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ABSTRACT
The recent development of mobile and camera devices has led to the
generation, sharing, and usage of massive amounts of video data.
As a result, deep learning technology has gained attention as an
alternative for video recognition and situation judgment. Recently,
new systems supporting SQL-like declarative query languages have
emerged, focusing on developing their own systems to support new
queries combined with deep learning that are not supported by
existing systems. The proposed DeepVQL system in this paper is
implemented by expanding the PostgreSQL system. DeepVQL sup-
ports video database functions and provides various user-defined
functions for object detection, object tracking, and video analytics
queries. The advantage of this system is its ability to utilize queries
with specific spatial regions or temporal durations as conditions
for analyzing moving objects in traffic videos.
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1 INTRODUCTION
With the recent advancements in mobile and camera devices, a
tremendous amount of videos are being generated, shared, and
used at an incredible speed. From the perspective of applications,
more cameras are being deployed for traffic monitoring or surveil-
lance systems than ever before. The speed at which events in a
video is recognized and processed is exceeding the limits of human
capabilities. As a realistic alternative for recognizing and making
judgments about event situations in videos, researches on deep
learning technology are gaining popularity[5].

Traditional systems for managing and supporting deep learning-
based situational judgment for large amounts of videoswere loosely-
coupled systems of independent systems. For example, a system
that processes and stores large video streams and performs deep
learning-based object recognition and tracking using vision process-
ing, and then sequentially uses this information to recognize specific
situations and detect or retrieve for event frames. However, the prac-
tical demands of dealing with massive video streams or numerous
video files have changed with the times, necessitating a change in
the direction of research on existing video processing systems. [9]
In recent years, research on new systems that support declarative
query languages similar to SQL has emerged[1, 7, 9, 14, 15].
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The advantage of declarative query languages for video process-
ing is that users can present their requirements in an integrated
manner through easy logical queries, and the system can incorpo-
rate various query optimization ideas commonly used in traditional
DBMS technologies to improve video data processing performance.
Lu et al.[9] showed that the query performance can be improved by
adjusting the order of probabilistic filters in the query plan with dif-
ferent selectivity. Since their significant paper, various systems such
as BlazeIt[6], SVQ[7, 14], MIRIS [1], and EVA[15] have been actively
proposed. These systems have successfully presented on proofing
their novel techniques for exploratory video analytics. However,
they have only focused on implementing their ideas by developing
their own systems since the existing systems do not support new
deep-learning-combined operators, but also does not video data-
base management systems. The proposed DeepVQL system have
been developed on the PostgreSQL system, an open-source DBMS
that is actively used and has powerful DBMS features. We propose
various novel user-defined functions(UDFs) to support video data-
base functionality on PostgreSQL, while supporting deep learning
detection and video analytics queries.

One of most useful applications of declarative query languages
is a traffic video monitoring system. Traffic videos contain very
dynamic information about the major infrastructure of the city’s
roads, while also requiring highly analytical queries for specific
spatial regions or temporal period, such as accident detection or
aggregation. Assume a deep content-based query for traffic videos
that calculates how many vehicles pass through a specific spatial
area such as crosswalks even within a specified time. The following
is an example query used for our DeepVQL system.
SELECT count(*)
FROM D_MProcess('trafficvideo','vehDetector') t, crosswalk c
WHERE t.className = 'car' AND D_Cross(t.itraj, c.geo)

DeepVQL users can query this UDF-extended SQL to detect and
track vehicles through pre-trained deep learning models, and then
retrieve and aggregate the number of vehicles passing through
crosswalk areas of the video screen. This query shows two major
advantages of DeepVQL. Firstly, user can easily make a declarative
query using the 𝐷_𝑀𝑃𝑟𝑜𝑐𝑒𝑠𝑠 UDF to detect and track vehicles on a
traffic video using a pre-defined deep learning model called ’vehDe-
tector’. If the user has pre-registered a MaskRCNN model trained
using MS COCO[8] data as ’cocoDetector’, they can easily apply
different models to the video with a simple query change such as
𝐷_𝑀𝑃𝑟𝑜𝑐𝑒𝑠𝑠 (′𝑡𝑟𝑎𝑓 𝑓 𝑖𝑐𝑣𝑖𝑑𝑒𝑜 ′,′ 𝑐𝑜𝑐𝑜𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ′). The second advan-
tage is that DeepVQL supports spatial join queries with existing
legacy data already stored in PostgreSQL. In the above example
query, the geometry information of the existing crosswalks in a
city is stored in the "geo" column of the "crosswalk" table using
PostGIS[10], and the trajectories of the detected vehicle’s image
coordinates are stored in the "itraj" column, and they can be joined
in general SQL syntax. DeepVQL supports spatial query processing
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in 𝐷_𝐶𝑟𝑜𝑠𝑠 UDF by calling PostGIS UDFs, which supports spatial
extensions for PostgreSQL. In traditional video analytics systems,
handling such queries would likely require the implementation of
very complex and high-level new UDF features.

In section 2, we discuss the system architecture of DeepVQL
demonstration system and deep moving objects databases. In next
section, We will describes deep video queries which are supported
in DeepVQL system such as spatial video queries, spatio-temporal
video queries, and spatial traveling video queries. In section 4, we
show demonstration scenarios with real traffic videos.

2 DeepVQL SYSTEM
DeepVQL is a SQL-based querying system that supports deep video
queries for videos on PostgreSQL. In this section, we will describe
the system architecture and how to support various deep objects
storage and video queries on DeepVQL system. DeepVQL demon-
stration system has five components as shown in Figure 1. It consists
of DeepVQL on PostgreSQL, DeepVQL Detection Task Manager,
DeepVQL Video Repository, DeepVQL Web API Services, and Web
Demonstration UIs.

Figure 1: System Architecture for DeepVQL Demonstrations

DeepVQL on PostgreSQL is a main part of DeepVQL system
that includes Deep MProcess UDFs, Spatio-temporal Predicate and
Function UDFs, Deep Schema UDFs, Deep Objects Class UDFs,
and Deep Moving Objects Fusionner. Deep MProcess UDFs is a
set of deep moving objects processing UDFs with a gateway func-
tion 𝐷_𝑀𝑃𝑟𝑜𝑐𝑒𝑠𝑠 . Spatio-temporal Predicate and Function UDFs
are sets of querying deep moving objects in the videos, and Deep
Schema UDFs and Deep Objects Class UDFs are sets of functions for
inserting and managing the objects and metadata in DeepVideos,
DeepModels, DeepClasses and DeepMObjects tables.

DeepVideos The DeepVideos table is a metadata set of videos
that are stored and managed in DeepVQL Video Repository. A video
in DeepVideos can be identified by a unique video identifier 𝑣𝑖𝑑𝑒𝑜𝑖𝑑 ,
a video resource location identifier 𝑣𝑖𝑑𝑒𝑜𝑈𝑟𝑖 for the repository
access, or a short unique video name 𝑣𝑖𝑑𝑒𝑜𝑁𝑎𝑚𝑒 for DeepVQL
query users.

DeepModels The DeepModels table is a metadata set of pre-
trained object detection and tracking models that are supported by
Fusionner, DeepDetection Taskmanager and PyTorch/MMDetection[3].
DeepVQL can support MMDetection-powered 26+ detection mod-
els and 100+ retrained models for deep video queries. The query

users simply apply the pre-trained model for videos using a unique
model identifier 𝑚𝑜𝑑𝑒𝑙𝑖𝑑 or unique model name 𝑚𝑜𝑑𝑒𝑙𝑁𝑎𝑚𝑒 in
DeepModels table. After distributed object detection by task man-
ager, Deep Moving Objects Fusionner perform the tracking and
merging job for the detected objects into moving objects using a
self-implemented and efficient algorithm.

DeepClasses The DeepClasses table is a set of class category
information tuple (𝑐𝑖𝑑 , 𝑐𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒 ,𝑚𝑜𝑑𝑒𝑙𝑖𝑑 ,𝑚𝑜𝑑𝑒𝑙𝑁𝑎𝑚𝑒) about all
possible classes which can be detected by the pre-trained models.
Suppose that a pre-trained RCNNmodel trained byMicrosoft COCO
dataset. When a moving object 𝑚 was detected and tracked by
the RCNN and COCO dataset trained model,𝑚 can be classified
into one of 80 COCO classes including ’person’, ’car’, and ’bus’. In
DeepClasses, a class can be identified by a unique class identifier 𝑐𝑖𝑑
or a unique class name 𝑐𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒 with a model identifier𝑚𝑜𝑑𝑒𝑙𝑖𝑑

or𝑚𝑜𝑑𝑒𝑙𝑁𝑎𝑚𝑒 for query users.
DeepMObjects The DeepMObjects table 𝑀 is a set of mov-

ing objects which are detected moving objects in videos by pre-
trained deep learning models. A moving object𝑚 in 𝑀 is a tuple
(𝑜𝑖𝑑 , 𝑐𝑖𝑑 , 𝑐𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒 ,𝑚𝑜𝑑𝑒𝑙𝑖𝑑 , 𝑡_𝑚𝑜𝑑𝑒𝑙𝑖𝑑 , 𝑣𝑖𝑑𝑒𝑜𝑖𝑑 , 𝑖𝑡𝑟𝑎 𝑗 , 𝑓 𝑟𝑎𝑚𝑒𝑖𝑑𝑠 ,
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠). Each moving object in𝑀 is uniquely identified by an
object ID (𝑜𝑖𝑑). A moving object𝑚 has a class ID (𝑐𝑖𝑑) and a class
name (𝑐𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒), which are detected and merged into moving
objects by the pre-trained model (𝑚𝑜𝑑𝑒𝑙𝑖𝑑) and the tracking model
(𝑡_𝑚𝑜𝑑𝑒𝑙𝑖𝑑) from the video (𝑣𝑖𝑑𝑒𝑜𝑖𝑑). The detected moving object
can change the coordinates for every frame. 𝑖𝑡𝑟𝑎 𝑗 is a sequence
of 2D coordinates for storing representative location in the frame
image of the moving object. The default way is that the represen-
tative coordinates correspond to the center point of the objects’
bounding boxes. Also, we need to manage in which frame and
time the objects appeared, moved, and disappeared. 𝑓 𝑟𝑎𝑚𝑒𝑖𝑑𝑠 is
a sequence of frame numbers which the detected object exist. To
efficiently retrieve moving objects for temporal predicate queries,
DeepMObjects table need to store temporal information on the
video in 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠 .

Suppose that a video showing traffic condition at the intersection
in Warsaw is newly inserted, and that the task of counting the
number of vehicles entering and leaving from a certain direction is
queried. The following shows an example of downloading a video
from a website and inserting it into the DeepVQL system.

SELECT D_Video_Append('http://example.edu/warsaw.mp4',
'id://warsaw.mp4', 'yolo_coco', 'ByteTracker');

After verifying that the video and the deep models are valid
in DeepVideos and DeepModels metadata table, DeepVQL system
would detect all objects in the video by DeepVQL Detection Task
Manager using PyTorch/MMDetection, and then the detected frame
objects are merged as moving objects on the video sequence by
Deep Moving Object Fusionner using in-house implemented track-
ing algorithms. Deep Moving Object Fusionner currently supports
a ByteTracker[16] by default algorithm, and additionally support
DeepSORT[13] and OCSORT[2] algorithms for objects tracking. Af-
ter merging step, Deep 𝐷_𝑀𝑃𝑟𝑜𝑐𝑒𝑠𝑠 UDF stores all moving objects
into the DeepMObjects table, which is an integrated fundamental
table for deep video queries. Every moving object in DeepMObjects
has information about which pre-trained model and tracking algo-
rithm were used in𝑚𝑜𝑑𝑒𝑙𝑖𝑑 and 𝑡_𝑚𝑜𝑑𝑒𝑙𝑖𝑑 , and this information
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can be used for queries. DeepVQL user may give a query with a
temporal range predicate and a specific deep learning model or
class.

DeepVQL is distinguished from previous work in that developed
on moving objects data and query model for storing and querying
the detected moving objects. In general approach, all detected ob-
jects are stored in separate rows. Then, a spatial predicate operation
is carried out on each moving object to determine if their trajec-
tory data has passed the crosswalk to count the number of vehicles
that have crossed the crosswalk. However, our system stores the
trajectory data for each moving object in one row, and can process
the spatio-temporal predicates efficiently.

3 DEEP VIDEO QUERIES
Our DeepVQL system supports three types of video queries. Each
video query performs a spatio-temporal relation operation on the
DeepMObjects table𝑀 and returns a moving object set𝑀 ′ satisfy-
ing.

Spatial Video Queries Spatial Video Query enables extraction
of semantic information through spatial relationship queries be-
tween moving objects and spatial regions expressed in Well-Known
Text (WKT) within a traffic video. For example, to obtain informa-
tion about a vehicle passing a certain lane in a traffic video, it would
be sufficient to investigate the trajectory data of the vehicle and the
spatial relationship between the vehicle and the lane. To extract
semantic information, we have implemented operations to establish
relationships between moving object𝑚 and spatial regions within
a traffic video. The query is expressed as follows.
SELECT oid
FROM D_MProcess('id://warsaw.mp4','yolo_coco','DeepSORT')
WHERE D_Cross(itraj, 'LINESTRING (532 367, 568 493)')

AND className = 'car'

The spatial relationship operation 𝐷_𝐶𝑟𝑜𝑠𝑠 is performed on the
records of DeepMObjects𝑀 . The 𝐷_𝐶𝑟𝑜𝑠𝑠 function takes as input
the pixel trajectory data of a moving object, referred to as "itraj",
and a line (WKT), and returns a boolean value indicating whether
the given WKT and itraj intersect. Through this, we can obtain a
set of moving objects 𝑀 ′ that satisfy the spatial predicate Cross.
As a result of the query, we can obtain 𝑜𝑖𝑑s for vehicles passing a
particular lane in a traffic video.

Spatio-temporal Video Queries Spatio-temporal video queries
return moving objects that satisfy both spatial and temporal predi-
cates. Such queries encompass both space and time criteria and are
frequently used for monitoring traffic videos. For example, people
monitoring traffic videos may not need to watch the entire video
all the time. They might only need to monitor specific time ranges
or locations to observe specific events. Let’s reconsider an example
query for obtaining information about vehicles passing through a
specific lane. Traffic video monitoring observers may wish to check
only the vehicles passing through a particular lane for a specific
period. For this purpose, we provide a temporal query. The query
is as follows.
SELECT oid
FROM D_MProcess('id://warsaw.mp4','yolo_coco','OCSORT')
WHERE D_Cross(itraj, 'LINESTRING (827 353, 918 480)')

AND D_TOverlap(timestamps,$1,$2) AND className = 'car'

In this query, an additional 𝐷_𝑇𝑂𝑣𝑒𝑟𝑙𝑎𝑝 function is performed
on the records of DeepMObjects𝑀 . This function takes the times-
tamps of the moving object and the queried time range ($1,$2) as
inputs. It returns a boolean value to indicate whether there is any
overlapping time between the timestamps and the values of $1,$2.
By utilizing this query, we can obtain vehicle IDs for those that
passed through a specific lane during the given time range.

Spatial Traveling Video Queries In the following query, we
consider a scenario where multiple spatial regions are used as
conditions to aggregate information about vehicles moving in a
specific direction. Specifically, we aim to gather data on the number
of vehicles that are moving in a particular direction within the
specified regions. The query is as follows.

SELECT count(*)
FROM D_MProcess('id://warsaw.mp4','yolo_coco','ByteTracker')
WHERE D_Travel(itraj, ARRAY['LINESTRING (532 367, 568 493)',

'LINESTRING (827 353, 918 480)']) AND className = 'car'

After executing 𝐷_𝑀𝑃𝑟𝑜𝑐𝑒𝑠𝑠 , the 𝐷_𝑇𝑟𝑎𝑣𝑒𝑙 function verifies the
sequential passage of the lines provided in the extracted moving
object records. This allows for the aggregation of vehicle driving
direction. Additionally, by reversing the spatial constraint lines in
this query, it becomes possible to detect anomalies. Vehicles that do
not pass through the lines in the correct sequence can be identified
as those driving in the opposite direction, indicating the presence
of wrong-way vehicles.

The next aspect to be considered is when the object detection
and tracking for traffic videos will be performed in the database.
This can be divided into three main perspectives:

(1) On the appending phase: This involves pre-processing the
entire video beforehand when inserting video information into
DeepVQL via the fuction𝐷_𝑣𝑖𝑑𝑒𝑜_𝑎𝑝𝑝𝑒𝑛𝑑 . Since the processing
is completed beforehand, query speed is increased. However, it
is not possible to pre-process all detection and tracking algo-
rithms, and only the designated ones are pre-processed.

(2) On the querying phase: For videos that are not previously
registered, the 𝐷_𝑀𝑃𝑟𝑜𝑐𝑒𝑠𝑠 function processes the entire video
at once if no options are specified during its initial execution.
While the first query may take longer, subsequent queries are
faster. This approach provides the advantage of being able to
actively adapt to a variety of detection and tracking algorithms.

(3) On the querying phase with spatio-temporal range: When
there are temporal predicates in the query, only the part of
the video that includes the give period and margin parts are
processed, and the query results are returned quickly. This ap-
proach also provides the advantage of being able to actively
adapt to a variety of detection and tracking algorithms, but re-
quires complex algorithms and is currently under development.

This paper mainly describes on the querying phase. During exe-
cution, the 𝐷_𝑀𝑃𝑟𝑜𝑐𝑒𝑠𝑠 function checks whether data satisfying
the query for the specified video is already stored. If available, it
returns the moving object records; otherwise, it pre-processes the
target video, stores the extracted moving objects in DeepMObjects,
and then returns the records. If there are spatio-temporal predicate
functions, it performs the functions on the returned moving objects
records.
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Figure 2: DeepVQL demonstration using traffic videos

4 DEMONSTRATION
This section describes how to interact with the DeepVQL system to
query traffic videos that include the previously introduced queries.

Web DeepVQL The user interface of the system is depicted
in Figure 2. It consists of four main components: the query selec-
tion window (A), the query window (B), the video upload window
(C), and the result window (D). The query selection window (A)
provides settings for spatial queries, spatio-temporal queries, and
spatial traveling queries. Each step provides a list of options for the
user to choose from, including a list of videos, model lists, track-
ing algorithm lists, spatial predicate operation lists, and column
lists. Each of the sample videos in the video list uses video from
MIRIS [1]. The videos provided by MIRIS[1] are traffic videos from
Shibuya in Japan and Warsaw in Poland, each with a duration of
approximately three hours. The object detection models, including
faster-RCNN[12], YOLO[11], and Mask-RCNN[4], were trained us-
ing the training datasets provided by MS COCO[8] and MIRIS[1].
The tracking algorithms provided by our system are ByteTracker,
OCSORT, and DeepSORT[2, 13, 16].

When the user selects elements from these lists, they are reflected
in the query window (B). The query window (B) automatically
generates scripts in the SELECT, FROM, and WHERE clauses based
on the selectionsmade in the query selectionwindow (A). The query
window (B) contains a "?" icon with examples that users can refer
to when querying. These examples include the three types of query
examples described earlier, allowing users to execute the query
clauses in query window B as they are or make slight modifications
to test their queries. The user can reset the selected steps using the
"reset" button. By clicking the "execute" button, the contents of each
SQL clause are transmitted to the DeepVQL. The DeepVQL executes
the query and displays the results in the results window (D). The
video upload window (C) is divided into two tabs: the "upload list"
tab and the "upload" tab. In the "upload" tab, users can select a
video file they possess by clicking the "choose file" button, and then
submit the video to the server by clicking the "submit" button. Once
the video is uploaded, it will be reflected in the video list, and the
video’s thumbnail will be created, allowing the user to select it in
step 1 of the query selection window (A). The query results are
displayed in the table in the results window(D), and clicking the
play button on the right allows the video player to pop up and view
clip images of moving objects. (See http://deepvql.urbanai.net)
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