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ABSTRACT
Real-time collaboration has become increasingly important in var-
ious applications, from document creation to data analytics. Al-
though collaboration features are prevalent in editing applications,
they remain rare in data-analytics applications, where the need for
collaboration is even more crucial. This tutorial aims to provide
attendees with a comprehensive understanding of the challenges
and design decisions associated with supporting real-time collab-
oration and user interactions in data analytics systems. We will
discuss popular conflict resolution technologies, the unique chal-
lenges of facilitating collaborative experiences during the workflow
construction and execution phases, and the complexities of sup-
porting responsive user interactions during job execution.
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1 INTRODUCTION
Real-time collaborative editing services, such as Google Docs and
Overleaf, have gained significant popularity and brought immense
value to society. These services enable individuals to easily collab-
orate and jointly contribute to various tasks, including document
editing, spreadsheet management, presentations, and drawings. The
benefits of these services have become more appealing following
the recent shift toward remote work. Although real-time collabo-
ration becomes increasingly prevalent, it remains a rare feature in
data-analytics applications. The need for collaboration features is
arguably even more crucial in data-analytics applications, partic-
ularly with the growing involvement of domain scientists in the
process. Domain experts, such as public health scientists and medi-
cal researchers, are vital in the context of data analytics because
their valuable domain knowledge can unlock the full potential of
data-driven insights. However, domain experts often lack technical
skills required to analyze large datasets, and they need collabora-
tion with technical experts who have the technical abilities but may
not have the relevant domain knowledge. Jupyter Notebook [9],
one of the most widely used platforms for data analytics in Python,
has real-time collaborative editing and execution of notebooks as a
highly appreciated feature from the community [7].
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Supporting real-time collaboration in data analytics systems is
not trivial. For example, it took Jupyter Notebook nearly a decade
to add collaboration support to the open-source version [13]. One
challenge stems from the complexities of supporting real-time col-
laborative editing in the frontend. Fortunately, recent advances
and maturity in frontend JavaScript technologies have made it in-
creasingly easier to support shared editing. Numerous open-source
libraries now provide such capabilities [3, 4, 15, 20]. As a result, it
is now more feasible than ever to integrate collaboration support
into data analytics systems, enhancing the user experience and
promoting a more efficient teamwork in data-driven tasks.

A main distinction between supporting real-time collaboration
in document editors and data analytics systems is that collabora-
tion must occur not only during editing but also throughout the
execution process. Data analytics jobs processing large datasets can
be time-consuming, leaving users without feedback on results until
the very end. This lack of real-time visibility can impede collabo-
ration, as users cannot view results, identify workflow issues, or
implement quick fixes and iterations to improve the data workflows.
As a result, it is essential for data analytics systems to facilitate
user interaction during execution. These systems should support
progressive computation and deliver real-time updates on execu-
tion status and early results. Additionally, they should allow users
to pause or resume execution, examine execution status, inspect
intermediate states and results, and modify workflows as needed.
All execution states must be shared among users, allowing a new
user to join an execution session at any moment.

This tutorial aims to equip attendees with a solid understanding
of the challenges and design decisions associated with supporting
real-time collaboration and user interactions in data analytics sys-
tems. The tutorial will be a 1.5-hour lecture-style presentation. We
will explain and compare popular conflict resolution technologies,
delve into the unique challenges of facilitating collaborative experi-
ences during the workflow construction and execution phases, and
explore the complexities of supporting responsive user interactions
during a job execution.
Target Audience. This tutorial is designed for researchers, practi-
tioners, and data scientists working in the field of large-scale data
analytics who have interest in real-time collaboration and interac-
tive data analysis. The target audience also include those involved
in the development of data analytics platforms or those seeking
to enhance the collaborative capabilities of existing systems. We
assume that attendees have an understanding of general principles
in database and data analytics concepts. No specific expertise in
real-time collaboration or data analytics system design is required,
as the tutorial will provide a comprehensive overview of relevant
concepts, challenges, and design tradeoffs.
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Related Work. The growing demand for real-time collaboration
among data analysts has led to the emergence of various com-
mercial Python notebook-style offerings that provide this func-
tionality, such as DeepNote [2], Google Colab [5], and Databricks
Notebooks [6]. These tools are useful for users proficient in pro-
gramming languages like Python and SQL. Big data systems, such
as Spark [22], Flink [11], and Dask [17], have gained popularity
among software developers due to their ability to efficiently process
large-scale datasets in distributed environments. Although these
tools work great for technical experts, they are less accessible to
non-technical users who lack programming skills. These systems
also do not support built-in collaboration features. Workflow-style
systems are popular among domain scientists due to their easy-
to-understand graphical user interface. Despite their popularity,
many workflow-based data analytics systems, such as Alteryx [1],
KNIME [8], and RapidMiner [10], have difficulty offering collab-
oration capabilities, as they are often built with a “pre-cloud” ar-
chitecture and require users to install desktop software or clients.
Einblick [12] offers an interactive canvas supporting collaborative
editing of workflows, with a backend execution engine based on
the dataflow model [19]. However, the system is not open source,
and there is no published work describing its collaboration-related
features. Texera [14] is an open-source workflow model-based sys-
tem that enables scalable computation and delivers a collaborative
and interactive user experience through its graphical user interface.
Throughout this tutorial, we will use Texera as an example platform
to explain concepts and challenges related to collaborative editing
and execution, although the principles can be broadly applied.

This tutorial has never been offered elsewhere before, making it a
unique learning opportunity for attendees. Furthermore, to our best
knowledge, there has been no tutorial offered on the topic of real-
time collaboration in data analytics systems at major data-centric
research conferences in recent years.

2 TUTORIAL OUTLINE
In the introductory part of this tutorial, we begin by providing a
brief overview of the significance of real-time collaboration in data
analytics systems. We also discuss the current state of collaboration
in popular data analytics tools and platforms. Furthermore, we
give a live demonstration of various collaborative data analytics
features using the Texera system, as shown in Figure 1. After the
introduction, we will cover the following topics.

2.1 Supporting a Collaborative User Interface
for Workflow Construction

We give overview of the two most popular real-time conflict reso-
lution technologies, Operational Transformation (OT) and Conflict-
free Replicated Data Types (CRDT). We compare their respective
pros and cons and discuss the possible architectures for imple-
menting each design in a data processing system. Additionally, we
discuss how to offer smart auto-completion for data types and col-
umn names, which requires a workflow compiler in the backend to
analyze the workflow in real-time to provide these features.
Operational Transformation [18] (OT) is an approach that en-
ables real-time collaborative editing by transforming operations in
such a way that they maintain consistency among different replicas

Figure 1: Illustration of collaborative data analytics in a
workflow system. Alice, Bob, and Charlie are collaborators,
and each contributes to different components of an active
workflow process.

of shared data. In OT, when a user performs an action, this action is
transformed with respect to other concurrent operations by other
users before it is applied to the shared data. This transformation
ensures that the order of operations does not matter, and the final
state of the shared data remains consistent across all replicas. In
a system using OT, each user’s frontend client maintains a local
copy of the shared data and communicates with a central server
for synchronization. In an OT-based system, the central server
plays a crucial role in maintaining consistency among clients by
transforming and coordinating operations. The server can host a
workflow compiler that listens to changes in the shared data, pro-
viding smart auto-complete and suggestions to the frontend clients.
As the server maintains the ground truth of the data, it can provide
accurate auto-complete suggestions to all its connected clients.
Conflict-free Replicated Data Types [16] (CRDT) is an alterna-
tive approach for maintaining consistency in distributed systems.
CRDTs are data structures designed to be replicated across multiple
nodes while allowing concurrent updates without coordination
between the nodes. The main idea behind CRDT is that it should al-
ways be possible to merge different replicas of the shared data into
a consistent state, even when updates happen concurrently. This is
achieved by ensuring that all operations on the CRDT are commu-
tative, associative, and idempotent. In a system using CRDT, clients
can update their local copies without the need for coordinating
with a central server, such as using a peer-to-peer communication
with other clients. Since CRDTs allow for concurrent updates with-
out coordination, it is more challenging for the compiler inside the
server since the server does not have the ground truth.

The implementations of OT and CRDT mainly differ in their
system architecture and coordination requirements. Although an
OT-based implementation might be more suitable for a data analyt-
ics system that typically has an existing central server, CRDT-based
implementations are still very compelling due to their better ecosys-
tem and richer frontend support. In this tutorial, we will cover how
both architectures can be integrated into data analytics systems.
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2.2 Supporting Responsive User Interactions
During Execution

In this part of the tutorial, we focus on how to pause the execution of
an operator, which is a critical aspect of facilitating user interactions
with the system. After users pause the execution of an operator,
the system allows them to perform additional interactions, such as
checking the execution status, inspecting intermediate states and
results, and modifying the workflow. We discuss how the system
can be still responsive to user interaction requests instantaneously,
within sub-seconds. We will first delve into how to support pausing
and resuming, then discuss how to support other user interactions.

We first discuss methods that rely on external entities to forcibly
interrupt and halt the execution of a running program. We exam-
ine these methods at two levels: the operating system (OS) level,
through stopping a process, and the Java Virtual Machine (JVM)
level, through suspending a thread. The OS-level process interrup-
tion method utilizes the SIGSTOP signal in Unix-based systems to
immediately halt the execution of an operator, and the process
remains suspended until a SIGCONT signal is received. This method
allows for quick and efficient pausing and resuming of a program,
has native OS support, and is widely applicable to various programs.
However, a drawback is that the program is frozen and cannot re-
spond to user requests, which makes it challenging to access the
program’s state after pausing. JVM-level thread interruption uses
Java’s built-in Thread.suspend() method to pause an operator’s
execution by employing two threads: a data-processing thread and
a control handling thread. While the data-processing thread is sus-
pended, the control-handling thread can still access the program
state using shared variables and continue to handle user requests.
One drawback of this method is that the operator’s processing logic
might be interrupted at an arbitrary point, potentially leaving data
structures in an inconsistent state and making it challenging to
reason about the application’s state.

An alternative design is to let data processing systems volun-
tarily suspend their execution at predetermined and predictable
points, rather than being forcibly interrupted. This design takes
advantage of natural stopping points in data processing systems,
such as between the processing of two tuples. The operator checks
for a pause signal before processing the next tuple and, if the pause
signal is detected, the operator voluntarily suspends its own execu-
tion. This allows for user interactions and inspections during the
pause. However, this method has a drawback: processing a single
tuple might be time-consuming for complex user-defined functions
(UDFs), which could reduce system responsiveness. To address this
issue, one can further divide an operator’s processing of a single
tuple into multiple mini-steps, each performing a part of the com-
putation logic. This approach transforms the operator logic into a
state machine, which tracks the upcoming execution step.

In this tutorial, we will discuss and compare the aforementioned
methods for pausing and resuming the execution of a workflow.
We will provide detailed specifications on how a data-processing
engine can be designed to support pausing for each method, and
discuss their advantages, drawbacks, and suitability for different use
cases. Furthermore, we will extend the design of supporting pausing
to support various types of user interactions, such as inspecting
internal states and intermediate results, and modifying logic.

2.3 Supporting Collaborative Execution
Monitoring and Control

In this part of the tutorial, we discuss how to share execution
states in a collaborative data analytics setting. In an interactive
data processing system, there is a rich set of execution states to
be shared across all users, such as the status of operators (e.g.,
initializing, running, paused, error, or completed), runtime statistics
of operators (input and output counts), user interaction history (e.g.,
user commands, system responses, error messages, logs, and traces),
and progressive execution results. When a user starts running a
workflow, other users sharing the same workflow should see it as
running and receive constant updates. Furthermore, a user should
be able to invite a new collaborator to join an execution session
at any time, to help analyze results or investigate issues. In this
case, the execution state should be seamlessly shared with the new
collaborator’s frontend UI. In other words, any user can freely
detach and attach to the shared execution state at any time.

A naive approach of periodically sending the entire execution
state snapshot to the frontend is not viable due to the frontend’s
limited processing power and its network overhead. Additionally,
the interaction history keeps growing as more user interactions oc-
cur during execution, and progressive execution results can become
large. To provide a smooth user experience, we need incremental
updates for various execution states. The challenge lies in the fact
that different execution states require different incremental meth-
ods to be updated to the frontend. For instance, for workflow state
and operator status, the backend sends only the status of changed
operators. For the interaction history, the newly generated entries
are sent to the frontend, which appends them to the history list.
For sharing progressive execution results, the frontend receives
metadata updates and only fetches results on demand.

However, if we only provide incremental updates to clients, a
problem arises when a new user joins an execution session in the
middle of an execution. If the new user’s frontend only receives
incremental updates from the moment they join, their frontend
state will be incomplete. For example, the new user might only see
interactions made after they join, and not be able to view past inter-
action histories, which could be critical for investigating problems
and analyzing results. To address this problem, the server also main-
tains an execution state, and updates it using the same methods as
the clients. When a new user joins, they are first fast-forwarded
to the latest state using the server-maintained state. Afterward, all
subsequent incremental updates are directed to the new user, ensur-
ing they have a complete and up-to-date view of the execution state.
In this tutorial, we explore best practices for delivering incremental
updates of various execution states to the frontend.

2.4 Supporting Scalable and Fault-Tolerant
Executions with Frequent User Interactions

Supporting fault tolerance is crucial in large-scale data-processing
systems, with all major big data platforms considering it a key re-
quirement. However, when real-time collaboration and user interac-
tions are introduced, ensuring fault tolerance becomes increasingly
complex. A common approach adopted in existing systems such as
Apache Spark, Hadoop, and Flink is to roll back to the last check-
point and rerun the computation [21]. This approach works well
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when data processing logic does not involve user interactions since
queries are often deterministic, and rerunning them produces the
same result. However, when user interactions are involved, merely
rerunning the data computation without accounting for these in-
teractions can result in the loss of user interaction information,
leading to incorrect outcomes.

To address this problem, we need to carefully reapply user con-
trol commands during the recovery phase. Specifically, we must
log all non-deterministic factors, such as user interaction timing
and control command content, which effectively tackles the issues
with fault tolerance in systems involving user interactions. Logging-
based fault tolerance is widely discussed in the literature, and in
this tutorial, we will explore a few approaches that are most suitable
for supporting fault tolerance in the context of collaborative and
interactive data analytics systems. One approach is to log all input
messages received by an operator. During recovery, we will replay
the same sequence of messages to each operator, which leads to
the same processing and identical output. This approach is simple
and fast in recovery, but has high runtime overhead. An alterna-
tive approach is to only log the arrival order of input messages
and rely on upstream operators to regenerate message content.
This method reduces the log size; however, in certain cases with
complex user interaction patterns, it may result in cascading roll-
backs with increased recovery time. Finally, we discuss a hybrid
approach that selectively logs the content of messages based on
their characteristics.

3 PRESENTERS
ZuozhiWang is a PhD student at UC Irvine focusing on distributed
big data processing and query optimization. Over the last six years,
Zuozhi has dedicated his research to building collaborative and
interactive data analytics systems on the Texera project. His knowl-
edge and expertise span across various layers of the system, includ-
ing the distributed dataflow execution engine, RPC services, fault
tolerance, compiler, web services, and frontend. With his hands-on
experience in Texera, he is well-equipped to address challenges
and design decisions related to real-time collaborations and user
interactions in data analytics systems, providing attendees with
valuable insights and practical understanding in this tutorial.
Chen Li is a professor in the Department of Computer Science
at UC Irvine. He received his PhD degree in Computer Science
from Stanford University, and his MS and BS degrees in Computer
Science from Tsinghua University, China. He was a recipient of an
NSF CAREER award and several test-of-time publication awards, a
part-time visiting research scientist at Google, PC co-chair of VLDB
2015, General Chair of ICDE 2023, an ACM distinguished member,
and an IEEE fellow. He is the treasurer and a board member of the
VLDB Endowment. His research interests are in the field of data
management, including data-intensive computing, databases, query
processing and optimization, machine learning-based systems and
data analytics, search, visualization. His current focus is building
open source systems for big data management and analytics.
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