
PSFQ: A Blockchain-based Privacy-preserving and Verifiable
Student FeedbackQuestionnaire Platform

Wangze Ni
HKUST

Hong Kong SAR, China
wniab@cse.ust.hk

Pengze Chen
HKUST

Hong Kong SAR, China
pchenax@cse.ust.hk

Lei Chen
HKUST, HKUST(GZ)

Hong Kong SAR, China
leichen@cse.ust.hk

ABSTRACT
Recently, more and more higher education institutions have been
using student feedback questionnaires (SFQ) to evaluate teaching.
However, existing SFQ systems have two shortcomings. The first
is that the respondent of an SFQ is not anonymous. The second is
that the statistical report of SFQs can be manipulated. To tackle
these two shortcomings, we develop a novel SFQ system, namely
PSFQ. In PSFQ, the respondent of an SFQ is mixed with multiple
users by a ring signature. PSFQ uses an advanced ring signature
approach to minimize the size of a ring signature when anonymity
satisfies the requirements. Thus, the first shortcoming has been
overcome. Moreover, all answers are encrypted by homomorphic
encryption and stored on the blockchain, enabling users to verify
the correctness of the statistical reports. Our demonstration will
showcase how PSFQ provides confidential SFQ responses while
ensuring the correctness of statistical reports.

PVLDB Reference Format:
Wangze Ni, Pengze Chen, and Lei Chen. PSFQ: A Blockchain-based
Privacy-preserving and Verifiable Student Feedback Questionnaire
Platform. PVLDB, 16(12): 3918 - 3921, 2023.
doi:10.14778/3611540.3611585

1 INTRODUCTION
Student feedback questionnaires (SFQs) are widely used in higher
education institutions to evaluate teaching effectiveness [8]. Both
academia [5] and industry [3] have developed various SFQ systems.

In SFQ systems, institutions/lecturers release SFQs to students
and ask them to score some items, such as the courses’ quality [2].
After collecting answers, systems generate statistical reports [1]. To
prevent Sybil attacks, students are required to verify their identities
before answering an SFQ. In Sybil attacks [6], adversaries send a
large number of answers to systems to manipulate statistical reports
or to crash the system by exhausting its computing resources.

However, existing SFQ systems have two shortcomings. First, the
identity verification process against Sybil attacks reveals who the
respondents are, which can deter students from providing honest
feedback [10]. Second, the lack of transparency in the generation of
statistical reports can lead to manipulation of results by adversaries
or the SFQ system itself. This lack of transparency makes it difficult

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611585

for students and lecturers to detect manipulation, raising doubts
about the accuracy of results [12].

To overcome these two shortcomings, this paper proposes a
novel SFQ system, namely PSFQ. PSFQ is built on a permissioned
blockchain managed by a committee consisting of both lecturers
and student representatives. Only the committee is authorized to
record data on the blockchain, but anyone can access the data.
When SFQs are released to students, PSFQ generates one-time sur-
vey codes (SC) for students. No one can infer a student by a SC.
A student generates a qualification certificate (QC) using her SC
and multiple others’ SCs. A QC is a ring signature (RS) that proves
that the respondent owns one of the SCs without revealing the
respondent [9]. Some SCs in a QC can be eliminated by analyzing
the related QCs. We use advanced approaches proposed in our prior
work [9] to select SCs to minimize the size of a QC while meeting
the privacy requirement. The privacy requirement of a student is
the threshold of the number of un-eliminated SCs in a QC. Thus,
PSFQ prevents Sybil attacks by SCs and ensures that respondents’
identities remain confidential, addressing the first shortcoming. In
addition, PSFQ stores each answer on the blockchain. The scores
in answers are confused by noise and encrypted by a Homomor-
phic encryption function 𝐻 (𝑥) [13] (i.e., 𝐻 (𝑥) + 𝐻 (𝑦) = 𝐻 (𝑥 + 𝑦)).
The committee releases the average score and the sum of noise in
the statistical report, which can be verified by students and lectur-
ers using the encrypted raw scores. Thus, PSFQ solves the second
shortcoming. In summary, our work contributes in two aspects:
• The system provides people with a platform to answer SFQs

confidentially and verify the correctness of statistical reports.
• The system is equipped with an advanced approach, TokenMagic,

proposed in our prior work [9]. TokenMagic minimizes the size
of a QC while meeting the privacy requirement.
The rest of this paper is organized as follows. Section 2 intro-

duces some preliminaries. Section 3 presents an overview of PSFQ.
Section 4 demonstrates five scenarios for using PSFQ. Section 5
concludes our paper.

2 PRELIMINARIES
Permissioned blockchain. In permissioned blockchains [4], com-
mon users only have read access to the transactions on the blockchain.
The writing access is restricted to a committee of authorized mem-
bers who do not trust each other. In a permissioned blockchain,
a user first sends a transaction to the committee. Then, the com-
mittee reaches a consensus with a consensus protocol. Next, the
committee packages the transaction into a block 𝑏 and appends 𝑏
to the blockchain. A block 𝑏 ′ contains a hash of transactions in 𝑏 ′
and is linked with its previous block 𝑏 by the hash of 𝑏. Thus, users
can verify whether the transactions in a block 𝑏 have been tampered

3918

https://doi.org/10.14778/3611540.3611585
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611585


Figure 1: The System Architecture of PSFQ.

with by checking that the hash generated by the transactions in 𝑏

equals the hash contained in 𝑏’s next block.
Asymmetric Encryption Scheme. In an asymmetric encryp-

tion scheme, a public key (PK) 𝑝𝑘 is matched with a unique secret
key (SK) 𝑠𝑘 , where 𝑝𝑘 = 𝑠𝑘 ·𝐺 , and 𝐺 is a base point [11]. A PK is
published, while a SK is kept secret. Data encrypted with a PK can
only be decrypted with its corresponding SK.

Ring Signature Scheme. An RS scheme [9] enables an entity to
prove that it belongs to a specific set of entities without revealing
which one it is. For instance, if a user wants to prove that she knows
the SK of 𝑝𝑘1, she makes an RS 𝑟𝑠 as follows: 1) She selects a set of
other PKs 𝑝𝑘 and inserts 𝑝𝑘1 into 𝑝𝑘 , denoted by 𝑝𝑘

′
; 2) She runs

an RS generation algorithm 𝑔𝑒𝑛() to generate an RS 𝑟𝑠 over 𝑝𝑘
′

using a set of random numbers 𝑅𝑁 and the SK 𝑠𝑘1. An RS contains
the set 𝑝𝑘

′
of PKs and a hash image ℎ𝑖1 of 𝑠𝑘1. The hash image of a

SK is unique, and no one can infer the SK by a hash image. With 𝑟𝑠 ,
verifiers can prove that 𝑟𝑠 is made by a user who knows the SK of
one in 𝑝𝑘

′
, but they cannot tell which one it is.

Diffie-Hellman Exchange Scheme. A Diffie-Hellman (D-H)
exchange scheme [7] is used to generate a PK and a SK for a user
without interaction. We use an example to present a D-H key ex-
change scheme. Suppose a PK of Bob is 𝑝𝑘𝐵 , and the SK is 𝑠𝑘𝐵 .
Suppose F𝑠 () is a cryptographic hash function. Alice first randomly
selects a number 𝜔 and generates 𝑝𝑘 ′

𝐵
= F𝑠 (𝜔 · 𝑝𝑘𝐵) · 𝐺 . Then,

Alice generates Ω = 𝜔 · 𝐺 and publishes 𝑝𝑘 ′
𝐵
as well as Ω. Once

Bob observes Ω, he calculates 𝑠𝑘 ′
𝐵
= F𝑠 (Ω · 𝑠𝑘𝐵). Since 𝑠𝑘 ′𝐵 · 𝐺 =

𝑝𝑘 ′
𝐵
, 𝑠𝑘 ′

𝐵
is the SK of 𝑝𝑘 ′

𝐵
.

3 SYSTEM
3.1 System Architecture
PSFQ is built on a permissioned blockchain and involves two roles:
Client and Committee Member (CM). Clients, who are typically stu-
dents or lecturers, only have read access to data on the blockchain.
In contrast, CMs have both read and write access, store all data on
the blockchain, and are online all the time to process transactions.
CMs are elected regularly. To be convincing, a committee includes
officials of the institution and representatives of students/lecturers.
A committee has a public-secret key pair, which is used to encrypt
and decrypt students’ answers. Once a new committee 𝑐 is elected,
𝑐 generates a new public-secret key pair and publishes the PK on
PSFQ. Thus, a CM can only read data during her tenure.

Figure 1 depicts the architecture of PSFQ. There are many cryp-
tographic tools in the User Client layer. A client uses cryptographic

tools to encrypt her answers, generate QCs, and verify the cor-
rectness of reports. A CM uses cryptographic tools to verify the
validness of QCs, decrypt answers, and generate reports. A client
stores some files in her device, e.g., her SK and answers. A CM stores
all transactions on the blockchain in her device. PSFQ provides APIs
for users to propose transactions, query data, and synchronize the
databases on their devices with the blockchain. Moreover, PSFQ
implements some protocols. For example, CMs use consensus pro-
tocols to decide the update of the blockchain. Clients and CMs
use communication protocols to send and receive messages. By
administration protocols, students/lecturers register accounts or
participate in elections of committee elections.

3.2 Workflow
Step 1. Release SFQs. Institutions or lecturers (simplified as pub-
lishers) first generate SFQs. Then, publishers make a one-time SC
for each student. An SC is a PK generated by the student’s PK using
the D-H exchange scheme. An SC can only be used to propose an
answer. Publishers publish SCs and send SFQs to students.

Step 2. Answer SFQs. A student𝑢𝑖 writes the answers. For each
score 𝑠𝑖, 𝑗 over an item 𝜒 𝑗 , 𝑢𝑖 selects a student noise 𝑠𝑛𝑖, 𝑗 . Then, 𝑢𝑖
identifies her survey codes (SC) 𝑠𝑐 and generates its secret key (SK)
𝑠𝑘 , namely the survey key, using the D-H exchange scheme. Next,𝑢𝑖
selects a set 𝑆𝐶 ′ of SCs released with the SFQ and inserts 𝑠𝑐 into 𝑆𝐶 ′

as 𝑆𝐶 . The number of SCs in 𝑆𝐶 represents 𝑢𝑖 ’s privacy requirement.
Then, 𝑢𝑖 generates a qualification certificate (QC) 𝑞𝑐𝑖 , which is an
ring signature (RS) over 𝑆𝐶 ′ using 𝑠𝑘 . Moreover, 𝑢𝑖 makes a mixing
key𝑚𝑘𝑖 for the committee by the committee’s public key (PK) using
the D-H exchange scheme. 𝑢𝑖 packages the answers, the student
noises, and the QC as a transaction 𝑡𝑥𝑖 . 𝑢𝑖 encrypts 𝑡𝑥𝑖 using𝑚𝑘𝑖
and sends the encrypted transaction with𝑚𝑘𝑖 to the committee.
Meanwhile, 𝑢𝑖 stores 𝑡𝑥𝑖 and𝑚𝑘𝑖 in her device.

Step 3. Verify an answer. Once a CM 𝑐𝑚 receives a transaction
𝑡𝑥𝑖 , 𝑐𝑚 first checks if the hash image ℎ𝑖𝑖 in 𝑞𝑐𝑖 has been recorded.
Since the hash image of an SC is unique, if ℎ𝑖𝑖 has been recorded,
the student has proposed an answer. For fairness, a student can
only propose an answer, and the transaction 𝑡𝑥𝑖 whose ℎ𝑖𝑖 has been
recorded will be rejected. Next, 𝑐𝑚 checks if 𝑞𝑐𝑖 is generated by the
owner of one in the SC set using the RA scheme. If 𝑞𝑐𝑖 cannot be
verified, 𝑡𝑥𝑖 will be rejected.

Step 4. Append an answer to the blockchain. 𝑐𝑚 uses the
D-H exchange scheme to calculate a decode key 𝑑𝑘𝑖 , which is the
SK of the mixing key used in 𝑡𝑥𝑖 . 𝑐𝑚 decrypts 𝑡𝑥𝑖 using 𝑑𝑘𝑖 . For
each score 𝑠𝑖, 𝑗 in 𝑡𝑥𝑖 , 𝑐𝑚 selects two random numbers, namely the
committee noise 𝑐𝑛𝑖, 𝑗 and the double noise 𝑑𝑛𝑖, 𝑗 . Then, 𝑐𝑚 sends 𝑡𝑥𝑖 ,
committee noises, and double noises to other committee members.
After reaching a consensus with other committee members, 𝑐𝑚
appends the encrypted 𝑡𝑥𝑖 to the blockchain, attachedwith𝐻 (𝑐𝑛𝑖, 𝑗 ),
𝐻 (𝑑𝑛𝑖, 𝑗 ), 𝐻 (𝑠𝑖, 𝑗 + 𝑐𝑛𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ), and 𝐻 (𝑑𝑛𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ).

Step 5. Release a statistical report. After the expiration of
an SFQ, 𝑐𝑚 generates a statistical report. For each item 𝜒 𝑗 , 𝑐𝑚
publishes the number 𝑁 𝑗 of students scoring 𝜒 𝑗 and the average
scores 𝑣 𝑗 =

∑
𝑖 𝑠𝑖,𝑗
𝑁 𝑗

. Meanwhile, for each 𝜒 𝑗 , 𝑐𝑚 publishes the sum
of students noises 𝑆𝑁 𝑗 =

∑
𝑖 𝑠𝑛𝑖, 𝑗 , the sum of committee noises

𝐶𝑁 𝑗 =
∑
𝑖 𝑐𝑛𝑖, 𝑗 , and the sum of double noises 𝐷𝑁 𝑗 =

∑
𝑖 𝑑𝑛𝑖, 𝑗 .

3919



Figure 2: The Release Interface

Step 6. Verify a statistical report. A user 𝑢𝑖 first checks if her
transaction 𝑡𝑥𝑖 was appended to the blockchain without tamper-
ing. Then, for each 𝜒 𝑗 , 𝑢𝑖 checks whether 𝐻 (𝑣 𝑗 · 𝑁 𝑗 ) + 𝐻 (𝑆𝑁 𝑗 ) +∑
𝑖 𝐻 (𝑐𝑛𝑖, 𝑗 ) equals

∑
𝑖 𝐻 (𝑠𝑖, 𝑗 + 𝑐𝑛𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ) and whether 𝐻 (𝑆𝑁 𝑗 ) +∑

𝑖 𝐻 (𝑑𝑛𝑖, 𝑗 ) equals
∑
𝑖 𝐻 (𝑑𝑛𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ). If two conditions are satis-

fied, the statistical report is correct.

3.3 Core Technique
The resistance to Sybil Attacks. Since each student is assigned a
SC that can only be used once, adversaries cannot propose a large
number of answers to PSFQ. Thus, PSFQ prevents Sybil attacks.

The generation of QCs. QCs mix the respondents of answers. A
QC’s anonymity is determined by its SC set. For example, there are
4 SC sets, 𝑆𝐶1 = {𝑠𝑐1, 𝑠𝑐2}, 𝑆𝐶2 = {𝑠𝑐1, 𝑠𝑐2}, 𝑆𝐶3 = {𝑠𝑐1, 𝑠𝑐2, 𝑠𝑐3},
and 𝑆𝐶4 = {𝑠𝑐1, 𝑠𝑐4, 𝑠𝑐5}. Each SC can only be used once, and an SC
set includes an SC used for the answer. Thus, we can deduce that 𝑠𝑐1
and 𝑠𝑐2 are used in 𝑆𝐶1 and 𝑆𝐶2. Thus, 𝑠𝑐1 and 𝑠𝑐2 can be eliminated
from 𝑆𝐶3, and the anonymity of 𝑆𝐶3 is 0. Since 𝑠𝑐1 cannot be used
in 𝑆𝐶4, 𝑆𝐶1 and 𝑆𝐶4 have the same anonymity (i.e., the probability
that adversaries successfully find the SC that was used by a random
guess), but 𝑆𝐶4 includes more SCs than 𝑆𝐶1. The size of a QC is
related to the number of SCs. Thus, the QC using 𝑆𝐶4 causes higher
communication and storage costs. PSFQ employs an RA scheme,
TokenMagic, proposed in our prior work [9]. TokenMagic combines
several existing SC sets to generate a new SC set such that the SCs
in the new SC set will not be eliminated. Since different SC sets
contains different numbers of SCs, combining different SC sets leads
to a different size of a new SC set. TokenMagic intelligently selects
existing SC sets to minimize the size of a QC while meeting the
anonymity requirement set by the client.

The privacy protection. The respondent of an answer is con-
fused by a QC. Each score 𝑠𝑖, 𝑗 in an answer is confused by a student
noise 𝑠𝑛𝑖, 𝑗 . Even if adversaries know the function𝐻 () and the value
𝐻 (𝑠𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ), they cannot infer 𝑠𝑖, 𝑗 . Moreover, an answer is en-
crypted by a mixing key, whose SK is only known to the committee.
Thus, adversaries cannot decrypt the answer.

The correctness of an answer on the blockchain. A user
verifies if her answer is correctly appended to the blockchain by
checking if the answer on the blockchain equals the answer stored
in her device. Besides, she checks if 𝐻 (𝑠𝑖, 𝑗 + 𝑐𝑛𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ) equals

Figure 3: The Answer Interface.

𝐻 (𝑐𝑛𝑖, 𝑗 ) + 𝐻 (𝑠𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ). She also checks if 𝐻 (𝑑𝑛𝑖, 𝑗 ) + 𝐻 (𝑠𝑛𝑖, 𝑗 )
equals 𝐻 (𝑑𝑛𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ). If all conditions are satisfied, the answer is
correctly appended.

The correctness of a report on the blockchain. If no student
declares that her answerwas incorrectly recorded on the blockchain,
𝐻 (𝑐𝑛𝑖, 𝑗 ),𝐻 (𝑑𝑛𝑖, 𝑗 ),𝐻 (𝑠𝑖, 𝑗 +𝑐𝑛𝑖, 𝑗 +𝑠𝑛𝑖, 𝑗 ), and𝐻 (𝑑𝑛𝑖, 𝑗 +𝑠𝑛𝑖, 𝑗 ) are cor-
rect. Thus, if

∑
𝑖 𝐻 (𝑑𝑛𝑖, 𝑗 )+𝐻 (𝑆𝑁 𝑗 ) equals𝐻 (𝑑𝑛𝑖, 𝑗+𝑠𝑛𝑖, 𝑗 ), 𝑆𝑁 𝑗 is cor-

rect. Then, if 𝐻 (𝑣 𝑗 ·𝑁 𝑗 ) + 𝐻 (𝑆𝑁 𝑗 ) +
∑
𝑖 𝐻 (𝑐𝑛𝑖, 𝑗 ) equals

∑
𝑖 𝐻 (𝑠𝑖, 𝑗 +

𝑐𝑛𝑖, 𝑗 + 𝑠𝑛𝑖, 𝑗 ), 𝑣 𝑗 is correct.

3.4 Differences from the Existing Systems
In existing systems [3, 5], the respondent of an answer is clear.
However, in PSFQ, the respondent of an answer is confused by
a QC. Thus, students dare to give honest feedback [10] in PSFQ.
In some systems [3], only the system knows answers, preventing
students/lecturers from verifying the correctness of reports. Al-
though some systems [5] enable verification, they reveal answers
to the public. In contrast, PSFQ employs homomorphic encryp-
tion and noise to obscure answers before publishing, allowing for
verification without compromising confidentiality. As a result, stu-
dents/lecturers can verify report while maintaining privacy.

4 DEMONSTRATION
In our demonstration, attendees, acting as lectures and students,
interactively experience using PSFQ to release SFQs, answer SFQs
and verify statistical reports. Suppose an attendee Alice is a lecturer,
and Bob is a student attendee enrolled in Alice’s class.

Scenario 1. Design and release SFQs. Alice designs her SFQ
in the Release interface, shown in Figure 2. She first selects the
class for which the SFQ is intended. She then adds questions in the
Questionnaire panel. Once the SFQ is ready, she generates one-time
SCs for students, which are displayed in the Student List panel.
Finally, Alice releases the SFQ.

Scenario 2. Answer an SFQ. Once Alice releases her SFQ, Bob
can answer the SFQ in the Answer interface, shown in Figure 3.
Bob first selects Alice’s SFQ in the selection bar. Then, he answers
the SFQ. For each score over an item, Bob clicks the Noise button
to generate a student noise, displayed to the right of the button.
Bob then clicks the Generate a Survey Key button, which displays
a waiting symbol while the survey key is being generated. Once
the mixing key has been generated, a green tick replaces the wait

3920



Figure 4: The Query Interface

symbol. Then, Bob inputs a privacy requirement and generates the
QC. Next, Bob clicks the buttons to generate a mixing key, encrypt
the answer, and submit the answer.

Scenario 3. Reminder Students to Answer. Although the
respondent of an answer is mixed by a QC, PSFQ still can calculate
the answer probability (AP) that a student has answered a SFQ. For
example, there are two QCs whose SC sets are 𝑆𝐶1 = {𝑠𝑐1, 𝑠𝑐2} and
𝑆𝐶2 = {𝑠𝑐2, 𝑠𝑐3}. Suppose 𝑠𝑐1 is Jack’s SC, 𝑠𝑐2 is Bob’s SC, and 𝑠𝑐3 is
Tom’s SC. Then, the AP of Jack is 1

3 , the AP of Bob is 2
3 , and the AP

of Tom is 1
3 . Alice appreciates the privacy-preserving effect of PSFQ

by observing APs. Then, Alice sets a threshold 𝑝 of APs and sends
reminders to students whose APs are lower than 𝑝 .

Scenario 4. Query data. Alice and Bob can query data on the
blockchain in the Query interface, shown in Figure 4. Alice and Bob
first appreciate the throughput of PSFQ by the dashboard at the
bottom of the page. The dashboard shows the number of transac-
tions per day, the sum of answers/reports on the blockchain, and
the distribution of the departments of the SFQs. Since the transac-
tion including Bob’s answer is not listed in the recent transaction
list, Bob clicks the View All Blocks/Transactions button to view all
blocks/transactions. Alice wants to see the transactions in the latest
block. Thus, she clicks the index of the latest block to see the details.

Scenario 5. Verify a report. After a while, Alice’s SFQ expires
and a statistical report is generated. Alice and Bob verifies the report
in the Verify interface, shown in Figure 5. They first enter the hash
of the transaction containing the report in the search box in the
Query interface. After clicking the transaction, the Verify interface
for the report is invoked. Then, the transaction information (e.g.,
hash, time) is displayed in the upper left corner of the page. The
course information (e.g., term, lecturer) is displayed in the upper
right corner of the page. The details of the report are displayed
below the information panel. Alice and Bob verify the correctness of
each average score by clicking the Check buttons. If the committee
manipulates an average score, a red exclamation symbol appears.
If the average score is correct, a green tick symbol appears.

5 CONCLUSION
Our demo introduces a new SFQ system called PSFQ. PSFQ enables
users to answer SFQs confidentially and verify the correctness of
statistical reports. To achieve anonymitywhileminimizing costs, we

Figure 5: The Verify Interface

have employed a novel technique called TokenMagic [9]. Our demo
allows the audience to interactively explore how PSFQ protects
students’ privacy and guarantees the correctness of reports.

6 ACKNOWLEDGMENT
Lei Chen’s work is partially supported by National Science Founda-
tion of China (NSFC) under Grant No. U22B2060, the Hong Kong
RGC GRF Project 16213620, RIF Project R6020-19, AOE Project
AoE/E-603/18, Theme-based project TRS T41-603/20R, China NSFC
No. 61729201, Guangdong Basic and Applied Basic Research Foun-
dation 2019B151530001, Hong Kong ITC ITF grants MHX/078/21
and PRP/004/22FX, Microsoft Research Asia Collaborative Research
Grant and HKUST-Webank joint research lab grants. Corresponding
author: Lei Chen.

REFERENCES
[1] [n.d.]. [Online] Statistics Reports. https://oidr.hkust.edu.hk/4e.htm, Last ac-

cessed on 2023-07-02.
[2] [n.d.]. [Online] Student Feedback Questionnaires. https://student-survey.hkust.

edu.hk/web/4a1.htm, Last accessed on 2023-07-02.
[3] [n.d.]. [Online] SuFo. https://play.google.com/store/apps/details?id=my.edu.

uitm.sufo&hl=zh_HK&gl=US&pli=1, Last accessed on 2023-07-02.
[4] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Caper: a

cross-application permissioned blockchain. Proceedings of the VLDB Endowment
12, 11 (2019), 1385–1398.

[5] Atharv Chandratre and Shubham Garg. 2019. Blockchain Based Course Feedback
System. Available at SSRN 3762332 (2019).

[6] John R Douceur. 2002. The sybil attack. In Peer-to-Peer Systems: First Internation-
alWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7–8, 2002 Revised Papers 1.
Springer, 251–260.

[7] Nan Li. 2010. Research on Diffie-Hellman key exchange protocol. In 2010 2nd
International Conference on Computer Engineering and Technology, Vol. 4. IEEE,
V4–634.

[8] Luke Mandouit. 2018. Using student feedback to improve teaching. Educational
action research 26, 5 (2018), 755–769.

[9] Wangze Ni, Peng Cheng, Lei Chen, and Xuemin Lin. 2021. When the recur-
sive diversity anonymity meets the ring signature. In Proceedings of the 2021
International Conference on Management of Data. 1359–1371.

[10] Jennifer Rowley. 2003. Designing student feedback questionnaires. Quality
assurance in education 11, 3 (2003), 142–149.

[11] Moumita Roy, Nabamita Deb, and Amar Jyoti Kumar. 2014. Point generation
and base point selection in ECC: An overview. International Journal of Advanced
Research in Computer and Communication Engineering 3, 5 (2014), 6711–6713.

[12] Don F Westerheijden, Veerle Hulpiau, and Kim Waeytens. 2007. From design
and implementation to impact of quality assurance: an overview of some studies
into what impacts improvement. Tertiary Education and Management 13 (2007),
295–312.

[13] Xun Yi, Russell Paulet, Elisa Bertino, Xun Yi, Russell Paulet, and Elisa Bertino.
2014. Homomorphic encryption. Springer.

3921

https://oidr.hkust.edu.hk/4e.htm
https://student-survey.hkust.edu.hk/web/4a1.htm
https://student-survey.hkust.edu.hk/web/4a1.htm
https://play.google.com/store/apps/details?id=my.edu.uitm.sufo&hl=zh_HK&gl=US&pli=1
https://play.google.com/store/apps/details?id=my.edu.uitm.sufo&hl=zh_HK&gl=US&pli=1

	Abstract
	1 Introduction
	2 Preliminaries
	3 System
	3.1 System Architecture
	3.2 Workflow
	3.3 Core Technique
	3.4 Differences from the Existing Systems

	4 Demonstration
	5 Conclusion
	6 acknowledgment
	References

