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ABSTRACT
Graph databases are enjoying enormous popularity, through both
their RDF and Property Graphs (PG) incarnations, in a variety of ap-
plications. To query graphs, query languages provide structured, as
well as unstructured primitives. While structured queries allow ex-
pressing precise information needs, they are unsuited for exploring
unfamiliar datasets, as they require prior knowledge of the schema
and structure of the dataset. Prior research on keyword search in
graph databases do not suffer from this limitation. However, key-
word queries do not allow expressing precise search criteria when
users do know some.

This tutorial (1.5 hours) builds a continuum between structured
graph querying through languages such as SPARQL and GPML,
a recently proposed standard for PG querying, on one hand, and
graph keyword search, on the other hand. In this space between
querying and information retrieval, we analyze the features of mod-
ern query languages that go toward unstructured search, discuss
their strength, limitations, and compare their computational com-
plexity. In particular, we focus on (𝑖) lessons learned from the rich
literature of graph keyword search, in particular with respect to re-
sult scoring; (𝑖𝑖) language mechanisms for integrating both complex
structured querying and powerful methods to search for connec-
tions users do not know in advance. We conclude by discussing the
open challenges and future work directions.
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1 INTRODUCTION
Graph databases Graph-structured data has many applications,
e.g., social network analysis, fraud detection, biological networks,
etc. [40]. One particularly notable application is that of investiga-
tive journalism (IJ), where complex journalistic investigations are
backed by digital data. Such data is oftentimes heterogeneous; a
database consists of different datasets, possibly of different data
models. In an enterprise setting, data could be kept as such and ex-
ploited through dedicated data lake tools. However, for journalists,
a data lake solution is unfeasible due to lack of IT expertise, time,
and resources. Instead, heterogeneous data can be automatically
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transformed into graphs, which journalists then exploit. This has
been pioneered by the International Consortium of Investigative
Journalism (ICIJ) in their initial Panama Papers investigation; the
ConnectionLens [4, 9, 14] system goes towards the same goal. Other
well-known graph database applications related to IJ are financial
crime investigation and fraud detection, used by graph database
providers such as Oracle and Neo4J to advertise their products.
GraphqueryingTo query graphs, theW3C’s standard SPARQL [42]
query language and Cypher [39] are among the best known query
standards. Additionally, the International Organization for Stan-
dardization (ISO) and International Electrotechnical Commission
(IEC) are developing GQL as a Property Graph query standard, with
the graph pattern matching sub-language (GPML) [17] at its core.
Structured queries require users to be familiar with the schema of
the graphs; this is typically not the case with journalists, or users
discovering datasets. This problem is partially tackled by a useful
feature of modern graph query languages, namely property paths or
reachability querying. This allows finding if (and how) two sets of
nodes in the graph are reachable to each other. SPARQL 1.1 queries
can check, for example, if a French entrepreneur “Alice” has a path
to an American entrepreneur “Bob” in the sample graph shown
in Figure 1. However, SPARQL 1.1 does not allow returning the
matching paths to users. In contrast, a GPML query may also return
the paths between two given sets of nodes. This is useful, for ex-
ample, in the fight against money laundering, by enabling finding
routes in which money is laundered across countries, enterprises,
etc. None of the graph query languages, however, natively support
a general connectivity search between three or more sets of nodes.
For instance, in Figure 1, one cannot express the query seeking con-
nections between American entrepreneurs, French entrepreneurs
and French politicians. The ability to express such a query is useful
for investigative journalists as money laundering usually involves
multiple players.
Keyword search in (graph) databases A different paradigm
for searching for information in graphs is keyword search. This
has been historically studied for structured and semistructured
databases, viewed as graphs, e.g., [3, 13, 18, 24, 30]. Users specify
𝑚 keywords, and request trees (or subgraphs) connecting nodes
from the graphs, in which at least one node label matches each
keyword. For example, asking “Alice Bob Falcon” leads to returning
connecting trees, each containing one node whose label matches
each keyword. Keyword search can thus be seen as at one end of a
continuum on an axis of information search in graph, with structured
queries being at the other end.

Computationally speaking, keyword search in graphs is closely
related to the Group Steiner Tree Problem (GSTP), which, given𝑚
node sets, asks for the top-score, e.g., fewest-edges, tree connecting
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Figure 1: Sample data graph.

one node from each set; the problem is NP-hard [27]. Algorithms
from the literature vary in the score functions that they use, number
of solutions they are capable of returning, heuristics used to limit the
search (and thus reduce its complexity) etc. It has been shown [15]
that these variations lead to important differences in result quality,
and even in the very concept of what a result is.
Goals and Objectives At this moment of relative maturity but still
vibrant development of graph query languages and especially query
evaluation algorithms, the goal of this tutorial is to systematize and
compare, in a single framework, graph query problems (structured,
unstructured, and combined), dimensions, such as score functions
and other features used to restrict unstructured query results, and
an overview of algorithms present in the literature. We will also:
explain how these problems interface with closely related areas,
such as natural language querying of graphs, graph indexing, and
graph exploration; and finally, point to open research questions.

2 TUTORIAL OUTLINE
We plan to organize the material as follows.

2.1 Graph Data Models
We very briefly recall standard graph data models, and their specific
features: RDF graphs and property graphs. From our perspective,
the main differences are: (𝑖) whether nodes are “rich” (include their
own attributes, à la PG) or just a label (à la RDF); (𝑖𝑖) whether graphs
just contain data, or are assumed to also come with their ontologies
(specific to RDF). In this tutorial, we do not focus on reasoning
and ontologies, and just focus on querying graphs as they are. To
motivate the need for unstructured querying, we will also introduce
ConnectionLens graphs [9], which can be seen as a variant of RDF
graphs enriched by Information Extraction, that adds both nodes
(extracted entities) and edges (extracted relationships).

2.2 Searching for Information in Graphs
We next introduce the various means for querying data graphs.

(1) Structured Querying:We recall the useful semantics of
the recently proposed structured query standard [17] for
Property Graphs known as GPML. In particular, we focus
on its support for finding unbounded and unspecified paths
between sets of nodes.

(2) Keyword Search: We introduce the problem of “keyword
search” on graphs. We describe the notion of a valid an-
swer and the problem’s similarity to the known NP-Hard
problem of finding Group Steiner Trees [27] in a graph.

Limitations of Graph Queries. We compare the abilities and limi-
tations of each query paradigm. We show that current query lan-
guages allow, at best, to return paths whose lengths and labels
are not specified in advance. However, they do not allow finding
connections between three or more (groups of) nodes. For instance,
consider the example query from Section 1:

“What are the connections between an American entrepreneur,
a French entrepreneur, and a French politician?”

This query cannot be successfully expressed using any exist-
ing graph query language because it requires seeking connections
(trees, and not just paths) between three sets of nodes, the American
entrepreneurs, the French entrepreneurs and the French politicians,
respectively. It can neither be achieved by using just keyword search
because of its inability to specify and capture the aforementioned
precise sets of nodes. This highlights the need for a more powerful
and expressive language in order to fully express the user’s infor-
mation need, that has both structured and unstructured fragments.

2.3 A Structured Introduction to Keyword
Search in Graphs

Next, we discuss the existing keyword search algorithms and intro-
duce the notion of completeness. We also present a classification of
the existing keyword search approaches according to the various
dimensions and identify their limitations. Overall, we consider the
algorithms from the following dimensions:

(1) Notion of an answer: Existing algorithms differ what is
considered an answer. While the majority consider connect-
ing trees as answers [13, 15, 20, 43], a number of algorithms
search for a subgraph or clique as an answer [25, 26].

(2) Number of solutions returned: The keyword search al-
gorithms can either return just one optimal solution [18,
26, 31] or a list of top-𝑘 results [13, 20, 30, 32, 45]. For one
result, the algorithms provide a set of guarantees about the
result being within a known distance from the optimum
with respect to a fixed score function. Such algorithms can
employ pruning strategies tuned specifically to finding the
top-𝑘 solutions.

(3) Directionality: Another categorization of the algorithms
is based on the direction of the search. A majority of al-
gorithms only consider a unidirectional search [1, 3, 13,
20, 22, 46]. That is, the result trees have a root node from
which there are unidirectional paths to all keyword match-
ing nodes. GAM [9] is the only bidirectional search algo-
rithm.
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(4) Data models: Many keyword search algorithms depend
on the intrinsic data model for their performance. The al-
gorithms proposed for RDBMS [3, 16, 21, 22, 32, 33] search
for joined tuple trees (JTTs) which are sets of tuples joined
by a primary key - foreign key constraint. The techniques
proposed in [19, 23] exploit the tree structure of XML data
to aid the search. ObjectRank [12] assumes availability of
a schema graph. STAR [28] uses the RDF graph taxonomy
to reduce the search space. All such algorithms are, thus,
schema-dependent.

(5) Use of summaries: Certain keyword search algorithms do
not work directly over the input graph. The ones presented
in [12, 29, 41, 47] require a precomputed, compact summary
of the graph in order to search for trees.

(6) Score functions: The algorithms presented in [18, 20, 24,
31] use a fixed score function for scoring their results. The
score function’s properties are used to limit the search and
are therefore, crucial to the runtime guarantees.

(7) Completeness: The final dimension that we consider is
completeness. That is, when given sufficient time and space,
the search algorithm will find all the solutions regardless
of the directions of edges, the data model or score function.
We discuss GAM which is a complete algorithm.

Prior surveys studied these algorithms only through their an-
swers [43, 44] and their chosen score function [15].

2.4 Extended Graph Queries
Next, we discuss the existing support and extensions in the graph
query languages with respect to unstructured search. We recall the
SPARQL1.1 [42] property paths that allow checking for existence of
unidirectional paths with only specified labels. We then present the
research prototype JEDI [2] which additionally also allows to return
such paths. We further discuss the regular path query support in
G-CORE [10] and GPML [17] which allow querying and returning
an unbounded and bidirectional path with any label.

Beyond searching for paths, we then present a recent work [5–7]
on extending GPML with Connecting Tree Patterns (CTPs) to allow
Extended Queries (EQs) in order to support both structured and
unstructured fragments in the same query. The sample query from
Section 2.2 can be expressed by the extended queries using the
existing query primitives to specify the three sets of nodes corre-
sponding to the American entrepreneurs, the French entrepreneurs
and the French politicians, respectively and then, using CTPs to
ask for the connections between them. We also present a straight-
forward evaluation technique for evaluating the EQs. For evaluating
CTPs, we outline MoLESP, an algorithm which speeds up GAM but
may be incomplete for certain inputs. Putting it all together, we
show a simple strategy for evaluating extended queries, comprising
both an unstructured part (CTPs) and a structured one.

2.5 Future Work Directions
With a large number of keyword search algorithms, each being
customised for a given dimension, there is still a need for a generic,
complete and efficient algorithm. While MoLESP is a step forward
in this direction, it is still proven to be incomplete for greater than
three keywords. For the execution of EQs, the strategy proposed
in [5, 6] uses a straight-forward evaluation mechanism of first

evaluating the structured fragment, followed by evaluation of the
unstructured fragment. This order may not be always the most
optimal. Thus, further work needs to be done in order to decide
how to optimally interweave the structured and unstructured parts
of the search by using classical techniques such as join ordering, and
cost estimation. Additionally, batch evaluation of keyword queries
and also EQs in general, remains to be addressed.

3 TARGET AUDIENCE AND DURATION
This lecture-style tutorial of 1.5 hours is aimed for researchers,
graduate students and industry practitioners, who are interested in
graph-structured data and its applications. Researchers and gradu-
ate students will benefit from an introduction to graphs and ways
to query it; they will also find open problems and challenges to be
addressed as future work directions. Industry practitioners will get
an overview of existing works in graph querying, their scope and
limitations along with introduction to recent research prototypes
having applicability in various industrial softwares. In general, the
tutorial will also enable new users of graph databases to learn about
techniques to explore their datasets with ease. No prior knowledge
of graphs or databases is expected. However, familiarity with a
structured query language like SQL will be helpful.

4 NOVELTY AND POSITIONING
The tutorial [11] introduced a unified graph data model, the gram-
mar for a structured query language involving regular expression
based path querying, and its various evaluation paradigms includ-
ing approximations. [34] discussed the query processing, primarily
the join algorithms, of many prominent graph databases. The tuto-
rial [38] discussed graph exploration using exemplar queries. Our
tutorial is the first to cover a continuum of various means of query-
ing graphs – the extended queries support the space starting from
purely structured queries for precise information needs to that of
unstructured keyword queries for graph exploration. It has not
been presented previously.

5 SPEAKERS
Ioana Manolescu (https://pages.saclay.inria.fr/ioana.manolescu/)
is a senior researcher at Inria Saclay and a part-time professor at
Ecole Polytechnique, France. She is the lead of the CEDAR Inria
team, focusing on rich data analytics at cloud scale. She is also
the scientific director of LabIA, a program ran by the French gov-
ernment to introduce AI solutions in the public national and local
administration. She has been a member of the PVLDB Endowment
Board of Trustees, an Associate PVLDB Editor, president of the
ACM SIGMOD PhD Award Committee, chair of the IEEE ICDE
conference, and a program chair of EDBT, SSDBM, ICWE among
others. She has co-authored more than 150 articles in international
journals and conferences and co-authored books on “Web Data
Management” and on “Cloud-based RDF Data Management”. Her
main research interests algebraic and storage optimizations for
semistructured data, in particular Semantic Web graphs, novel data
models and languages for complex data management, data mod-
els and algorithms for fact-checking and data journalism, a topic
where she is collaborating with journalists from Le Monde and
RadioFrance. Since 2018, she has been working to integrate highly
heterogeneous journalistic data sources in graphs with the help of
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AI and Information Extraction [9, 14] and querying them through
keywords [4, 8] and through expressive structured and unstructured
queries [5, 7].

Madhulika Mohanty (https://www.madhulikamohanty.com/)
is a postdoctoral researcher in the CEDAR team at Inria Saclay.
Prior to this, she was an Assistant Professor at IIT Dhanbad in
India. She obtained her PhD in 2020 from IIT Delhi with a thesis ti-
tled “Techniques for Effective Search and Retrieval over Knowledge
Graphs”. During her PhD, she has worked on efficiently querying
graphs using structured SPARQL queries [37] and unstructured
keyword queries [35, 36]. Recently, she has worked on enabling
support for both structured and unstructured queries using ex-
tended queries [5, 7]. Her research interests include Graph Data
Management, Natural Language Question Answering and Informa-
tion Retrieval.
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