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ABSTRACT
Modern cloud networks are a fundamental pillar of data-intensive
applications. They provide high-speed transaction (packet) rates
and low overhead, enabling, for instance, truly scalable database de-
signs. These networks, however, are fundamentally different from
conventional ones. Arguably, the two key discerning technolo-
gies are RDMA and programmable network devices. Today, these
technologies are not niche technologies anymore and are widely
deployed across all major cloud vendors. The question is thus not
if but how a new breed of data-intensive applications can benefit
from modern networks, given the perceived difficulty in using and
programming them. This tutorial addresses these challenges by
exposing how the underlying principles changed as the network
evolved and by presenting the new system design opportunities
they opened. In the process, we also discuss several hard-earned
lessons accumulated by making the transition first-hand.
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1 BACKGROUND AND MOTIVATION
The old networks. The discipline of programming old networks
involved simple concepts. Messages were exchanged through sock-
ets, which invariably forced applications to use a sequence of simple
send-receive patterns to communicate [22]. Message forwarding
was completely opaque to the application. Once a message was
passed on to an initiating machine’s send call, it would simply
resurface on the desired target machine’s recv call. How the net-
work was structured between the initiating and target machines
did not matter to the application.
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Modern networks are very different. In the last decade, much
has changed in networking to enable data-centric systems and
applications at the cloud scale [2]. Modern networks are larger,
faster, more efficient, and offer more services. Unsurprisingly, they
bring many changes in how they are programmed. These changes
and how to harvest their benefits when building data-intensive
applications are the topic of this tutorial.
What are the changes, and why invest in them now? The two
technologies that best exemplify these fundamental abstraction
shifts are RDMA and programmable network devices. We will dis-
cuss them shortly, but for now, it suffices to say that for someone
that works in the cloud provider industry, the question of why to
use these technologies is moot. This industry has been using one or
both of them for a few years because, quite simply, cloud providers
cannot afford to forgo technologies that are efficient and deliver
high performance. For a cloud customer, the story used to be dif-
ferent. In the past, it was difficult to access these technologies, and
the learning curve was discouraging. Currently, these technologies
are off-the-shelf, and some are already offered online. The risk for
researchers and practitioners building innovative systems without
these technologies is to find themselves behind systems that do.
What do those techniques provide? RDMA stands for Remote
Direct Memory Access, and, as the name implies, blurs the bound-
aries among servers allowing, for instance, for a process to read
the memory of a remote machine. Programmable network devices
allow applications to customize the way the network hardware
behaves. They allow, for instance, semantics-based routing, e.g.,
routing a request to a server that is available rather than to a fixed
destination address.
What can you learn from this tutorial? First, we make the case
that it is the right time for system builders to learn about these
changes and talk about the underlying hardware supporting them
in great detail. Second, we explain the key fundamentals of how
to use the technologies, in particular of how to adapt them for
database systems use cases. With this material, system builders
will be able to create very efficient, very fast data movement prim-
itives. Lastly, the authors have collectively amassed a large body
of knowledge adopting the new technologies. The tutorial distills
these experiences into recommendations, pitfalls to avoid, and best
practices the tutorial attendants can incorporate immediately.
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The tutorial is structured as follows:
• Part I: Modern Networking Infrastructure (§ 2) presents the

basic infrastructure of data-center-sized/cloud networks, focus-
ing on their hardware and topology. We use cloud networks here
because they are increasingly opening RDMA and accelerator
technologies to customers (besides using them internally) and
because on-premise installations nowadays can use the same
technologies albeit at a smaller scale.

• Part II: RDMA and Derivatives (§ 3) introduces RDMA as
a means for high-performance database systems to efficiently
interact with the network. We provide a primer on RDMA—and
its derivatives in the cloud—and discuss lessons learned over
a decade on how to leverage RDMA efficiently for designing
scalable systems.

• Part III: Programmable Devices (§ 4) discusses how to lever-
age the network’s programmable devices to accelerate or offload
application logic. We introduce the most common computing
models and show how to use them to express data structures and
computations that NICs and switches can execute. Like above,
we comment on pitfalls to avoid.

• Part IV: Open Problems and Next Steps (§ 5) argues that we
are seeing the dawn of a next generation of cloud data-intensive
systems that fully embraces modern networks. It discusses the
design space for these new systems and pinpoints promising
open research areas.

2 MODERN NETWORKING
INFRASTRUCTURE

Data centers rely on fast networks to support customer-applications
traffic and provider-operated services. They are engineered to be
fast, bringing 40 Gb to 100 Gb Ethernet links to each server, with
400 Gb on the horizon. They are also larger. A single network
can connect tens to hundreds of thousands of servers with an un-
precedented bisection bandwidth1. To understand the scale of these
networks, consider that Google reported that one of its datacenters
had 1.2 Petabits of bisection bandwidth in 2012 [20]. If all the servers
on the network were dedicated to data-intensive systems, and the
average database row was 100 bytes, such a network could trans-
port 1.5 trillion tuples at any point in time—in a single datacenter.
In today’s numbers, this could be orders of magnitude larger!
The need for new server stacks. A network rate of 100 Gb means
that a packet may arrive at a server roughly every 6.7 nanoseconds.
At 400 Gb, the rate goes down proportionally. Traditional hardware
and software stacks cannot keep this pace. This time scale is orders
of magnitude below what even a single system call would take,
which is what the old interface and network hardware used to
receive/transmit a single message.

Modern server stacks are designed to address these issues. These
stacks embrace two underlying principles to achieve efficiency and
high performance. First, they allow the application to communicate
directly with the network card in what is called OS bypass. In other
words, data transmission does not involve system calls anymore.
Second, an application needs only to point to the data it wishes to
transmit. The card reads data directly from userspace in what is

1Bisection bandwidth is a measure of how much data the entire network can carry if
all servers were sending and transmitting data at once.

deemed zero-copy. Not surprisingly, RDMA and its variations adopt
these principles. We will discuss how in Section 3, but for now, we
note that this combination is so powerful that Microsoft reported
that RDMA protocols currently carry 70% of its storage traffic [1].
The need for new switches. The fundamental changes with
switches came from the need to manage a larger, potentially het-
erogeneous fleet of them. Software-Defined Networks (SDN) was
the first attempt to make commercial switches adopt a common
control interface. This interface allowed for managing large net-
works centrally, which was welcome by hyperscalers. However,
SDN was still not flexible enough. As virtualization technologies
evolve, they brought a constant stream of new crucial networking
protocols that needed to be implemented very fast. Waiting until a
new hardware switch reached the market that supported a new set
of much-needed protocols was just unsustainable. In the mid-2010s,
a new class of hardware switches became commercial that solved
this issue via programmability. These switches could execute net-
working protocols that were encoded as software programs. We
will discuss this in more detail in Section 4.

Lessons Learned. Understanding the characteristics of modern
networking hardware—i.e., NICs, switches, and accelerators—helps
to explain several mechanisms and design decisions that the mod-
ern networking programming abstractions adopted. This is the
foundation to understand modern networks.

3 RDMA AND DERIVATIVES
RDMA is gaining traction in data center networks for all major
cloud providers, enabling efficient routing of massive application
traffic at scale with low latency. Simultaneously, the DBMS market
pivoted from on-premise to cloud-based solutions in recent years.
Consequently, we believe it is an opportune moment for system
builders to adopt RDMA for constructing scalable database systems.
In this part of the tutorial, we briefly introduce RDMA and its cloud-
deployed derivatives, followed by an aggregated perspective on the
insights gained over the past decade on effectively utilizing RDMA
for designing scalable database systems.
An RDMA Primer. As part of the RDMA primer, we first provide
an overview of the basics of the original RDMA technologies devel-
oped for high-performance computing (HPC) and then discuss the
major differences between RDMA derivatives in the cloud.

RDMA enables direct remote memory access in a cluster with-
out engaging the remote system’s CPU. This technique also avoids
unnecessary data copies on the sender’s side through zero-copy
transfer, reducing CPU usage and latency. Notable network archi-
tectures supporting RDMA include InfiniBand, used primarily in
HPC, and RDMA over Converged Ethernet (RoCE).

While Microsoft stands out as the only major cloud provider
that deploys RDMA using networking technologies developed for
HPC (RoCE and InfiniBand), this does not imply that RDMA is not
widely utilized. In fact, all other leading cloud providers, such as
Amazon and Google, have developed their networking technologies
(e.g., EFA or 1RMA) to enable RDMA-based data transfers. These
stacks share similarities with original RDMA technologies, such as
a common low-level API between EFA and RDMA, but also possess
notable differences [21, 30]. For example, EFA only supports two-
sided primitives, unlike original RDMA technologies that offer
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one- and two-sided verbs. Other subtleties, like message ordering
guarantees, can impact application design. In the RDMA primer, we
will provide an overview of the commonalities and differences and
known performance characteristics of cloud-based RDMA stacks.
Leveraging RDMA. The database community started to redesign
database systems to use RDMA optimally a while ago. We will offer
an overview of the initial directions proposed in research and then
discuss lessons learned from the last decade of research.

The initial efforts to redesign database systems for RDMA can
be divided into two primary directions. First, enhancing existing
database components’ efficiency using RDMA verbs without mod-
ifying the underlying architecture [15, 18]. The second direction
involves exploring the idea that RDMA could enable novel data-
base architectures with better scalability than traditional ones [2].
Early papers investigated the use of RDMA in facilitating disaggre-
gated database architectures, which have now become prevalent
in cloud environments. This line of work revealed that an archi-
tectural shift could result in scalable database systems capable of
handling various workloads that were once considered unscalable
(e.g., distributed OLTP [25] or graph processing [6]).

Lessons Learned. We summarize the lessons from the first decade
of RDMA-based database research along three axes, as follows: (1)
DBMS architectures must evolve to optimally leverage RDMA. Al-
though early work indicated the need for architectural changes,
discussions about RDMA-optimal architectures continue, with re-
cent proposals suggesting disaggregated structures with coherent
caching layers for cloud database systems [29]. (2) A second les-
son that we learned “the hard way” is that understanding RDMA
and implementing efficient, accurate RDMA-based systems is far
from being trivial, as it requires a deep understanding of RDMA’s
interaction with the local DMA subsystem (e.g., DMA using PCIe).
Specifically, designing correct protocols for concurrent RDMAwrite
operations—inherent to numerous database workloads, such as
OLTP—poses significant challenges, and many early implementa-
tions have proven incorrect. (3) Lastly, improved RDMA abstrac-
tions are needed, offering database-centric primitives that simplify
RDMA’s complexities without compromising performance [4, 23].

4 PROGRAMMABLE DEVICES
As discussed above, modern NICs and switches have become pro-
grammable, i.e., some modern devices can accommodate and per-
form application tasks. There are, however, at least two limitations
on what can be offloaded. First, NICs and switches are not general-
purpose computers. Most adopt peculiar computing models, which
may or may not be able to express the computations worth unload-
ing. Second, this type of equipment has tremendous I/O power but
is limited regarding memory size and the length of programs they
can support. Even with these restrictions, several database system
areas can benefit. Here are some concrete examples:
Semantics-BasedRouting.Replicated databases, may allow clients
to send queries to secondary servers instead of the primary. This
feature reduces the read workload on the latter, but clients risk
reading stale data if a secondary server lags on replication. To ad-
dress this issue, a network switch connecting clients and servers
can keep track of database updates—which transactions (packets)
were sent to the primary server and which reached the secondaries.

The network can, therefore, detect up-to-date secondary servers. A
read transaction sent to the primary can be safely redirected to a
caught-up secondary. This semantic packet routing can alleviate the
primary server and scale well with the number of secondaries. Some
of us have implemented this logic in a commercial, off-the-shelf
programmable switch [27]. In a separate work, we showed that a
switch could batch and reorder the transactions sent to servers [10].
The batching greatly amortizes network overhead. The reorder-
ing causes transactions with high affinity to execute concurrently,
bolstering cache hit ratios on the server. These semantic routing
techniques have other applications, but let us look into other areas
that benefit network support.
Caching and early OLTP execution. What if instead of just
routing or manipulating transaction requests, the network would
also act on them? For instance, consider a typical OLTP workload. It
often contains small transactions that target hot data regions. With
enough such transactions the hot data regions become contended,
which slows down transaction execution. One alternative is to take
advantage of the switch’s speed to manage the contended areas. We
developed a scenario in which, instead of forwarding a transaction
that targets a hot area to the server, the switch would pull that hot
area and process the transaction locally instead [8].
Relational and Graph Analytic Acceleration. The benefits dis-
cussed above extend to analytical workloads as well. For instance,
assume a rack-sized data warehouse where servers process OLAP
queries in parallel. The network switch connecting the servers is
normally just their data conduit. Instead, we programmed a switch
to perform joins and aggregations on behalf of the servers as it re-
ceives the data that would be reshuffled in a normal algorithm [12].
By using the switch, we swapped what would have been a sophisti-
cated distributed computation (aggregation on the servers) with a
central, simpler one (aggregation on the switch). In the same spirit
but in a different work, we taught a switch to process graph data
rather than forward it, in the context of a Graph Pattern Mining
system [6]. We obtained similar benefits. We say, in such cases, that
the network is accelerating the workloads.
Machine Learning Acceleration. This workload category has
gained enormous importance and can, unsurprisingly, benefit from
network programmability as well. For instance, parameter aggrega-
tion plays a crucial role in the training phases of Machine Learning
workloads. During such time, the servers must communicate to col-
lectively update the parameters (coefficients) they are calculating
in parallel. The communication pattern in question would normally
be all-to-all message exchanges, whose quadratic factor creates
severe scalability problems. Some of us proposed and implemented
this aggregation to use the network instead, implementing these
so-called parameter servers for ML training on a switch [19].

Lessons Learned. The common factor throughout all these ex-
amples is that deploying database system logic in the network
cannot be done by simply recompiling software. The computing
model in networking hardware is different enough to requires a
redesign of the algorithms and data structures involved. Another
important aspect we learned is that networking devices are very
imbalanced: they are built for massive IO but support only small
computations. The topic of when and what can be offloaded in these
devices sparked a study of itself that some of us published [16].
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5 OPEN PROBLEMS & NEXT STEPS
Despite all the advancements that we described about RDMA and
programmable devices, these technologies are still experiencing
much progress. Regarding RDMA, some fundamental needs, such
as proper guides on using advanced features, are still very much
needed and are just starting to appear [31]. The opportunities here
go beyond establishing best practices; there has been enough ap-
plication experience that we are starting to see new forms of com-
munication being suggested. These may appear as higher-level
communication primitives [7] or behavior customization motivated
by database system use cases [17].

Regarding programmable network devices, we see a similar for-
ward motion. In particular, the difficulties identified in the past
about maintaining state on the switch [5] are slowly being ad-
dressed. Sometimes, these advancements come in the form of sug-
gested hardware changes [24]. They can also come as new low-level
data structures [26, 28] or high-level data services [9]. These ad-
vancements, too, are motivated by specific database systems needs
such as transaction manipulation [14, 27], database benchmark-
ing [11, 13], and parallel analytics execution [3], just to cite a few.

Lessons Learned. The discipline of modern networking is still in
its initial stages, and this means that great systems opportunities
lie ahead, e.g., new disaggregated architectures.

6 PRESENTERS’ BIOS
The tutorial is offered by seasoned researchers in the area. We can
divide them into three groups depending on their origin, starting
with those that work in the Industry. Dan Ports works at Microsoft
Research and has shown how to use programmable switches to
offload tasks such as semantic routing for database replication.
His paper on in-network parameter servers is a reference on the
field [19]. Theo Jepsen works at Intel and has used programmable
switches to offload string search or perform transaction triaging
onto the network [9, 10].

The reamaining tutorial co-authors come from Academia. To-
bias Ziegler is a Postdoctoral fellow, and Matthias Jasny, and Lasse
Thostrup are Ph.D. students at TU Darmstadt, under the leadership
of Prof. Carsten Binnig. Tobias Ziegler has extensive experience
in RDMA techniques applied to distributed database systems [30].
Matthias Jasny has worked on different approaches to accelerate
database subsystems using switches [8]. Lasse Thostrup has expe-
rience with high-level abstraction for network programming [23]—
the Best Paper Award in SIGMOD’21. Carsten Binnig has pioneered
many techniques we discuss in this tutorial, including a seminal
paper on modern networks [2].

Rana Hussein and Alberto Lerner are a Ph.D. student and a Senior
Researcher, respectively, at the University of Fribourg in Switzer-
land under the leadership of Prof. Philippe Cudré-Mauroux. Rana
Hussein has pioneered techniques to use programmable switches
for graph database analytics [6]. Alberto Lerner has worked on
several methods to accelerate query processing and database bench-
marking with programmable devices [5, 13]. Philippe Cudré-Mau-
roux is a veteran with many significant contributions to the data-
base field, including the first papers showing that query execution
is possible in programmable switches [12].
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