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ABSTRACT

Steered query optimizers address the planning mistakes of tradi-

tional query optimizers by providing themwith hints on a per-query

basis, thereby guiding them in the right direction. This paper in-

troduces QO-Insight, a visual tool designed for exploring query

execution traces of such steered query optimizers. Although steered

query optimizers are typically perceived as black boxes, QO-Insight

empowers database administrators and experts to gain qualitative

insights and enhance their performance through visual inspection

and analysis.
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1 INTRODUCTION

Query optimizers are highly complex software systems. Typically,

large engineering teams develop them to serve various workloads

under different conditions. As a result, optimizers employ multiple

heuristics and tuning knobs coupled with cost models based on

statistics and estimates, which increases the risk of query planning

mistakes that may lead to slower queries. To overcome this long-

standing problem, researchers have recently turned to learning-

based solutions [14].

The Bandit optimizer (Bao) provides an ML-based, practical en-

hancement to a traditional query optimizer [6]. Given a collection of

hint-sets, where each hint-set defines which subset of query rewrite

rules should be considered in query planning, Bao learns to steer a

traditional query optimizer by choosing the right hint-set for every

incoming query. This way, many planning mistakes of traditional

query optimizers can be avoided. Since the first Bao-for-PostgreSQL

prototype, Bao has been applied to several commercial and open-

source optimizers, including its production use at Microsoft [13].
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In our recent work, we have further extended Bao with a novel

hint-set discovery approach, generalizing it into an open-source

steering framework called AutoSteer, which is applicable to many

SQL databases [1].

While steered query optimizers have been shown to outperform

traditional query optimizers in various benchmarking studies [1, 6,

8, 13], there has been little work into why query plans generated by

learned query optimizers outperform those generated by traditional

optimizers. In other words, detailed qualitative evaluations are

needed to better analyze traditional query optimizers compared to

their steered counterparts. This observation motivated us to build

QO-Insight ś the visual exploration tool we propose in this paper.

QO-Insight accepts query execution traces from a steered query

optimizer as input and provides a visual front end to interactively

analyze these traces to gain insights. Key design features of our

tool include (i) multiple exploration modes (query-centric vs. rule-

centric), (ii) support for multiple performance metrics and their

arbitrary combinations (e.g., latency, number of page spills), (iii)

visual comparison of query plans along with their important meta-

data, and (iv) support for interactive drill-downs and aggregations

to efficiently retrieve the relevant information.

We will demonstrate QO-Insight and its usefulness through two

demonstration scenarios. The first one shows how a database ad-

ministrator (DBA) can use QO-Insight’s query-centric exploration

mode to tune workloads according to their custom requirements.

The second one shows how a query optimization expert (QOE) can

leverage QO-Insight’s rule-centric exploration mode to find prob-

lematic patterns and weaknesses in the underlying query optimizer.

Through the presentation of these example usage scenarios, we

hope to expose our audience to the technology behind steered query

optimizers and their impact on improving query performance.

2 RELATED WORK

Both query optimizers and visualization tools to interactively an-

alyze them through the plans they generate have been popular

demonstration topics at past database conferences. A handful of

these focus on debugging queries for logical correctness (e.g., Habi-

tat [3] for recursive queries and I-Rex [7] for provenance-based

comparative testing), while most ś like QO-Insight ś focus on

understanding issues related to query performance. For example,

Picasso [4] provides a suite of diagrams that qualitatively and quan-

titatively describe the plan choicesmade by an optimizer; QE3D [11]

enables three-dimensional visualization for analyzing the perfor-

mance of distributed query plans; Candomble [9] is for interactively

examining plans for hardware-conscious query optimization. There
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Figure 1: One of the recently proposed steering approaches connects to a SQL database, uses its exposed knobs to steer query

optimization 1 , and serializes query plans and performance results 3 . QO-Insight loads and transforms the data either on a

dedicated server 4 or on the client’s browser 5 , and provides it to the user client which allows for interactive exploration 6 .

are also tools built specifically to support database education. For

example, DBInsight [10] visualizes query processing pipelines end

to end; MOCHA [12] explores the impact of alternative physical

operator choices on the query execution plan of a given SQL query.

Closer to our work, Phints [2] provides a framework for visually

specifying query hints in Microsoft’s SQL Server so that DBAs can

debug poorly performing queries and identify and force hints that

would lead to better plans.

While generally similar in spirit to all of these previous visual

query optimizer tools, QO-Insight’s key novelty lies in its focus on

the newly emerging class of steered query optimizers [1, 6, 8, 13].

These optimizers integrate anML-based adaptive feedback loop into

traditional query optimizers while leveraging their query hinting

mechanisms by selectively turning off optimizer rules that may lead

to planning mistakes. This process generates much training data

with rich information on the underlying database and its optimizer’s

behavioral patterns across various workloads and performance met-

rics. QO-Insight provides a convenient interface for users to visually

explore these patterns ś not only to understand when and why

adaptive steering is helpful but also to discover ways to improve

the native optimizer itself to deliver better query performance.

3 SYSTEM OVERVIEW

This section describes QO-Insight’s data generation, the data inges-

tion, the user interface, and the query plan matching algorithm.

3.1 Data Generation

As shown in Figure 1, QO-Insight works with many of the recently

proposed approaches in [1, 6, 8, 13] that leverage the databases’

exposed knobs to steer query optimization 1 . Next, the explored

query plans and performance measurements 2 are exported and se-

rialized, e.g., to a JSON file or an SQLite database 3 . The evaluation

results are structured as follows: workloads contain an arbitrary

number of queries, for which the steering approach generates one

or more query plans and collects at least one measurement for each

plan. Based on the measurements, we evaluate the query plan per-

formance by considering several metrics, such as the wall time, the

number of page accesses, and the memory footprint. The proposed

schema allows QO-Insight to extract meaningful results and to ap-

ply drill-downs and aggregations efficiently during data ingestion.

At https://github.com/christophanneser/QO-Insight, users can

start exploring QO-Insight using three workloads collected with

AutoSteer [1] for PostgreSQL: the Join Order Benchmark [5] (137

queries) and TPC-H with scale factors 1 and 10 (22 queries each).

3.2 ETL and Data Ingestion

Before users can explore the evaluation results in QO-Insight, we

need to extract, transform, and load (ETL) the data into a format

processable by the user client. We require efficient data processing

to allow users to drill down and aggregate the results interactively,

providing only the data the client needs. QO-Insight provides two

options to perform the ETL steps: First, data processing can be per-

formed on a dedicated backend server 4 to analyze large datasets,

while datasets smaller than 4GB can be processed directly inside

the browser 5 . We implement an efficient, dedicated ETL server,

which exposes the data via REST endpoints 6 . The second option

leverages SQLite-Wasm to preprocess small datasets entirely in the

browser, offloading computation from the dedicated backend server

to the client’s device.

All endpoints allow the clients to apply filters to fetch only the

required data. E.g., the serialized query plans attributed to 90% of

the size of the result. However, QO-Insight does not need them for

most of its functionality.

3.3 QO-Insight’s User Interface

Figure 2 provides an overview of QO-Insight’s user interface, which

comprises multiple components that allow DBAs and QOEs to

efficiently retrieve the information they are interested in. To the

left side, QO-Insight has a main menu A - C that allows users

to select how the data is visualized, what data they want to explore,

and how the performance scores are calculated.

A Exploration Mode. Users can switch between a query-centric

and a rule-centric exploration mode. In the query-centric mode, QO-

Insight aggregates the evaluation results (e.g., the latency or the

memory improvements) by queries or workloads. This mode sup-

ports DBAs and shows them the queries and workloads that can be

improved the most. Contrary, the rule-centric mode aggregates the

results according to hint-sets and shows QOEs those rules that had

the most significant impact on performance.

B Data Selection. The data selection component allows users to

define what data they want to explore. In the query-centric mode,

three drop-down menus enable users to select a database instance

and to drill down to workloads and queries, for which QO-Insight

should present the results. Once the data selection changes, the

results shown in D , E , and F will update accordingly. In the rule-

centric mode, B looks slightly different than in Figure 2, allowing

users to select hint-sets.

C Performance Score. QO-Insight supports user-defined per-

formance scores to quantify and evaluate query plans. The overall
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Figure 2: Screenshot of QO-Insight’s user interface showing the query-centric mode when selecting a database and a workload.

score can be any combination of individual performance metrics,

such as latency, number of processed rows, number of accessed pages,

and number of pages spilled to disk, depending on what data the

steering tool or the database makes available. Users can adjust the

weight of each metric via sliders. When they apply new weights,

QO-Insight compares each performance number to the default

query plan, calculates the relative changes, and multiplies them

with the user-defined weights, which results in the overall score,

which will be higher for better plans, 0 for the default plan, and

negative for worse plans.

Once QO-Insight has calculated the performance scores for the

individual query plans, it aggregates the query and workload scores

in the query-centric and the hint-sets scores in the rule-centric

mode. QO-Insight defines the query score as the highest score

achieved by one of the steered query plans and the workload score

as the weighted average of all query scores belonging to that work-

load. To calculate the weighted average, QO-Insight sums the in-

dividual metrics of the best-scoring and the default query plans

and, as before, multiplies the relative changes with the user-defined

weights. QO-Insight calculates the performance scores within the

user client without requiring any other interactions with the server.

D - E Displaying Performance Results. Depending on the set-

tings in the main menu, QO-Insight visualizes the selected data

in two ways: D leverages a bar chart to show the performance

scores for workloads, queries, or query plans in the query-centric

mode and the performance scores of hint-sets or their query plans

in the rule-centric mode. The bars are sorted according to their

performance score, allowing our users to focus on the queries hav-

ing the most significant improvement potential. E provides more

information, such as the number of accessed and spilled pages.

We designed all components for interactivity. For example, users

can filter, sort, and export tables. Furthermore, they can click on

bars or table rows to drill down into workloads, queries, hint-sets,

and query plans, allowing for interactive exploration.

F Comparing Query Plans. When showing the results for a

single query in the query-centric mode, QO-Insight’s users can

select two query plans by clicking on the bars, which opens F in

full-screen mode and shows the two query plans side-by-side. We

use the matching algorithm from Section 3.4 to identify common

nodes and to highlight the differences between the two plans. When

hovering over a matched node, both nodes are highlighted in blue,

and a tooltip provides more details. Furthermore, users can switch

between the estimated and the actual number of rows processed by

each operator, configurable through the toggle in G .

I Upload Trace Files.QO-Insight provides two methods for data

ingestion (cf. Section 3.2). For the analysis of large database traces,

a dedicated backend server is employed. Alternatively, small trace

files, with sizes up to 4 GB, can be seamlessly processed within the

browser using SQLite Wasm. Users can submit their custom trace

files by clicking on the upload button in the app bar I .

3.4 Comparing Query Plans with DiffPlan

Both DBAs and QOEs can use QO-Insight to explore steered query

optimizers. As explained in Section 1, the steering approach uses

hint-sets that turn the database’s exposed knobs on and off to

generate new, alternative query plans. This approach has demon-

strated effectiveness across various systems, such as PostgreSQL [6],

PrestoDB [1], and Microsoft SCOPE [8]. It improves query perfor-

mance by up to 90% and helps QOEs identify weaknesses in exist-

ing optimizers by generating concrete counter-examples for which

the optimizer performed poorly. However, comparing query plans

becomes increasingly more complex the more tables are joined.

Therefore, we implemented DiffPlan, a simple matching algorithm

for query plans that finds common nodes and detects differences.

It consists of three steps:

(1) Top-Down: First, it matches the root nodes and then traverses

both trees downwards while identifying equal nodes.

(2) Bottom-Up: For the first query plan, we store all leaf nodes

(e.g., table scans and materialized views) in a hash set L. Then,

we traverse the leaf nodes of the second plan and calculate

their matching pipeline 𝑝 for each matching node 𝑙 ∈ L. When
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there are multiple matching leaf nodes in L, we select those

leaf nodes having the longest matching pipeline 𝑝 in common.

(3) Fuzzy Matching: For each leaf node in the first plan, we tra-

verse the tree bottom-up until we find a matched node 𝑛1 with

an unmatched parent, followed by another upwards traversal

to the next matched node 𝑛2. Next, we hash the unmatched

nodes between 𝑛1 and 𝑛2 and search for potential matches in

the path between nodes𝑚1 and𝑚2, with𝑚𝑘 being the node in

the second plan matched to node 𝑛𝑘 from the first plan.

Currently, we use a simple equality check, where inner nodes

must have the same operator type and implementation details and

leaf nodes must scan the table or the materialized view. We will

extend DiffPlan to allow for custom equality criteria in the future.

We use the compiler Emscripten to translate the C++ code to

WebAssembly and run it inside the browser at near-native speed.

4 DEMONSTRATION SCENARIOS

This section demonstrates how users will interact with QO-Insight.

Database Admins (DBAs). Let us now walk through a typical sce-

nario where a DBA aims to optimize frequently running workloads.

The DBA previously used one of the approaches [1, 6, 8, 13] to

steer the PostgreSQL optimizer for different workloads running on

a cloud server. After loading the dataset directly into QO-Insight’s

user interface (not shown here), she uses A to switch to the query-

centric exploration mode, which shows the potential improvements

for each workload in a bar chart.

By clicking on the bar with the most significant improvements,

the DBA drills down to an overview of the workload’s queries and

their potential gains and B updates accordingly. As the selected

workload belongs to a dashboard comprising many widgets, the

DBA is interested in the tail latencies, which she sorts in descending

order in the table E . For example, the longest-running query takes

over 11 seconds to execute, but the steering approach found an

alternative plan that reduces the latency to 0.5 seconds.

By clicking on the query row in the table, the DBA drills down

again, and QO-Insight now shows all alternative query plans. How-

ever, as the database instance runs in the cloud, the DBA must

consider other metrics, such as memory consumption and network

transfers, to reduce the operating costs. Therefore, she changes the

performance metric in C to include the number of processed rows,

accessed, and spilled pages. Then, she selects the hint-set yielding

the best score and applies it to the production workload. E.g., she

could instruct the DBMS to apply the hint-set automatically.

Query Optimization Experts (QOEs). Let us now walk through

a second scenario in which a QOE wants to understand how she

can improve the design and the implementation of the database’s

optimizer. As in the previous scenario, she first loads the data into

QO-Insight. This time, however, the QOE switches to the rule-

centric exploration mode in A , which aggregates the evaluation

results by hint-sets rather than by workloads or queries. Component

D now shows a bar chart with the potential improvements for

each hint-set, sorted in descending order, and supporting her in

identifying the hint-sets with the most potential for improvements.

Once she clicks on one of the bars, QO-Insight drills down again

and shows a list of queries now, for which the hint-set improved

the performance score compared to the query’s default plan. Each

of these plans is a counter-example that shows that better plans

exist that the database’s optimizer could not find.

When she clicks on one of the bars now, QO-Insight shows the

default and the steered query plans side-by-side in F . Based on the

matching algorithm described in Section 3.4, nodes that are different

between the two plans are visually highlighted in red. Now, she

can interactively explore both plans and, e.g., switch between the

estimated and the actual cardinalities G , indicated by line widths.

As she investigates an increasing number of query plans with

QO-Insight, she identifies frequently occurring and problematic

patterns in PostgreSQL: (1) The larger tables are frequently chosen

for the build sides of hash joins (e.g., H ) despite the optimizer’s

awareness of their cardinality. (2) Index scans negatively impact

the execution time frequently due to underestimated selectivities.

Overall, QO-Insight provides a user-friendly interface for quali-

tatively exploring steered query optimizers, supporting DBAs and

QOEs in identifying performance bottlenecks.

5 CONCLUSIONS

This paper introduced QO-Insight, a visualization tool allowing

users to inspect steered query optimizers. Our usage scenarios

have demonstrated how QO-Insight supports DBAs in tuning their

database workloads and QOEs in improving the query optimizer.
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