A Demonstration of DLBD: Database Logic Bug Detection System

Xiu Tang
Zhejiang University, China
tangxiu@zju.edu.cn

Sai Wu”
Zhejiang University, China
wusai@zju.edu.cn

Dongxiang Zhang
Zhejiang University, China
zhangdongxiang@zju.edu.cn

Ziyue Wang Gongsheng Yuan Gang Chen
Zhejiang University, China Zhejiang University, China Zhejiang University, China
ragesi_wang@163.com ygs@zju.edu.cn cg@zju.edu.cn

ABSTRACT

Database management systems (DBMSs) are prone to logic bugs
that can result in incorrect query results. Current debugging tools
are limited to single table queries and struggle with issues like
lack of ground-truth results and repetitive query space exploration.
In this paper, we demonstrate DLBD, a system that automatically
detects logic bugs in databases. DLBD offers holistic logic bug de-
tection by providing automatic schema and query generation and
ground-truth query result retrieval. Additionally, DLBD provides
minimal test cases and root cause analysis for each bug to aid devel-
opers in reproducing and fixing detected bugs. DLBD incorporates
heuristics and domain-specific knowledge to efficiently prune the
search space and employs query space exploration mechanisms
to avoid the repetitive search. Finally, DLBD utilizes a distributed
processing framework to test database logic bugs in a scalable and
efficient manner. Our system offers developers a reliable and effec-
tive way to detect and fix logic bugs in DBMSs.

PVLDB Reference Format:

Xiu Tang, Sai Wu, Dongxiang Zhang, Ziyue Wang, Gongsheng Yuan,

and Gang Chen. A Demonstration of DLBD: Database Logic Bug Detection
System. PVLDB, 16(12): 3914 - 3917, 2023.

doi:10.14778/3611540.3611584

PVLDB Artifact Availability:
The source code, data, and other artifacts have been made available at
https://github.com/xiutangzju/dlbd.

1 INTRODUCTION

Database Management Systems (DBMSs) play an essential role in
today’s software ecosystem, as they provide efficient and reliable
data storage and retrieval mechanisms. However, despite the exten-
sive testing and optimization efforts, query processing in DBMSs
can still suffer from implementation errors, resulting in bugs that
range from crashes to logic bugs. Crash bugs are raised either by the
operating system, or by the process of DBMS. They cause the pro-
cess of DBMS to be forcefully killed, due to limited resources (e.g.,
out of memory) or access to an invalid memory address, etc. How-
ever, the logic bugs are different from crashes, because the query

*Sai Wu is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611584

3914

mysql> SET optimizer_switch='semijoin=off";

mysql> SELECT t1.cO FROM t1 WHERE (t1.cO NOT IN (SELECT
t2.c0 FROM t1 as t2 WHERE t2.c0)) = (t1.c0);
Empty set (0.00 sec)

mysql> SET optimizer_switch='semijoin=on';

mysql> SELECT t1.cO FROM t1 WHERE (t1.cO NOT IN (SELECT
t2.c0 FROM t1 as t2 WHERE t2.c0)) = (t1.c0);
Return 3 rows (0.00 sec)

Figure 1: MySQL’s incorrect semi-join execution.

processing algorithm still runs normally, and the consequence is
that the DBMS fetches incorrect result sets. Crashes are easier to
detect as they typically halt the system, whereas logic bugs can go
unnoticed, leading to incorrect results. In this paper, we focus on
the task of detecting these hidden bombs in DBMSs.

In Figure 1, we illustrate a logic bug of MySQL for join queries.
The bug was first detected by our proposed tool in this paper. Fig-
ure 1 demonstrates a logic bug of semi-join in MySQL 8.0.28. In
this example, the first query returns the correct result set, as it is
executed using the inner hash join algorithm. However, the second
query produces incorrect results due to a logic bug in the implemen-
tation of the semi-join algorithm. Specifically, this is because the
equality was neither pushed down to the materialized sub-query,
nor evaluated as part of the semi-join.

SQLancer [5] is a well-known tool in the field of testing DBMS
for logic bugs. The tool employs several approaches to detect logic
bugs, such as Pivoted Query Synthesis (PQS), Ternary Logic Parti-
tioning (TLP), and Non-optimizing Reference Engine Construction
(NoREC). PQS [6] constructs queries to fetch a randomly selected tu-
ple from a table, while NoREC [4] compares the results of randomly
generated optimized queries and rewritten queries that DBMS can-
not optimize. On the other hand, QPG [1] steers testing towards
exploring a variety of unique query plans. Despite the effectiveness
of these approaches, they still have two limitations when it comes
to a holistic logic bug detection system for databases.

e Previous approaches to verifying the correctness of query
results have adopted the differential testing strategy. This
involves processing a query using different physical plans
within the same database or using different databases. If
the queries return inconsistent result sets, a possible logic
bug is detected. However, this strategy has two major draw-
backs. First, some logic bugs affect multiple physical plans,
resulting in all of them generating the same incorrect re-
sult. Second, when inconsistent result sets are observed,
we must manually check which plan generates the correct

https://doi.org/10.14778/3611540.3611584
https://github.com/xiutangzju/dlbd
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611584
https://www.acm.org/publications/policies/artifact-review-and-badging-current

one, incurring high overheads. A possible solution to these
issues is obtaining the ground-truth results for an arbitrary
testing query, which existing tools do not support.

e The number of queries that can be generated from a given
database schema is exponential to the number of tables and
columns. Enumerating all possible queries for verification is
infeasible. Thus, an effective query space exploration mech-
anism is necessary to automatically generate diversified
and complex queries.

To address these challenges, we propose a database logic bug
detection system DLBD based on our previous work [8] as a rem-
edy for database implementations. The system integrates all our
proposed techniques and has the following features:

Holistic logic bug detection. DLBD provides automatic schema
generation based on the input dataset or schema. To facilitate bug
discovery, DLBD also inserts some artificial noise data into the
generated database. DLBD first converts the database schema into
a graph, then performs automatic query generation by adopting
random walking on the schema graph to select tables for queries.
For a specific query spanning over multiple tables, DLBD can easily
identify its ground-truth results from the input data.

In this way, DLBD can effectively generate (query, result) pairs
for database verification. To reduce developers’ time required to
identify and fix the bugs, DLBD provides minimal test case and
primary root cause analysis. With pause and continue capabilities,
DLBD can be paused during testing and resumed at a later time,
providing a flexible and reliable bug detection process. Overall,
DLBD’s holistic logic bug detection approach is a powerful tool for
identifying and fixing logic bugs in DBMS.

Query space exploration. DLBD incorporates an efficient and
effective query space exploration mechanism that enables com-
prehensive testing of DBMS and early detection of logic bugs. By
leveraging heuristics and domain-specific knowledge, DLBD sig-
nificantly reduces the search space. The novel pruning strategy
employed by DLBD plays a significant role in reducing the number
of redundant queries generated during testing. This strategy identi-
fies and prunes queries that are structurally similar to previously
tested ones, thereby reducing the amount of time and resources
needed for testing. The real-time statistics provided by DLBD are
also instrumental in helping users monitor the progress of testing,
providing valuable insights into the efficacy of the testing process.

2 SYSTEM OVERVIEW

In this section, we provide an overview of DLBD’s architecture. Fig-
ure 2 depicts the architecture of DLBD that consists of the frontend
and the backend. In particular, the frontend creates a web inter-
face and data visualizations for the database schema graph, query
space exploration, and detected bug details and statistics. The back-
end is responsible for schema and query generation, ground-truth
generation, logic bug auto-detection, and query space exploration.

Schema and query generation. To generate a random schema
for database testing, DLBD first applies schema normalization tech-
niques on the inputted wide table to minimize data redundancy.
DLBD leverages data-driven algorithms such as FD discovery [2]
and schema normalization [3] to generate a testing database schema.

3915

Ul with Bootstrap

'8 Database logic bug detection visualization with D3.js
[]
=]
c Customizable]
e [Database schema graph] [auto-detection
L Detected bug details .
and statistics Query space exploration
- Y o _ A
Query ¢ Result
Django Web Server Query tokenizer,
parser & translator
©
c
g Query Data stream
Q
g Java program with schema models, query processing

and data structures

Schema and || Ground-truth Logic bug
query generation generation auto-detection

Query space
exploration

Figure 2: The architecture of DLBD system.

Additionally, DLBD incorporates a noise injection technique that
increases the probability of detecting logic bugs.

To model the database schema information, DLBD adopts a graph
model where nodes represent tables and columns, and edges repre-
sent the relationships between them. DLBD generates queries using
abstract syntax trees (ASTs) and employs a random walk algorithm
on the schema graph to select tables to include in the query. By
randomly traversing the schema graph and selecting tables, DLBD
can generate diverse queries that effectively test the database.

Ground-truth generation. Given a query, its ground-truth
result is generated by mapping back all involved tables into a wide
table where a rewritten query is executed to retrieve all results.
During schema generation, the input wide table is split into multiple
smaller tables, and each table is indexed by its primary key. The
RowlID mapping table records how each row in the wide table maps
to the corresponding primary key value in the smaller tables. To
further optimize the process, DLBD uses the bitmap index and WAH
encoding [9] to quickly retrieve the required rows from the original
wide table, ensuring that the ground-truth result for any query is
accurate and efficiently generated.

Logic bug auto-detection. DLBD employs comparison algo-
rithms that compare the query results to their expected ground-
truth values to automatically detect logic bugs in the DBMSs. First,
it retrieves the ground-truth result from the input data for a given
query. Then, it materializes the logic query into physical plans and
transforms the query with different hints to enable the DBMS to
execute multiple physical plans for bug searching. Finally, the result
set of the query is compared with the ground truth, and if there is
a difference, a logic bug is detected.

Query space exploration. To efficiently explore the space of
queries, DLBD can avoid generating similar queries repeatedly.
First, DLBD extends the schema graph to a plan-iterative graph
and maps each query to a sub-graph in this graph. It then builds an

DLBD

11 Connection

Database Schema Graph e
T

T2 T3 T4
& Connecting

Quantitative Statistics
Queries:
Query Type:
Bugs:

o)
(<)

Detected Bugs o

Severity ID Category Operator Status Detail
Node Name: m
userName 2 Optmizer Aggregation Unfixed [EEET)
Node Type: 3 Optimizer ColumnSort Unfixed m
Column Node ° 4 Optimizer Table Join Unfixed
Belong To: 5 Options Sort_buffer size Unfixed
T2) 6 Optimizer Table Join Unfixed
Data Type 7 Storage Repair Table Unfixed m
varchar ° 8 Optimizer Table Join Unfixed

21810
364
8

TopPage Previous Next End Page Go

Proportion of Different Bugs
Repair Table

® price
4 »® orderld

& Database AQT4
e '»9°°d5'\‘.a’¥"; T4, goodsName

2 Dataset

»
2 Schema & googsld
= 20 goodsld
@ userld oT!
+ Generate A .
. ® userld
o2 & orderld
@iserName

W Check Bugs
Noise Injection B
Table Join Query Space Exploration

’églg'ega‘s“’:t T@T2 T3 T4 m

olumn Sol
m mEnm am left outer join

e®.userld i\ g00dsld
H (..Té/ @3 userld

® userName ® orderld

Sort_b...

Colum..

A

Table ...

Aggregation

Figure 3: A screenshot of DLBD (Database Logic Bug Detection).

embedding-based graph index that stores the historical embeddings
of the query graph and indexes the nearest neighbor. By generating
query graphs that are far away from their nearest neighbors in the
graph index, DLBD can explore new query graphs while avoiding
the repetition of existing ones. This is achieved by adjusting the
weights of edges in the plan-iterative graph, which is guided by the
graph index. By reducing the walk probability of already covered
paths, DLBD can generate novel and diverse queries efficiently.

3 IMPLEMENTATION DETAILS

Root cause analysis. The basic idea of root cause analysis is to
identify the physical operators that cause the logic bugs. For this
purpose, DLDB provides a relevant portion of the schema graph
that highlights the schema involved in the query, which can provide
useful context for debugging the issue. This context is particularly
important when dealing with complex databases with numerous
interdependent tables and columns.

DLBD also provides detailed bug reports to developers which
try to identify and fix bugs in databases. The detailed bug reports
include the query that triggered the bug, and the expected and
actual query results. Furthermore, DLBD compares the execution
plan with the correct result to the execution plan with the wrong
result to provide a root cause analysis. This detailed analysis enables
developers to quickly pinpoint the root cause of the problem.

Pause and continue testing. The pause and continue capabil-
ities provided by the DLBD are key features in achieving flexible
and reliable DBMS testing. By identifying appropriate checkpoints
at the end of each query, DLBD ensures that the test results are not
compromised when the system is paused and resumed. When the
system is paused, DLBD saves the current state of the system so that
it can be resumed from where it left off. This includes saving the
search space that has been explored, the detected logic bugs, and
any intermediate state required to execute the remaining queries.

3916

Search space estimation. The search space of potential queries
in a database can be vast, particularly in a large and complex data-
base schema, due to the exponential growth of the number of possi-
ble combinations of tables and columns. To address this challenge,
we incorporate heuristics and domain-specific knowledge to effi-
ciently reduce the search space.

We roughly partition the query space into several sub-spaces
based on their graph embeddings, which can be further partitioned
into more sub-spaces in a hierarchical way. When at least K queries
are tested for a leaf-level sub-space, we say the space has been
covered. In this way, we can estimate the process of our exploration.

Additionally, we continuously monitor the test results to refine
the search space estimation based on the observed bugs and their
underlying causes. By analyzing the root causes of detected bugs, we
can adjust our heuristics to improve the coverage and effectiveness
of the search space. For example, if many bugs are found in queries
involving a particular table or join condition, this may indicate that
more testing is needed to cover that category.

Distributed processing framework. DLBD utilizes a distributed
processing framework to test database logic bugs in a scalable and
efficient manner. By breaking down the testing workload and dis-
tributing it across multiple processing nodes, DLBD can assign
different groups of queries to different nodes for simultaneous test-
ing. This reduces the time required for testing and improves the
overall efficiency of the testing process.

DLBD has chosen Apache Spark [7] as its distributed processing
framework due to its ease of use, scalability, and ability to han-
dle large data sets. Spark allows DLBD to distribute the testing
workload across multiple nodes, and it provides fault tolerance and
recovery mechanisms to ensure that the testing is not affected by
hardware or software failures.

During the testing process, DLBD monitors the progress of the
processing nodes to ensure that they are working correctly and that
the testing is progressing as expected. It also collects and aggregates

the results from multiple nodes once the testing is complete. This
enables DLBD to identify and analyze the database logic bugs more
quickly and effectively, allowing developers to find and fix the bugs
in a timely manner.

4 DEMONSTRATION SCENARIOS

Figure 3 is a screenshot of the frontend of DLBD. The user can
observe the logic bug detection and analysis pipeline with the
following steps:

Step 1 (Database schema graph.) The user first needs to con-
nect our tool to a specific DBMS. Currently, we support MySQL,
MariaDB, TiDB, and PolarDB. The tool has some specific consider-
ations for different DBMSs, due to their features and SQL supports.

The user can upload a wide table or an existing database schema
using the “Dataset” or “Schema” button, respectively (see Figure 3-
1). After clicking the “Generate” button, DLBD generates a database
with schema normalization. The database schema is modeled by a
graph, which is shown in the “Database Schema Graph” panel. And
the table information is displayed in the top bar of the panel (see
Figure 3-2). The user can click on a node in the schema graph to
see its detailed information in the right sidebar.

DLBD also provides a “Check Bugs” panel that allows users
to select the types of bugs to be detected. The “Noise Injection”
button controls whether DLBD injects noise data for boundary
testing, while the “Table Join” button controls whether DLBD tests
the joins. The “Aggregation” button controls whether DLBD tests
the aggregations, and the “Column Sort” button controls whether
DLBD tests the sorting of columns. Finally, the user can click the
“Start” button to initiate bug detection for the selected bug types.

Step 2 (Customizable auto-detection.) When a user clicks the
“Start” button, DLBD will automatically execute generated queries
and verify the query results are correct. And the interface also
provides a “Pause” button for pause and continue.

DLBD lists all detected bugs at the right of interface (“Detected
Bugs” panel, see Figure 3-3). In DLBD, we design three levels, Criti-
cal, Serious, and Non-critical, to evaluate the bug severity, which
takes into account both the number of bugs and the bug type with
a weighted score based on the importance of the query optimizer.
The darker the color of the severity, the more serious the bug. If
the user wants to further observe one specific bug, she just needs
to click the “Detail” button to see the detailed information.

The quantitative statistics of detected bugs are shown in Figure
3-5. It shows the total number of generated queries, the query types,
and the bugs in real-time. The proportion of different bugs is shown
by a pie chart based on the operator type of the detected bugs.

Step 3 (Detected bug details and statistics.) Once finding a
possible bug, DLBD adds it to the “Detected Bugs” panel. When
the user clicks one specific bug, DLDB provides a relevant portion
of the schema graph and query space that highlights the schema
involved in the query. When the user clicks the “Detail” button to
show the root cause analysis of the bug (see Figure 4). It shows the
severity, database, category, and operator type of the bug. DLBD
produces a minimal test case to save the user’s time and effort to
repeat the bug. The interface provides the “Original Query” button
and “Minimal Query” to show the original query that triggered
the bug and its minimal test case. The interface shows the query,

3917

Root Cause Analysis

D 1 Severity @ Si(Critica) Database MySQL8.0.28

Category Optimizer Operator Table Join

Query Execution Plan
1 -> Inner hash join (T3.goodsName = <subquery2>'.
+-> Table scan on T3 (cost=3.23 rows=15)
+-> Hash
+-> Table scan on <subquery2> (cost=3.25..3.58 rows
+-> Materialize with deduplication (cost=1.52..;
+-> Filter: (T3.goodsName is not null) Ccost
+-> Table scan on T3 (cost=3.23 rows=15)

SET optimizer_switch="semijoin=on";
SELECT *

FROM T4, T1

WHERE T4.orderId = T1.orderId and
T4.goodsName IN C

SELECT T3.goodsName

Minimal Query

FROM T3
WHERE (T3.goodsName NOT IN (

Highest probability operator of root cause Inner hash join (t1.c0 = '<subquery2>".ref1)

Ground Truth Actual Result

orderld userld goodsid goodsName price orderld userld goodsld goodsName price

34542 231 3451 computer 1400 34542 231 3451 computer 1400

74535 138 1523 12 74535 138 1523

2

coffee coffee 1

12400 567 2621 book 20

Figure 4: An example of root cause analysis of a bug.

the execution plan, the ground-truth and the actual result of the
query. DLBD calculates the highest probability operator for the
root cause based on the comparison, which is highlighted in red.
And the incorrect tuple in the query result is also labeled in red.

DLBD also provides “download” button that allows the user to
download test cases to reproduce the bug in the local database.
When the user clicks “I have fixed it. Retest!” button, DLBD retests
the query to verify the correctness of query results. If the query is
executed correctly, the bug turns gray to indicate that it is fixed.

Step 4 (Query space exploration.) The total search space of
query space exploration is shown in “Query Space Exploration”
panel (see Figure 3-4). Because of the huge search space, only the
search space of the tables selected by the user is represented here.
Color blocks represent different edge connections, which can be
clicked to reveal more information. When the user clicks one spe-
cific bug, the panel shows a relevant portion of the query space
that is involved in the query.

ACKNOWLEDGMENT

This work was supported by the Key Research Program of Zhejiang
Province (Grant No. 2023C01037).

REFERENCES

[1] Jinsheng Ba and Manuel Rigger. 2023. Testing database engines via query plan
guidance. In Proceedings of International Conference on Software Engineering (ICSE).

Yka Hubhtala, Juha Karkkainen, Pasi Porkka, and Hannu Toivonen. 1999. TANE:
An efficient algorithm for discovering functional and approximate dependencies.
The computer journal 42, 2 (1999), 100-111.

Thorsten Papenbrock and Felix Naumann. 2017. Data-driven Schema Normaliza-
tion. In EDBT. OpenProceedings.org, 342-353.

Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In ACM Joint Meeting
on ESEC and FSE. 1140-1152.

Manuel Rigger and Zhendong Su. 2020. SQLancer. [EB/OL]. https://github.com/
sqlancer/sqlancer.

Manuel Rigger and Zhendong Su. 2020. Testing database engines via pivoted
query synthesis. In OSDI 20. 667-682.

Apache Spark. 2020. Apache Spark. [EB/OL]. https://spark.apache.org.

Xiu Tang, Sai Wu, Dongxiang Zhang, Feifei Li, and Gang Chen. 2023. Detecting
Logic Bugs of Join Optimizations in DBMS. Proc. ACM Manag. Data 1, 1 (2023),
55:1-55:26.

Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. 2002. Compressing Bitmap Indexes
for Faster Search Operations. In SSDBM. IEEE Computer Society, 99-108.

https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://spark.apache.org

	Abstract
	1 Introduction
	2 System Overview
	3 Implementation Details
	4 DEMONSTRATION SCENARIOS
	References

