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ABSTRACT
Because video is becoming more popular and constitutes a major
part of data collection, we have the need to process video selection
queries — selecting videos that contain target objects. However,
a naïve scan of a video corpus without optimization would be ex-
tremely inefficient due to applying complex detectors to irrelevant
videos. This demo presents Paine; a video query system that em-
ploys a novel index mechanism to optimize video selection queries
via commonsense knowledge. Paine samples video frames to build
an inexpensive lossy index, then leverages probabilistic models
based on existing commonsense knowledge sources to capture the
semantic-level correlation among video frames, thereby allowing
Paine to predict the content of unindexed video. These models can
predict which videos are likely to satisfy selection predicates so as
to avoid Paine from processing irrelevant videos. We will demon-
strate a system prototype of Paine for accelerating the processing
of video selection queries, allowing VLDB’23 participants to use
the Paine interface to run queries. Users can compare Paine with
the baseline, the SCAN method.
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1 INTRODUCTION
With the increased availability and popularity of video databases [1,
7, 8], video selection queries have emerged as a growing area of
research interest [2, 3, 5, 6, 9]. These queries are utilized for se-
lecting desired videos that satisfy certain predicates, especially
containing target objects detected by neural networks. This kind of
query can help video search in consumer-facing systems (e.g., social
media platforms, albums in personal smartphones), in analytical
systems for skilled users, and in systems for constructing training
sets (as with self-driving cars). Due to the large size of existing video
databases, it is a common practice to include the LIMIT clause in
selection queries in order to limit the size of the returned video set.
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For example, a user might want to search for 12 videos containing
motorcycles from a large video corpus. A selection query for this
purpose is shown as follows:

SELECT * FROM videoCorpus

WHERE DetectedObject = ''motorcycle ''

LIMIT 12

Here, the DetectedObject field is populated by applying a frame-
level object detector to each image in videoCorpus. The current
state-of-the-art object detectors are neural networks. A naïve query
processing method for this query is to simply scan the video corpus,
repeatedly applying the object detector and testing the results until
the result set’s size meets the LIMIT value. However, the significant
number of videos that do not satisfy the predicate and the detector’s
long inference time would lead to extremely slow processing.

Precomputing and indexing the contents of DetectedObject would
allow us to avoid work at query time. Unfortunately, building an in-
dex of the complete video content requires processing every frame
by the object detector and recording all the object information. Ap-
plying the object detector at ingest time or retrospectively does not
make a big difference: the quantity of work is enormous in either
case. For online media platforms like YouTube, over 500 hours of
videos are uploaded every minute [10]. Taking the state-of-the-art
model YOLOv7 [13] as an example, the processing rate is only 56
FPS when achieving 55.9% Average Precision. To reduce the index
cost, a straightforward option is to sample fewer frames for pro-
cessing; unfortunately, this means objects that only appear in a
small fraction of frames are likely to be missed. Existing techniques
cannot achieve a high index quality with a limited index budget.
The difference detector method [6] prevents the object detector
from processing visually similar frames at index time, but it only
works when the video is very static. The specialized neural model
method [2, 5, 6] trades the generality and accuracy of a detector for
fast inference so that more frames can be processed, but these two
features are important for a high-quality index.

In this paper, we demonstrate Paine; a video query system that
employs a novel index mechanism to optimize video selection
queries. We find that there are semantic-level correlations in videos;
a human being can predict most of the video contents after observ-
ing just a few frames. Consider the above user who wants to see
videos that contain motorcycles as an example. If she were person-
ally surfing videos to find something that contains motorcycles, she
might reasonably skip over a video whose first frame is in a kitchen;
it almost certainly does not contain motorcycles. But she is likely
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interested in watching more of a video whose first frame shows cars
on a road, even though she does not yet see a motorcycle, because
cars and motorcycles often go together.

Paine leverages an inexpensive but lossy index and common-
sense knowledge to prioritize promising predicate-related videos. It
consists of three stages. In the offlineModel Preparation stage, Paine
can build two kinds of probabilistic models to infer the missing ob-
jects from the lossy index — one is a derived conditional probability
formula from knowledge graphs [12], and the other is a regression
model learned from videos based on the pre-trained BERTmodel [4].
In the Indexing stage, for any arriving video, frames are sampled
and processed by the object detector to create an inexpensive index.
This processing rate is adjustable according to the index time bud-
get. In the Query Processing stage, when a selection query arrives,
based on the lossy index and a commonsense knowledge-integrated
probabilistic model, Paine predicts the existence probability of the
target object and ranks videos in descending order of this proba-
bility. Videos that are likely to satisfy predicates can be processed
first, thereby avoiding unnecessary processing of irrelevant videos
while ensuring 100% accuracy.

We demonstrate a system prototype of Paine, showing how
this new index mechanism performs for video selection queries
on YouTube videos, which are typical and important workloads.
In this use case, users can specify the target object and the LIMIT
value in the query. This demonstration shows the query runtime
with two different versions of the index mechanism: one built using
knowledge graphs, the other using commonsense knowledge from
videos. To reveal how different probabilistic models reduce the
processing time, it displays the processed relevant and irrelevant
videos that are directly affected by different optimization methods.
In addition, users can compare Paine with a SCAN method that
uses the same lossy index as Paine.

2 PAINE ARCHITECTURE
Figure 1 depicts the three-stage architecture of Paine. This system
allows interaction with non-technical users: users provide video
selection queries by specifying the target objects and the LIMIT
values; Paine selects the satisfying videos from a video corpus
through fast processing and returns them to users. We introduce
these three stages in Section 2.1-2.3.

2.1 Indexing Stage
Complex neural network models can compute good-quality de-
tection results for the non-lossy index, but per-frame processing
would take quite a long time. In the Indexing stage in Paine, an in-
expensive lossy index is built. A fraction of frames in each arriving
video are processed by an object detector (YOLO9000 [11] in Paine)
to construct incomplete object lists; these object lists mapped to
videos as key-value pairs compose the index. The processing frame
rate for the index is adjustable according to varying index time
budgets; by default, the rate is 1 out of 30 frames in Paine.

2.2 Query Processing Stage
When a new query arrives, the system enters the Query Processing
stage. Algorithm 1 describes this procedure. In line 1, the system
computes the probability of observing the target object with a

Algorithm 1: Query processing
Input: Video corpus V , object detector 𝐷 , target objects O, LIMIT

number 𝑘 , probabilistic model𝑀 , Index I
1 P =𝑀(I, O);
2 Sort V in descending order of P;
3 repeat
4 𝑉𝑠𝑒𝑙𝑒𝑐𝑡 = V .getNext();
5 if O ⊆ I𝑉𝑠𝑒𝑙𝑒𝑐𝑡 then
6 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 .append(𝑉𝑠𝑒𝑙𝑒𝑐𝑡 );
7 continue;
8 end
9 if O ⊆ 𝐷 (𝑉𝑠𝑒𝑙𝑒𝑐𝑡 ) then
10 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 .append(𝑉𝑠𝑒𝑙𝑒𝑐𝑡 );
11 end
12 until |𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 | == 𝑘 or V .hasNext() == False;

Output: 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡

probabilistic model (Section 2.3), conditioned on the fact we have
observed the objects that are present in the lossy index. This step
requires only a few seconds, which is nearly negligible when com-
pared to object detection. In line 2, videos in the corpus are sorted
in descending order of this probability. If the target objects hap-
pened to be directly observed during indexing, that video is added
to the result set directly in lines 5-8. Videos that are not yet in
the result set are then processed in the computed order in lines
9-11. We apply the object detector to each frame in the video to
determine unambiguously whether the video contains the target
object. Videos that do contain the target object are added to the
result set until the set’s size has reached the LIMIT number or all
the videos have been explored. A high-quality probabilistic model
will mean processing fewer videos before returning the result set,
yielding less processing time.

2.3 Model Preparation Stage
The probabilistic model is constructed in the offline Model Prepara-
tion stage to support fast processing. It predicts the probability that
a video contains object 𝑋 , given that we know object 𝑌 exists in
the video. We have two different methods for building this model
depending on whether historical videos are accessible.

2.3.1 Knowledge Graph Model.
Knowledge graphs can describe the relationship between objects,
represented by nodes and edges. Paine utilizes ConceptNet Num-
berbatch [12], a set of word embeddings learned from a knowledge
graph ConceptNet, containing general commonsense knowledge.
The cosine similarity between word embeddings can be computed
for measuring word similarity. When two objects are in the same
domain, they are semantically similar and tend to appear in the
same video, e.g., a motorcycle and a car. Therefore, for a single
target object O and an observed object list I𝑖 containing only one
object in the index, we take the cosine similarity as the conditional
probability estimation:

𝑃 (O |I𝑖 ) B max ( 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (O) · 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (I𝑖 )
∥𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (O) ∥ · ∥𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (I𝑖 ) ∥

, 0) . (1)

When there are multiple distinct objects in I𝑖 , denoted as 𝐼 (𝑖,1) ,
𝐼 (𝑖,2) , ..., 𝐼 (𝑖,𝑚𝑖 ) , Paine estimates the conditional probability 𝑃 (O|I𝑖 )
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Figure 1: The three-stage architecture of Paine system.

from the probability conditioned on each object 𝐼 (𝑖, 𝑗 ) :
𝑃 (O |I𝑖 ) ≈ 1 − (1 − 𝑃 (O |𝐼 (𝑖,1) ) ) (1 − 𝑃 (O |𝐼 (𝑖,2) ) ) · · ·

(1 − 𝑃 (O |𝐼 (𝑖,𝑚𝑖 ) ) )
(2)

Here the probability 𝑃 (O|𝐼 (𝑖, 𝑗 ) ) is estimated as Equation (1).
When there are multiple target objects in the predicate, Paine

roughly estimates 𝑃 (O|𝐼 (𝑖, 𝑗 ) ) by the product of the probability of
each target object conditioned on 𝐼 (𝑖, 𝑗 ) , and reuses Equation (2).

2.3.2 Video-Derived Model.
The system can compute object observation probabilities from a
set of lists, each of which contains objects observed in the same
video. These lists can be obtained by running a detector over a
set of videos, e.g., videos from the same source as the queried
videos. Objects frequently coexist in these videos tend to coexist in
the queried videos. If such videos are available, this video-specific
commonsense knowledge is likely to be more beneficial than the
above knowledge graphs.

Paine directly learns a neural network model based on observed
object statistics derived from processing a collection of video. The
input of this model is a set of observed objects and target objects
concatenated together. Deduplicated observed objects are arranged
in the time order (experimental evidence shows that object fre-
quency does not help). Paine keeps the outputs between 0 and 1 as
the probability estimation indicating how likely this video contains
target objects. This model consists of the pre-trained uncased BERT
(Bidirectional Encoder Representations from Transformers) base
model [4] and a regression layer to be fine-tuned by training data.
It takes hours to fine-tune the model offline, which is subsequently
utilized for multiple queries.

This model is trained with all the potential single target objects
since the desired object is not pre-defined in this stage. For each
object list in the observed object statistics, Paine sets each item in
this list as the target object in turn, and treats the remaining items
as the observed objects, making the training data with label 1; it
randomly assigns a new object as the target object and uses the
whole object list as the observed list, making the training data with
label 0. When more observed object statistics are gained from the
Query Processing stage, Paine further updates this model.

3 DEMO SCENARIO
In this section, we demonstrate a prototype system of Paine on
YouTube videos in diverse domains.
Step 1: The user will be presented with a system that has indexed
200 YouTube video clips. They are 60-second video clips randomly
sampled from the YouTube-8M Segments dataset [1]. Considering

(a) (b)

Figure 2: User Interface of Paine

the demo time, we choose this size and length of the video set,
but our system can work for more and longer videos. The index
was built by applying YOLO9000 [11] at the rate of one frame per
second. This system has also learned a video-derived model from
the YouTube-8M Segments dataset other than the above 200 video
clips. The user will be able to interact with the system by specifying
the target object and the LIMIT value (Figure 2(a)). She can click the
button “choose objects from a drop-down menu” and choose from
a pre-selected list of objects (Figure 2(b) only shows a subset of
the target object options). She can also click “choose novel objects”
and enter novel object names. As shown in Figure 2, the user has
chosen parameters that yield the SQL query example in Section 1.
Step 2: She can run the query and compare the query results and the
query runtime of different optimization methods. This query can
be run in two modes: the SCAN mode and the Paine commonsense
indexing mode. The SCAN method leverages the same index as
Paine. It first returns videos where the target object happened to
be observed directly and is listed in the index. If these videos are
not enough to answer the query, SCAN will then process videos
sequentially. The Paine commonsense indexing mode adopts the
video-derived model. We set a two-hour timeout for the query
processing. The demo will have precomputed results for target
objects so the user does not have to actually wait for two full hours.

She will see a summary table (the first two rows in Figure 3)
showing the query results and the execution time of these two
modes. In the SCANmode, this motorcycle query cannot be finished
within two hours; only eight videos can be returned to the user. Our
system Paine runs dramatically faster than SCAN. It only takes 20
minutes to select high-quality videos that contain motorcycles.
Step 3: The user can decide to dig into the internal workings to
figure out what factors affect the query runtime. She will be able to
examine the output of line 6 in Algorithm 1 (videos that contain ob-
jects that were directly observed and so are definitely in the index),
the output of line 10 in Algorithm 1 (videos that were not directly
observed but found by examining frames during query processing),
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Figure 3: Summary table to compare SCAN and Paine for the
motorcycle selection query

Output of line 6 in Algorithm 1 (videos that contain objects that were directly observed and so are definitely 
in the index):

Output of line 10 in Algorithm 1 (videos that were not directly observed but found by examining frames 
during query processing):

The videos that are examined during query processing but do not satisfy the predicate:

Figure 4: Internal working of Paine with the video-derived
model for the motorcycle selection query

and the videos that are examined during query processing but do
not satisfy the predicate. These three categories are denoted as
DIRECTLY OBSERVED, DISCOVERED, and IRRELEVANT videos.
Figure 4 shows the internal working of the Paine mode as an ex-
ample. There are seven DIRECTLY OBSERVED videos and five
DISCOVERED videos. As shown in the bottom part of Figure 4, the
commonsense knowledge can instruct the query engine to process
only one IRRELEVANT video, explaining the fast processing in step
2. In contrast, in the SCAN mode, there is only one DISCOVERED
video and tons of IRRELEVANT videos. It would take much longer
than two hours to finish this query in the SCAN mode.
Step 4: The user is also allowed to try another commonsense knowl-
edge model in Paine, the knowledge graph model. She can run the
selection query with this model and will see a summary table (Fig-
ure 3) comparing it with other optimization methods. It takes 40
minutes to complete the process, which is slower than the video-
derived model but much faster than the SCAN method. She can
also examine the internal working of this method as in step 3. Same
as Figure 4, there are seven DIRECTLY OBSERVED videos and five
DISCOVERED videos, but more IRRELEVANT videos are processed.
Step 5: The user can go back to step 1 to try other video selection
queries. For example, she can click the button “choose novel objects”
and enter “chair” as the target object and 11 as the LIMIT value.

SCAN

PAINE
(video-
derived 
model)

PAINE
(knowledge 
graph 
model)

31 
minutes

4 
minutes

12 
minutes

Optimization 
Method

Query Result Execution 
Time

Figure 5: Summary table for the chair selection query

After repeating the above steps, she will see a new summary table
as shown in Figure 5.
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