Lynx retrieves data through
user-implemented interfaces for those graph operations. We demon-
strate Lynx’s capabilities through real-world scenarios, showcasing
Lynx’s ability to process graph queries on multiple heterogeneous
data sources and also to be used as a generic graph query engine
development framework.

PVLDB Reference Format:
Zhihong Shen, Chuan Hu, and Zihao Zhao. Lynx: A Graph Query
Framework for Multiple Heterogeneous Data Sources. PVLDB, 16(12): 3926
- 3929, 2023.
doi:10.14778/3611540.3611587

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/lynxworld/lynx.

1 INTRODUCTION
The graph can model complex relationships between a variety
of entities. Interconnected data are usually modeled as graphs in
many applications like social networks, smart cities, and knowl-
edge graphs. In these applications, a significant fraction of the data
resides in relational databases or other storage systems (e.g., key-
value and column-oriented databases). Modern applications (e.g.,
large-scale knowledge graph [6]) need to query data from these
heterogeneous data sources. Different data sources manage data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611587

Graph
Query

A

B

C

Data
Migration

Graph Database

Data
Export

Query

Lynx Data
Sources

Transform &
Fusion

Graph Service

Process Translate

Query
Language

Query
Language

APIs

Graph Operation
Interfaces

Traditional Solutions

The Simpler Solution Using Lynx

 : High-cost Steps

Figure 1: The diagram of various solutions proposed for
multi-data-source graph query tasks, in which the red font
refers to the high-cost steps.

using different models, so the data operations they support differ.
For example, KV databases can only find values through keys, while
relational databases are difficult to find paths. The heterogeneous
data models make it hard to query the data as a graph uniformly.

There are two traditional solutions to address the problem, as
shown in Figure 1. Solution A involves exporting the data from
different sources, transforming it, fusing it, and importing it into
the graph database. This approach is time-consuming due to data
integration and migration. Furthermore, it cannot be easy to main-
tain data consistency between the graph database and multiple data
sources in real-time. Solution B is to develop graph services that
offer APIs for frequently used graph queries. However, developing
such graph services can be expensive, requiring significant devel-
opment effort. The flexibility, ease of use, and portability of APIs
are not as good as those of query languages.

To mitigate the challenges mentioned earlier, we have developed
Lynx, a general graph query framework. The purpose of Lynx is
to decompose complex query statements into fundamental graph
operations, thereby simplifying the process of querying graph data.
Lynx does not manipulate the data source directly but provides
the interfaces of these graph operations, such as data accessing,
path-finding, index manager, etc.

In Lynx, this conversion is a pipelined processing flow. Lynx
parses the graph query statements into AST (i.e., Abstract Syntax
Tree), then constructs logical and physical plans. The query plans
are optimized by the optimizer in Lynx. The execution engine

3926

https://doi.org/10.14778/3611540.3611587
https://github.com/lynxworld/lynx
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611587
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Data
Sources

Data
Source 2

Data
Source 1

Data
Source 3

Abstract Syntax Tree

Query

Match Return

Pattern Where …

… …

Parser

Graph Query

MATCH (p)-[:KNOWS]-(friend)-[:PUBLISHED]-(paper)
WHERE p.name = ‘Alice’
RETURN friend.name, count(paper)

KNOWS PUBLISHEDAlice friend paper

Logical Plan

Select

Aggregation

Filter

PatternMatch
Logical Plan

Select

Aggregation

PatternMatch

Physical Plan

Select

Aggregation

Join

Relationship
Scan

Relationship
Scan

Logical
Planner

Physical Plan

Select

Aggregation

ExpandPath

Relationship
Scan

Physical
Planner

Cost-based Optimizer

Cost
Model

Cardinality
Estimate

Adaptive
FactorsCandidate Plans

cost = 3cost = 10 cost = 6

Rule-based Optimizer

Plug-able Rules

Filter

Pattern
Match

+ cardinality

factors

A Physical Plan
in Executer

Relationships()

Statistics

countByLable

countByProps

…

Index Management

createIndex

dropIndex

…

Read-Write

*nodes

*relationships

updateNode

…

Figure 2: The Architecture and workflow of Lynx. The whole process is a pipeline and divided into the following parts: 1○Query
parsing (yellow background); 2○Plan generation (red background); 3○Plan optimization (cyan background); 4○Plan execution
(purple background); 5○Graph Operation Interface (red box) and connection to data sources (red line).

regards the physical plan as a permutation of the fundamental
graph operations and necessary algebra operations.

In this demo, we showcased Lynx through several real-world
scenarios. We designed a multi-data-source scenario containing
Mysql and Redis to showcase that Lynx can process graph queries
on heterogeneous data sources by simply implementing interfaces.
We also introduced how to develop a graph database by combin-
ing Lynx with a KV database and an index engine. This scenario
demonstrates that Lynx can be used as a generic graph query engine
development framework to simplify graph database development.

2 SYSTEM OVERVIEW
Lynx, a graph querying framework, follows a modular architec-
ture that comprises several critical components, such as a parser,
planner, and optimizer, which work collaboratively to ensure the
efficient and effective execution of queries. Like other current query
engines, Lynx leverages a pipeline-style processing methodology
that facilitates the systematic handling of queries. Specifically, the
graph query language is first parsed and converted into an abstract
syntax tree, which the planner then transforms into a query plan.
Subsequently, the optimizer reorganizes the query plan to improve
execution efficiency before final execution in the execution engine
to produce the expected results.

2.1 Query Plan Generation
A parser and a planner are needed to convert a query language into
an executable query plan. The parser converts the query language
into a structured abstract syntax tree. This tree represents this
query’s structure and enables further processing by the planner.

To achieve separation from the underlying storage system, Lynx
employs two distinct types of query plans: logical plans and phys-
ical plans. The logical plan describes the query logic expressed
in the query statement without specifying the actual execution

details. In contrast, the physical plan is executable and directly
involves physical data operations intimately tied to the underlying
storage. Specifically, for instance, a sub-graph matching query is
represented as a PatternMatch operator in the logical plan, which
formalizes the query operation’s specific details, such as relation-
ship types and hop counts. In contrast, in the physical plan, this
operation is transformed into a collection of individual operators
such as NodeScan, RelationshipScan, or IndexSearch, depending on
the underlying storage structure’s design.

This separation of logical and physical plans provides two key
advantages: firstly, users are empowered to expand physical plan
operators based on the actual physical storage conditions and to
modify the rules governing the transformation from logical to phys-
ical plans. Secondly, this design enables the development of parsers
and planners for various graph languages, allowing for using a sin-
gle set of logical plans to describe different graph query languages.

2.2 Plan Optimization
Lynx optimizes query plans using a rule-based optimizer and a
cost-based optimizer, following the algorithm in Ref [7].

The rule-based optimizer rewrites queries to generate new query
plans that produce equivalent results with less execution time. It
rewrites queries based on algebra logic and an extensible rule set,
including filter/aggregation push-down and constant folding. Lynx’s
embedded rule set includes optimization rules for common data
models (e.g., RDBMS and KV), and developers can extend the rule
set according to their storage backends’ characteristics.

The cost-based optimizer estimates the cost of candidate query
plans using an adaptive cardinality cost model and selects the one
with the lowest expected cost. Traditional databases rely on a stor-
age backend where the speed of processing certain operations for
the same backend is constant.

3927

The cost model in traditional databases uses fixed speed factors
for each operation. However, these fixed speed factors do not work
on different storage backends due to differences in their character-
istics. For example, full-text retrieval is fast on ElasticSearch but
time-consuming on MySQL. To address this, Lynx introduces an
adaptive cardinality cost model that updates the speed factors on
different storage backends by executing a set of sample queries.

2.3 Execution and Graph Operation Interfaces
Each operator in physical query plan is executable, and the entire
physical plan tree is executed from the leaf node(s) to the root node.
Operators can be categorized into two types. The first type includes
operators such as Join and Project, which generally do not require
access to external data sources and can be fully executed within
the executor. The second type includes operators like NodeScan
and ExpandPath. These operators involve data retrieval or updates
and necessitate graph operations during execution. For example, as
illustrated in the lower right corner of Figure 2, the RelationshipScan
operator employs the relationships operation during its execu-
tion process. The graph operation interface in Lynx is crucial for
implementing queries on heterogeneous data sources. In Lynx, we
have designed about 40 fundamental graph operation interfaces, as
shown in the upper right corner of Figure 2, which can be roughly
divided into the following categories:

• Read-Write: The primary purpose of these interfaces is
to retrieve and modify data from multiple sources, such as
nodes, updateNode, createElement, etc. They also include
path-finding interfaces like expand and shortestPath.

• Statistics: These interfaces provide statistics for the opti-
mizers to estimate the cost of query plans.

• Index Management: This category encompasses graph
operation interfaces for creating and dropping indexes.

Figure 2 illustrates how the graph data interface connects to data
sources. As shown, countByLabel and createIndex are connected
to Data Source 1, which could be a repository for managing meta-
data and indexes. The nodes interface links to two data sources,
indicating that node data is distributed across different data sources
in this example. The specific data source to access can be distin-
guished within the concrete implementation of the nodes interface
(e.g., by label or property). In addressing the issue of data dispersion,
Lynx adopts this flexible approach.

For the majority of operations, Lynx provides default imple-
mentations, except for the two data access interfaces: nodes and
relationships. This means that for lightweight tasks that do not
involve data writing, such as querying CSV files, only implement-
ing Lynx’s two data access interfaces is sufficient to complete the
task. For interfaces with default implementations, users can also
override them as needed, demonstrating Lynx’s flexibility in data
access.

Implementation. Lynx is developed in Scala, offering compat-
ibility with Java and allowing seamless integration into a wide
range of projects. To utilize Lynx, users can import it as a JAR
package, ensuring effortless implementation and usage. Currently,
Lynx supports OpenCypher [5], a widely-adopted and expressive
graph query language.

3 DEMONSTRATION
In our demo, we show how developers can use Lynx to solve graph
query problems. The demo includes a base scenario: using pub-
lic datasets and common databases, we show how developers can
support graph queries on non-graph database data sources by im-
plementing interfaces designed to showcase Lynx’s multi-source
graph query capabilities and ease of use. In addition, an extension
scenario is set up to showcase Lynx’s flexibility and capability in
graph database development.

Label FilterStart Type

Lynx

MySQLRedis

nodes()relationships()

SQLKey

Node ID Type ID Table
Name

WHERE
Clause

(a)

Lynx

RocksDBES

Read-Write

IndexManager <Key> <Value>

Statistics

Cache Transaction

(b)

Figure 3: The diagram of the use of Lynx in two scenarios.
The dashed boxes in the diagram are related to the graph op-
eration interface implementation. (a) In the implementation
of the two data access interfaces, nodes and relationships, the
filter information is converted into query language or key
to query data from MySQL and Redis. (b) A graph database
built with a storage, an indexing engine, and Lynx. Lynx is
used as a query engine development framework in database
development.

3.1 Scenario 1: Graph Query across Data Sources
Imagine that we are faced with a scenario where we possess a large
amount of data in multiple databases that use different data models,
including relational and key-value models. Some data within these
databases are related; now, we need to do graph queries on these
data but don’t want to migrate them.

We use the dataset from LDBC-SNB [2], one of the most popu-
lar property graph benchmarks. The nodes are stored in different
MySQL data tables according to their labels, and the node id is set
as the primary key, which is consistent with the scenario described
in the scenario; the relationships among nodes exist in different
Redis according to their types; the graph queries used for testing
are also from LDBC-SNB, in the form of Cypher.

In Figure 3 (a), two fundamental interfaces have been imple-
mented to retrieve data after importing Lynx, as depicted by the
dotted line.

• The node interface enables querying data from MySQL us-
ing a SQL statement consisting of two components. The
table name locates the relational table where the nodes to be
queried are stored, which is determined by the node’s Label.
If no label is specified, all relational tables are queried. More-
over, the nodes interface may include property key-value

3928

1 2

Figure 4: A shell application provided by Lynx. The figure shows the results of executing a test query statement on the LDBC-SNB
dataset. 1○ shows the query results. 2○ shows the query plan.

pairs that act as filter conditions. These filter conditions are
transformed intoWHERE clauses in SQL and then executed
in MySQL.

• The relationships interface is accountable for retrieving
all relationships for a specific start node and relationship
type. The key to retrieving Redis involves concatenating
the starting node ID and the relationship type ID.

Lynx offers a shell interaction application with a run command and
an explain command to execute Cypher queries and view query
plans. Figure 4(a) demonstrates the result of executing this state-
ment, whereas Figure 4(b) exhibits the corresponding physical plan.

3.2 Scenario 2: Graph Database Development
PandaDB1 is a scalable, high-performance graph database based
on Key-Value storage. It maintains property graph data as key-
value, and the flexible KV storage makes it easy to scale out for
large datasets. PandaDB supports full-text index of properties. It
has been evaluated on a dataset with billions of nodes and tens of
billions of relationships. PandaDB performs better than Neo4j on
property filtering and simple graph queries. PandaDB adopts Lynx
to develop its query engine, as shown in Figure 3(b). Developers only
need to implement interfaces shown in Figure 2, without paying
attention to the implementation of query parsing, plan generation,
and optimization. This allows developers to focus more on the
design and polishing of the storage engine. The customizable
framework also allows developers to implement query engines
based on actual scenario requirements. As far as we know, several
teams are developing their experimental graph database with Lynx.

4 RELATEDWORK
There are several frameworks (e.g., Cytosm [8] and GraphGen [9])
support graph query over non-graph databases by mapping query
languages. However, they only support single data model (usually
RDBMS) and are unsuitable for heterogeneous data sources. Janus-
Graph [1], a graph database, supports multiple data sources, but
1https://github.com/grapheco/pandadb-v0.3

its graph data storage is restricted to BigTable [4] databases like
Apache Cassandra and Apache HBase.

Apache Calcite [3] is a query framework that enables processing
multiple heterogeneous data sources but does not support graph
queries.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China(Grant No.2021YFF0704200) and Informatization Plan of Chi-
nese Academy of Sciences(Grant No.CAS-WX2022GC-02).

REFERENCES
[1] 2023. JanusGraph. https://janusgraph.org/
[2] Renzo Angles, János Benjamin Antal, Alex Averbuch, Altan Birler, Peter Boncz,

Márton Búr, Orri Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, et al.
2020. The LDBC social network benchmark. arXiv preprint arXiv:2001.02299
(2020).

[3] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and Daniel
Lemire. 2018. Apache calcite: A foundational framework for optimized query pro-
cessing over heterogeneous data sources. In Proceedings of the 2018 International
Conference on Management of Data. 221–230.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[5] Alastair Green, Martin Junghanns, Max Kießling, Tobias Lindaaker, Stefan Plan-
tikow, and Petra Selmer. 2018. openCypher: New Directions in Property Graph
Querying.. In EDBT. 520–523.

[6] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,
Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine Zim-
mermann. 2021. Knowledge Graphs. ACM Comput. Surv. 54, 4, Article 71 (jul
2021), 37 pages. https://doi.org/10.1145/3447772

[7] Donald Kossmann and Konrad Stocker. 2000. Iterative Dynamic Programming: A
New Class of Query Optimization Algorithms. ACM Trans. Database Syst. 25, 1
(mar 2000), 43–82. https://doi.org/10.1145/352958.352982

[8] Benjamin A Steer, Alhamza Alnaimi, Marco ABFG Lotz, Felix Cuadrado, Luis M
Vaquero, and Joan Varvenne. 2017. Cytosm: Declarative property graph queries
without data migration. In Proceedings of the Fifth International Workshop on Graph
Data-management Experiences & Systems. 1–6.

[9] Konstantinos Xirogiannopoulos, Virinchi Srinivas, and Amol Deshpande. 2017.
Graphgen: Adaptive graph processing using relational databases. In Proceedings
of the Fifth International Workshop on Graph Data-management Experiences &
Systems. 1–7.

3929

https://janusgraph.org/
https://doi.org/10.1145/3447772
https://doi.org/10.1145/352958.352982

	Abstract
	1 Introduction
	2 System Overview
	2.1 Query Plan Generation
	2.2 Plan Optimization
	2.3 Execution and Graph Operation Interfaces

	3 Demonstration
	3.1 Scenario 1: Graph Query across Data Sources
	3.2 Scenario 2: Graph Database Development

	4 Related Work
	Acknowledgments
	References

