
A Tutorial on Visual Representations of RelationalQueries
Wolfgang Gatterbauer

Northeastern University

Boston, Massachusetts, USA

w.gatterbauer@northeastern.edu

ABSTRACT
Query formulation is increasingly performed by systems that need

to guess a user’s intent (e.g. via spoken word interfaces). But how

can a user know that the computational agent is returning answers

to the “right” query? More generally, given that relational queries

can become pretty complicated, how can we help users understand
existing relational queries, whether human-generated or automat-

ically generated? Now seems the right moment to revisit a topic

that predates the birth of the relational model: developing visual

metaphors that help users understand relational queries.

This lecture-style tutorial surveys the key visual metaphors de-
veloped for visual representations of relational expressions. We will

survey the history and state-of-the art of relationally-complete di-

agrammatic representations of relational queries, discuss the key

visual metaphors developed in over a century of investigating dia-

grammatic languages, and organize the landscape by mapping their

used visual alphabets to the syntax and semantics of Relational

Algebra (RA) and Relational Calculus (RC).

PVLDB Reference Format:
Wolfgang Gatterbauer. A Tutorial on Visual Representations of Relational

Queries. PVLDB, 16(12): 3890 - 3893, 2023.

doi:10.14778/3611540.3611578

1 INTRODUCTION
The design of relational query languages and the difficulty for users

to compose relational queries have received much attention over

the last 40 years [9, 12, 23, 27, 31, 41, 42, 48, 49]. A complementary

and much-less-studied problem is that of helping users read and
understand an existing relational query. Reading code is hard, and
SQL is no exception. With the proliferation of public data sources,

and associated queries, users increasingly have a need to read other

people’s queries and scripts. Furthermore, it is usually much easier

to modify a draft than to write something from scratch. As such,

modifying an already existing query could be an effective way to

write new queries. However, modifying an existing query requires

first to understand it. For that reason, it is valuable to help users

understand queries, and visualization is one obvious route. While

visual methods for expressing queries have been studied exten-

sively in the database literature under the topic of Visual Query

Languages (VQLs) [9], the challenges for supporting the explicit

reverse functionality of creating a visual representation of an exist-

ing query (“Query Visualization”) are on a whole different from the

problem of composing a new query (Fig. 1).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License. Visit

https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this license. For any use

beyond those covered by this license, obtain permission by emailing info@vldb.org. Copyright is

held by the owner/author(s). Publication rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.

doi:10.14778/3611540.3611578

Semantics Visualization

expression Query Visualization (QV)
SELECT A
FROM R
WHERE B not in

(SELECT B
FROM S) 

Query

S
B

R
A
B

Q
A

understanding

Semantics

Database

RDBMS

Semantics Textual query

Visual Query Languages (VQL) translation
SELECT A
FROM R
WHERE B not in

(SELECT B
FROM S) 

Visualization

execution

S
B

R
A
B

Q
A(b)

(a)

Figure 1: Contrasting Query visualization (on the top (a), in orange)
with Visual Query Languages (VQL) (on the bottom (b) in yellow).

𝑆 𝑄 𝑉
∆𝑆 ∆𝑄 ∆𝑉
𝑆' 𝑄' 𝑉'

𝑒 𝑣

𝑒' 𝑣

Semantics VisualizationQuery

Figure 2: A simple algebraic framework will help us discuss various
principles of query visualization (best understood with Fig. 1a).

The tutorial uses a few relational queries to survey and summa-

rize over a history of diagrammatic (thus visual) representations of
first-order logic queries and statements. The tutorial will contrast and
highlight similarities and differences between approaches proposed

across communities and use a mapping of the visual representations

to equivalent expressions in Relational Algebra (RA) and Relational

Calculus (RC) to guide the journey.

Outline. The lecture-style 1.5-hour tutorial consists of five parts:
(1) Why visualizing queries and why now: We contrast Query

Visualization (QV) with Visual Query Languages (VQL) and give

several usage scenarios for the use of the former.

(2) Principles of Query Visualization: We discuss 8 recently pro-

posed principles of query visualization [18, 20], re-phrased in the

terminology of “Algebraic Visualization Design” [28] (Fig. 2). We

later refer to them when discussing different visualizations.

(3) Logical foundations of relational query languages: We discuss

the logical foundations of relational query languages. These con-

cepts are also used when discussing visual representations.

(4) Early diagrammatic representations: Diagrammatic represen-

tations for logical statements were developed well before relational

databases. We will discuss the influential beta existential graphs by

Peirce [37] and their connection to the much later developed RC.

(5) Modern Visual Query Representations and Design trade-offs:
We use a few queries over intuitive database schemas to discuss the

main visual representations for relational queries proposed by the

database community.

3890

https://orcid.org/0000-0002-9614-0504
https://doi.org/10.14778/3611540.3611578
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611578


Slides and videos of the tutorial will be made available afterwards

on the tutorial web page,
1
similar to other recent tutorials by the

presenter and collaborators on unrelated topics.
23

2 TUTORIAL INFORMATION

Audience and prerequisite. This 90 min tutorial targets re-

searchers and practitioners who desire an intuitive introduction

to the history of and approaches for visual representations of re-

lational queries and logical statements, and desire to see major

commonalities across past major designs of visual languages. The

tutorial is best followed by being familiar with Relational Algebra

(RA), Relational Calculus (RC) and the safety conditions to make

them equivalent in expressiveness. However, the tutorial is self-

contained and includes a concise short-paced introduction into

overall characteristics of relational languages.

Scope of this tutorial. This tutorial surveys visual formalisms for

representing relational queries. The focus is on relationally com-

plete formalisms whose expressiveness is equivalent to Relational

Algebra (RA) and Relational Calculus (RC) and non-recursive Data-

log with stratified negation. In order to guide the discussion, the

tutorial discusses mapping the visual alphabets of visual formalisms

to expressions of RA and RC. It thus starts with a quick overview

of RA and RC and their connection to first-order logic. It discusses

various extensions to the relationally complete fragments (such as

groupings and recursion) only at the end if time permits.

Out-of-scope. The tutorial does not discuss domain-specific vi-

sualizations, such as those developed for geographic information

systems, time-series, and spatio-temporal data [5, 14, 30, 33]. Nei-

ther does it discuss dynamic interaction with queries or data [36].

Related other tutorials. A tutorial at SIGMOD’19 [47] (“Towards

Democratizing Relational Data Visualizations”) focused on ways

to visualize data and languages that allow users to specify what

visualizations they want to apply to data. The focus of this tutorial

is instead of visual representations of queries. Two tutorials at SIG-

MOD’17 [7] (“Graph Querying Meets HCI”) and SIGMOD’22 [6]

(“Data-driven Visual Query Interfaces for Graphs”) focused on vi-

sual composition of graph queries. The types of queries discussed

in those tutorials basically correspond to conjunctive queries with

inequalities over binary predicates, whereas our focus is on full-first

order logic. Also the focus was on the human-interaction aspect of

how to compose queries, while our focus is on the visual formalisms

developed for relational queries over the last century (thus even

predating the relational model).

Prior offerings of this tutorial. An early version of this tutorial

was presented at the “International Conference on the Theory and
Application of Diagrams 2022” (DIAGRAMS-22) [19], which is the

main international venue covering all aspects of research on the

theory an application of diagrams and attracts and audience com-

plementary to the audience at VLDB. While that prior tutorial had

a stronger focus on the 3rd (logical foundations of query languages)

and 4th parts (diagrams predating relational databases), this tutorial

1
https://northeastern-datalab.github.io/visual-query-representation-tutorial/

2
https://northeastern-datalab.github.io/topk-join-tutorial/

3
https://northeastern-datalab.github.io/responsive-dbms-tutorial/

will emphasize 2nd (principles of query visualization) and 5th parts

(visual query languages developed in the database community).

3 TUTORIAL CONTENT
3.1 Why visualizing queries and why now?
The tutorial starts by giving several scenarios inwhich “appropriate”

query visualizations could help users achieve new functionalities

or increased efficiency in composing queries. An important detail

is here that visualizations can be used as complement to query com-

position, instead of substitution for textual input. This contrasts

with Visual Query Languages (VQLs) which allow users to express

queries in a visual format. Visual methods for specifying relational

queries have been studied extensively [9], and many commercial

database products offer some visual interface for users to write sim-

ple conjunctive queries. In parallel, there is a centuries-old history

on the study of formal diagrammatic reasoning systems [25] with

the goal of helping humans to reason in terms of logical statements.
4

Yet despite their intuitive appeal and extensive study, successful

visual tools today mostly only complement instead of replace text
for composing queries. We will discuss several reasons for why

visual query composition for general relational queries have not

yet widely replaced textual query composition and discuss a user-

query interaction that separates the query composition from the

visualization: Composition is unchanged and still done in text (or

alternatively with exploratory input formats like natural language).

But composition is augmented and complemented with a visual
that helps interpretation [18]. With this motivation, the goal of

this tutorial is to survey and highlight the key ideas behind major

proposals for diagrammatic representations of relational statements

and queries.

Definition 1 (Query Visualization [20]). The term “query vi-
sualization” refers to both (𝑖) a graphical representation of a query
and (𝑖𝑖) the process of transforming a query into a graphical represen-
tation. The goal of query visualization is to help users more quickly
understand the intent of a query, as well as its relational query pattern.

3.2 Principles of Query Visualization
The challenge of query visualization is to find appropriate visual

metaphors that (𝑖) allow users to quickly understand a query’s in-

tent, even for complex queries, (𝑖𝑖) can be easily learned by users,

and (𝑖𝑖𝑖) can be obtained from textual queries by automatic trans-

lation, including a visually-appealing automatic arrangement of

elements of the visualization. We discuss 8 recently proposed prin-

ciples of query visualization [20], however newly organized, ex-

tended, and rephrased in the terminology of “Algebraic Visualiza-

tion Design” [28] (Fig. 2). We refer to them later extensively when

discussing different visualizations. We also include those in order

to spark a healthy debate during and after the tutorial.

3.3 Logical foundations of relational languages
We give a concise but comprehensive overview of the logical founda-
tions of relational query languages. This overview uses a consistent

4
A relational query is a logical formula with free variables. A logical statement has no free variables

and is intuitively the same as a Boolean query that returns a truth value of TRUE or FALSE.

3891

https://northeastern-datalab.github.io/visual-query-representation-tutorial/
https://northeastern-datalab.github.io/topk-join-tutorial/
https://northeastern-datalab.github.io/responsive-dbms-tutorial/


notation that establishes shared concepts across relationally com-

plete textual query languages. We will reuse those extensively later

when discussing visual query representations where we establish

direct mappings between a given visual formalisms and logically

equivalent textual queries. These mappings allow us a unified com-

parison of visual alphabets and their “pattern expressiveness". Thus

our focus is on expressiveness basically equivalent to first-order

logic, which allows us to connect a century of research on for-

malisms for diagrammatic reasoning to our topic.

3.4 Early diagrammatic representations
Relational calculus is a specialization of First-Order Logic (FOL),

namely expressions with free variables. Diagrammatic representa-

tions for logical statements [25] have been developed even before

FOL, which was only clearly articulated in the 1928 first edition

of David Hilbert and Wilhelm Ackermann’s “Grundzüge der theo-

retischen Logik” [24]. An influential diagrammatic notation is the

existential graph notation by Charles Sanders Peirce [37, 43, 45],

who wrote on graphical logic as early as 1882 [29]. These graphs ex-

ploit topological properties, such as enclosure, to represent logical

expressions and set-theoretic relationships. Peirce’s graphs come in

two variants: alpha and beta. Alpha graphs represent propositional

logic, whereas beta graphs represent first-order logic (FOL). Both

variants use so-called cuts to express negation (similar to our nest-

ing boxes), and beta graphs use a syntactical element called the Line
of Identity (LI) to denote both the existence of objects and the iden-
tity between objects. An important component of our discussions

of Beta-existential graphs is showing their imperfect mapping to

the Boolean fragment of restricted forms of DRC. As we will show,

this imperfection has led to a lot of follow-up and confusions in

various work on Peirce’s existential graphs. We may also shortly

cover the close connections to Euler diagrams, Venn diagramms,

and Venn-Peirce diagrams, following the exposition by Shin [44].

3.5 Modern Visual Query Representations
We discuss the main proposed visual representations for relational

queries. We will also include influential Visual Query Languages

(VQLs) as long as those support (either directly or via simple addi-

tions) the inverse functionality of visualizing an existing relational

query. A key difference of our tutorial in contrast to all prior surveys

and overviews that we are aware of (like [9]) is that this tutorial

shows original figures by using a consistent schema (the sailor-

boat-database from the “cow book” [40]) and a few intuitive queries

(such as “find sailors who have rented all red boats”) to provide a

consistent comparison across different past proposals.

Query-By-Example (QBE) [50] is an influential early VQL that was
strongly influenced by DRC. QBE can express relational division

breaking the query into two logical steps and using a temporary

relation [40, Ch. 6.9]. But in doing so, QBE uses the query pattern

from RA of implementing relational division (or universal quantifi-

cation) in a dataflow-type, sequential manner, requiring multiple

occurrences of the same table.

Interactive query builders employ visual diagrams that users can

manipulate (most often in order to select tables and attributes)

while using a separate query configurator (similar to QBE’s con-

dition boxes [50]) to specify selection predicates, attributes, and

sometimes nesting between queries. They work mainly for con-

structing conjunctive queries but limited forms of negation and

union can be incorporated into the condition part of such queries.

For more general forms of negation and union, however, views as

intermediate relations need to be used, resulting in multiple screens.

dbForge [16] is the most advanced and commercially supported

tool we found for interactive query building. Yet it does not show

any visual indication for non-equi joins between tables and the

actual filtering values and aggregation functions can only be added

in a separate query configurator. Moreover, it has limited support

for nested queries: the inner and outer queries are built separately,

and the diagram for the inner query is presented separately and
disjointly from the diagram for the outer query. Thus no visual
depiction of correlated subqueries is possible. Other graphical SQL
editors like SQL Server Management Studio (SSMS) [46], Active

Query Builder [2], QueryScope from SQLdep [39], MS Access [34],

and PostgreSQL’s pgAdmin3 [38] lack in even more aspects of vi-

sual query representations: most do not allow nested queries, none

has a single visual element for the logical quantifiers NOT EXISTS
or FOR ALL, and all require specifying details of the query in SQL

or across several tabbed views separate from a visual diagram.

Dataflow Query Language (DFQL) is an example visual represen-

tation that is relationally complete [9, 13] by mapping its visual

symbols to the operators of relational algebra. Following the same

procedurality as RA, DFQL expresses the dataflow in a top-down

tree-like structure. Like most visual formalisms that we are aware of

and that were proven to be relationally complete (including [3] and

those listed in [9]) they are at their core visualizations of relational

algebra operators. This applies even to the more abstract graph data
structures (GDS) from [8] and the later graph model (GM) from [10].

The key difference is that GDS and GM are formulated inductively

based on mappings onto operators of relational algebra. They thus

mirror dataflow-type languages where visual symbols (directed

hyperedges) represent operators like set difference connecting two

relational symbols, leading to a new third symbol as output.

DataPlay [1] uses a nested universal relation data model and

allows a user to compose their query by interactively modify-

ing a query tree with quantifiers and observing changes in the

matching/non-matching data. Visual SQL [26] is a visual query

language that also support query visualization. With its focus on

query specification, it maintains the one-to-one correspondence

to SQL, and syntactic variants of the same query lead to different

representations. Similarly, SQLVis [35] places a strong focus on the

actual syntax of a SQL query and syntactic variants like nested

EXISTS queries change the visualization. GraphSQL [11] uses vi-

sual metaphors that are different from typical relational schema

notations and visualizations, even simple conjunctive queries can

look unfamiliar. The Query Graph Model (QGM) developed for Star-

burst [22] helps users understand query plans, not query intent.

QueryVis (earlier QueryViz) [4, 15, 18, 32] borrows the idea of a “de-

fault reading order” from diagrammatic reasoning systems [17] and

uses arrows to indicate an implicit reading order between different

nesting levels. Without the arrows, there would be no natural order

placed on the existential quantifiers and the visualization would

be ambiguous.QueryVis focuses on the non-disjunctive fragment

of relational calculus and is guaranteed to represent connected

nested queries unambiguously up to nesting level 3. Relational

3892



Diagrams [21] is a more recent variant that indicates the nesting

structure of table variables by using nested negated bounding boxes
(instead of arrows) inspired by Peirce’s influence beta existential

graphs [37, 43, 45]. Interestingly, because Relational Diagrams are
based on Tuple Relational Calculus (instead of Domain Relational

Calculus which is closer to First-Order Logic) they solve interpreta-

tion problems of beta graphs that have been the focus of intense

research in the diagrammatic reasoning communities.

4 AUTHOR INFORMATION
Wolfgang Gatterbauer is an Associate Professor at the Khoury

College of Computer Sciences at Northeastern University. His re-

search interests lie in the intersection of theory and practice of

data management. With co-authors he got the EDBT 2021 best

paper award, “best of conference” mentions for PODS 2021, SIG-

MOD 2017, WALCOM 2017, and VLDB 2015, and two SIGMOD 2021

reproducibility awards. Prior to joining Northeastern, he was an

Assistant Professor at Carnegie Mellon’s Tepper School of Business,

and before that a PostDoc at University of Washington. He received

his PhD in Computer Science at Vienna University of Technology.

ACKNOWLEDGMENTS
This work was supported in part by NSF under award numbers

IIS-1762268 and IIS-1956096.

REFERENCES
[1] Azza Abouzied, Joseph M. Hellerstein, and Avi Silberschatz. 2012. DataPlay: interactive

tweaking and example-driven correction of graphical database queries. In UIST. 207–218.
https://doi.org/10.1145/2380116.2380144

[2] Active Query Builder. 2019. https://www.activequerybuilder.com/.

[3] Eirik Bakke and David R. Karger. 2016. Expressive Query Construction through Direct Manip-

ulation of Nested Relational Results. In SIGMOD. ACM, 1377–1392. https://doi.org/10.1145/

2882903.2915210

[4] Sara Di Bartolomeo, Mirek Riedewald, Wolfgang Gatterbauer, and Cody Dunne. 2022. STRAT-

ISFIMAL LAYOUT: A modular optimization model for laying out layered node-link network

visualizations. IEEE Transactions on Visualization and Computer Graphics 28, 1 (2022), 324–334.
https://doi.org/10.1109/TVCG.2021.3114756, Full version: https://osf.io/qdyt9.

[5] Leilani Battle, Danyel Fisher, Robert DeLine,Mike Barnett, Badrish Chandramouli, and Jonathan

Goldstein. 2016. Making Sense of Temporal Queries with Interactive Visualization. In CHI.
5433–5443. 10.1145/2858036.2858408

[6] Sourav S. Bhowmick and Byron Choi. 2022. Data-driven Visual Query Interfaces for Graphs:

Past, Present, and (Near) Future. In SIGMOD. 2441–2447. https://doi.org/10.1145/3514221.

3522562

[7] Sourav S. Bhowmick, Byron Choi, and Chengkai Li. 2017. Graph Querying Meets HCI: State of

the Art and Future Directions. In SIGMOD. 1731–1736. https://doi.org/10.1145/3035918.3054774
[8] Tiziana Catarci. 1991. On the Expressive Power of Graphical Query Languages. In Visual

Database Systems, II. Proceedings of the IFIP TC2/WG 2.6 Second Working Conference on Visual
Database Systems. (IFIP Transactions), Vol. A-7. North-Holland, 411–421. https://dblp.org/rec/

conf/vdb/Catarci91

[9] Tiziana Catarci, Maria Francesca Costabile, Stefano Levialdi, and Carlo Batini. 1997. Visual

Query Systems for Databases: A Survey. Journal of Visual Languages and Computing 8, 2 (1997),
215–260. https://doi.org/10.1006/jvlc.1997.0037 https://doi.org/10.1006/jvlc.1997.0037.

[10] Tiziana Catarci, Giuseppe Santucci, and Michele Angelaccio. 1993. Fundamental Graphical

Primitives for Visual Query Languages. Inf. Syst. 18, 2 (1993), 75–98. https://doi.org/10.1016/

0306-4379(93)90006-M

[11] Claudio Cerullo and Marco Porta. 2007. A System for Database Visual Querying and Query

Visualization: Complementing Text and Graphics to Increase Expressiveness. In DEXA. IEEE,
109–113. https://doi.org/10.1109/DEXA.2007.91

[12] Hock Chuan Chan, Kwok Kee Wei, and Keng Leng Siau. 1993. User-Database Interface: The

Effect of Abstraction Levels on Query Performance. MIS Quarterly 17, 4 (1993), 441–464.

https://doi.org/10.2307/249587

[13] Gard J. Clark and C. ThomasWu. 1994. DFQL: Dataflow query language for relational databases.

Information & Management 27, 1 (1994), 1–15. https://doi.org/10.1016/0378-7206(94)90098-1

[14] Michael Correll and Michael Gleicher. 2016. The semantics of sketch: Flexibility in visual query

systems for time series data. In VAST. 131–140. https://doi.org/10.1109/VAST.2016.7883519

[15] Jonathan Danaparamita andWolfgang Gatterbauer. 2011. QueryViz: Helping Users Understand

SQL queries and their patterns. In EDBT. 558–561. https://doi.org/10.1145/1951365.1951440,
https://queryvis.com/.

[16] dbForge. 2019. https://www.devart.com/dbforge/mysql/querybuilder/.

[17] Andrew Fish and John Howse. 2004. Towards a Default Reading for Constraint Diagrams. In

International Conference on Theory and Application of Diagrams (DIAGRAMS). Springer, 51–65.
https://doi.org/10.1007/978-3-540-25931-2_8

[18] Wolfgang Gatterbauer. 2011. Databases will Visualize Queries too. PVLDB 4, 12 (2011),

1498–1501. https://doi.org/10.14778/3402755.3402805, http://www.vldb.org/pvldb/vol4/p1498-

gatterbauer.pdf, http://www.youtube.com/watch?v=kVFnQRGAQls.

[19] Wolfgang Gatterbauer. 2022. Interpreting and understanding relational database queries using

diagrams. International Conference on Theory and Application of Diagrams (DIAGRAMS) –

Tutorials. http://www.diagrams-conference.org/2022/index.php/program/tutorials/.

[20] Wolfgang Gatterbauer, Cody Dunne, H.V. Jagadish, and Mirek Riedewald. 2022. Principles of

Query Visualization. Bulletin of the Technical Committee on Data Engineering (DEBull) 45, 3
(2022), 47–67. http://sites.computer.org/debull/A22sept/p47.pdf

[21] WolfgangGatterbauer, CodyDunne, andMirek Riedewald. 2022. Relational Diagrams: a pattern-

preserving diagrammatic representation of non-disjunctive Relational Queries. Arxiv preprint
arXiv:2203.07284 (2022). https://arxiv.org/abs/2203.07284, https://relationaldiagrams.com.

[22] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, and Hamid Pirahesh. 1989.

Extensible Query Processing in Starburst. SIGMOD Record 18, 2 (1989), 377–388. https:

//doi.org/10.1145/67544.66962

[23] Elie C. Harel and Ephraim R. McLean. 1985. The Effects of Using a Nonprocedural Computer

Language on Programmer Productivity. MIS Quarterly 9, 2 (jun 1985), 109–120. https:

//doi.org/10.2307/249112

[24] David Hibert and Wilhelm Ackermann. 1928. Grundzüge der theoretischen Logik. By. Berlin, J.
Springer. https://doi.org/10.2307/2018808

[25] John Howse. 2008. Diagrammatic Reasoning Systems. In International Conference on Conceptual
Structures (ICCS) (LNCS), Vol. 5113. Springer, 1–20. https://doi.org/10.1007/978-3-540-70596-

3_1

[26] Hannu Jaakkola and Bernhard Thalheim. 2003. Visual SQL – High-Quality ER-Based Query

Treatment. In Workshops @ International Conference on Conceptual Modeling (ER). 129–139.
https://doi.org/10.1007/978-3-540-39597-3_13

[27] Matthias Jarke and Yannis Vassiliou. 1985. A Framework for Choosing a Database Query

Language. Comput. Surveys 17, 3 (1985), 313–340. https://doi.org/10.1145/5505.5506

[28] Gordon L. Kindlmann and Carlos Eduardo Scheidegger. 2014. An Algebraic Process for

Visualization Design. IEEE Trans. Vis. Comput. Graph. 20, 12 (2014), 2181–2190. https:

//doi.org/10.1109/TVCG.2014.2346325

[29] Christian J. W. Kloesel, Max H. Fisch, Nathan Houser, Ursula Niklas, Marc Simon, Don D.

Roberts, and Aleta Houser (Eds.). 1989. Writings of Charles S. Peirce: A Chronological Edition,
Volume 4: 1879–1884. Indiana University Press. http://www.jstor.org/stable/j.ctt16gz8j1

[30] Doris Jung Lin Lee, John Lee, Tarique Siddiqui, Jaewoo Kim, Karrie Karahalios, and Aditya G.

Parameswaran. 2020. You can’t always sketch what you want: Understanding Sensemaking

in Visual Query Systems. IEEE Trans. Vis. Comput. Graph. 26, 1 (2020), 1267–1277. https:

//doi.org/10.1109/TVCG.2019.2934666

[31] John Leggett and Glen Williams. 1984. An empirical investigation of voice as an input modality

for computer programming. International Journal of Man-Machine Studies 21, 6 (1984), 493–520.
https://doi.org/10.1016/S0020-7373(84)80057-7

[32] Aristotelis Leventidis, Jiahui Zhang, Cody Dunne, Wolfgang Gatterbauer, H. V. Jagadish, and

Mirek Riedewald. 2020. QueryVis: Logic-based Diagrams help Users Understand Complicated

SQL Queries Faster. In SIGMOD. 2303–2318. https://doi.org/10.1145/3318464.3389767, https:
//queryvis.com/, Full version: https://osf.io/btszh/.

[33] Miro Mannino and Azza Abouzied. 2018. Expressive Time Series Querying with Hand-Drawn

Scale-Free Sketches. In CHI. 388. https://doi.org/10.1145/3173574.3173962

[34] Microsoft Access. 2019. https://products.office.com/en-us/access.

[35] Daphne Miedema and George Fletcher. 2021. SQLVis: Visual Query Representations for

Supporting SQL Learners. In VL/HCC. 1–9. https://doi.org/10.1109/VL/HCC51201.2021.9576431
[36] Arnab Nandi, Lilong Jiang, and Michael Mandel. 2013. Gestural Query Specification. PVLDB 7,

4 (2013), 289–300. https://doi.org/10.14778/2732240.2732247

[37] Charles Sanders Peirce. 1933. Collected Papers of Charles Sanders Peirce. Vol. 4. The AN-
NALS of the American Academy of Political and Social Science (1933). https://doi.org/10.1177/

000271623417400185

[38] pgAdmin. 2019. https://www.pgadmin.org/.

[39] QueryScope. 2019. https://sqldep.com/.

[40] Raghu Ramakrishnan and Johannes Gehrke. 2000. Database management systems (2nd ed.).

McGraw-Hill. https://dl.acm.org/doi/book/10.5555/556863

[41] Phyllis Reisner. 1981. Human Factors Studies of Database Query Languages: A Survey and

Assessment. Comput. Surveys 13, 1 (1981), 13–31. https://doi.org/10.1145/356835.356837

[42] Phyllis Reisner, Raymond F. Boyce, and Donald D. Chamberlin. 1975. Human Factors Evaluation

of Two Data Base Query Languages: Square and Sequel. In Proceedings of the May 19-22, 1975,
national computer conference and exposition (AFIPS). ACM, 447–452. https:/doi.org/10.1145/

1499949.1500036

[43] Don D. Roberts. 1992. The existential graphs. Computers & Mathematics with Applications 23,
6 (1992), 639–663. https://doi.org/10.1016/0898-1221(92)90127-4

[44] Sun-Joo Shin. 1995. The Logical Status of Diagrams. Cambridge University Press. https:

//doi.org/10.1017/CBO9780511574696

[45] Sun-Joo Shin. 2002. The Iconic Logic of Peirce’s Graphs. The MIT Press. https://doi.org/10.7551/

mitpress/3633.001.0001

[46] SQL ServerManagement Studio. 2019. https://www.microsoft.com/en-us/sql-server/sql-server-

downloads.

[47] Nan Tang, Eugene Wu, and Guoliang Li. 2019. Towards Democratizing Relational Data

Visualization. In SIGMOD. 2025–2030. https://doi.org/10.1145/3299869.3314029

[48] Charles Welty and David W. Stemple. 1981. Human Factors Comparison of a Procedural and a

Nonprocedural Query Language. ACM Transactions on Database Systems (TODS) 6, 4 (1981),
626–649. https://doi.org/10.1145/319628.319656

[49] M.Y.-M. Yen and R.W. Scamell. 1993. A human factors experimental comparison of SQL and

QBE. IEEE Transactions on Software Engineering 19, 4 (1993), 390–409. https://doi.org/10.1109/

32.223806

[50] Moshé M. Zloof. 1977. Query-by-Example: A Data Base Language. IBM Systems Journal 16, 4
(1977), 324–343. https://doi.org/10.1147/sj.164.0324

3893

https://doi.org/10.1145/2380116.2380144
https://www.activequerybuilder.com/
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1109/TVCG.2021.3114756
https://osf.io/qdyt9
10.1145/2858036.2858408
https://doi.org/10.1145/3514221.3522562
https://doi.org/10.1145/3514221.3522562
https://doi.org/10.1145/3035918.3054774
https://dblp.org/rec/conf/vdb/Catarci91
https://dblp.org/rec/conf/vdb/Catarci91
https://doi.org/10.1006/jvlc.1997.0037
https://doi.org/10.1006/jvlc.1997.0037
https://doi.org/10.1016/0306-4379(93)90006-M
https://doi.org/10.1016/0306-4379(93)90006-M
https://doi.org/10.1109/DEXA.2007.91
https://doi.org/10.2307/249587
https://doi.org/10.1016/0378-7206(94)90098-1
https://doi.org/10.1109/VAST.2016.7883519
https://doi.org/10.1145/1951365.1951440
https://queryvis.com/
https://www.devart.com/dbforge/mysql/querybuilder/
https://doi.org/10.1007/978-3-540-25931-2_8
https://doi.org/10.14778/3402755.3402805
http://www.vldb.org/pvldb/vol4/p1498-gatterbauer.pdf
http://www.vldb.org/pvldb/vol4/p1498-gatterbauer.pdf
http://www.youtube.com/watch?v=kVFnQRGAQls
http://www.diagrams-conference.org/2022/index.php/program/tutorials/
http://sites.computer.org/debull/A22sept/p47.pdf
https://arxiv.org/abs/2203.07284
https://relationaldiagrams.com
https://doi.org/10.1145/67544.66962
https://doi.org/10.1145/67544.66962
https://doi.org/10.2307/249112
https://doi.org/10.2307/249112
https://doi.org/10.2307/2018808
https://doi.org/10.1007/978-3-540-70596-3_1
https://doi.org/10.1007/978-3-540-70596-3_1
https://doi.org/10.1007/978-3-540-39597-3_13
https://doi.org/10.1145/5505.5506
https://doi.org/10.1109/TVCG.2014.2346325
https://doi.org/10.1109/TVCG.2014.2346325
http://www.jstor.org/stable/j.ctt16gz8j1
https://doi.org/10.1109/TVCG.2019.2934666
https://doi.org/10.1109/TVCG.2019.2934666
https://doi.org/10.1016/S0020-7373(84)80057-7
https://doi.org/10.1145/3318464.3389767
https://queryvis.com/
https://queryvis.com/
https://osf.io/btszh/
https://doi.org/10.1145/3173574.3173962
https://products.office.com/en-us/access
https://doi.org/10.1109/VL/HCC51201.2021.9576431
https://doi.org/10.14778/2732240.2732247
https://doi.org/10.1177/000271623417400185
https://doi.org/10.1177/000271623417400185
https://www.pgadmin.org/
https://sqldep.com/
https://dl.acm.org/doi/book/10.5555/556863
https://doi.org/10.1145/356835.356837
https:/doi.org/10.1145/1499949.1500036
https:/doi.org/10.1145/1499949.1500036
https://doi.org/10.1016/0898-1221(92)90127-4
https://doi.org/10.1017/CBO9780511574696
https://doi.org/10.1017/CBO9780511574696
https://doi.org/10.7551/mitpress/3633.001.0001
https://doi.org/10.7551/mitpress/3633.001.0001
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://doi.org/10.1145/3299869.3314029
https://doi.org/10.1145/319628.319656
https://doi.org/10.1109/32.223806
https://doi.org/10.1109/32.223806
https://doi.org/10.1147/sj.164.0324

	Abstract
	1 Introduction
	2 Tutorial information
	3 Tutorial content
	3.1 Why visualizing queries and why now?
	3.2 Principles of Query Visualization
	3.3 Logical foundations of relational languages
	3.4 Early diagrammatic representations
	3.5 Modern Visual Query Representations

	4 Author information
	Acknowledgments
	References

