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ABSTRACT

Join Order Selection (JOS) is a fundamental challenge in query op-
timization, as it significantly affects query performance. However,
finding an optimal join order is an NP-hard problem due to the
exponentially large search space. Despite the decades-long effort,
traditional methods still suffer from limitations. Deep Reinforce-
ment Learning (DRL) approaches have recently gained growing
interest and shown superior performance over traditional methods.
These DRL-based methods could leverage prior experience through
the trial-and-error strategy to automatically explore the optimal
join order. This tutorial will focus on recent DRL-based approaches
for join order selection by providing a comprehensive overview of
the various approaches. We will start by briefly introducing the core
concepts of join ordering and the traditional methods for JOS. Next,
we will provide some preliminary knowledge about DRL and then
delve into DRL-based join order selection approaches by offering
detailed information on those methods, analyzing their relation-
ships, and summarizing their weaknesses and strengths. To help
the audience gain a deeper understanding of DRL approaches for
JOS, we will present two open-source demonstrations and compare
their differences. Finally, we will identify research challenges and
open problems to provide insights into future research directions.
This tutorial will provide valuable guidance for developing more
practical DRL approaches for JOS.
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1 BACKGROUND AND MOTIVATION

Joining multiple tables is a common but expensive operation in
relational databases and modern data warehouses. The query per-
formance of the same query with different join orders could vary
by orders of magnitude [9, 10]. However, finding the optimal join
order with the lowest cost is an NP-hard problem because the valid
join orders grow exponentially with the number of tables to be
joined. In the past four decades, a large number of approaches have
been proposed to solve this problem, such as dynamic program-
ming, heuristic search, adaptive optimization, etc. These traditional

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611576

Valter Uotila
University of Helsinki
Helsinki, Finland
valter.uotila@helsinki.fi

3882

Jiaheng Lu
University of Helsinki
Helsinki, Finland
jiaheng.lu@helsinki.fi

methods typically search the solution space of all possible join or-
ders with some pruning techniques based on cardinality and cost
estimations. Despite the decades-long effort, traditional methods
still suffer from limitations especially when handling complicated
and large joins. Traditional approaches usually employ static join
order enumeration without feedback about the quality of the query
plans. Hence, they often repeatedly choose the same bad plan, as
they have no mechanism for “learning from the experience”.

To address the shortcomings of conventional solutions, a number
of methods based on DRL have been developed. Those methods,
which include ReJOIN [16], DQ [8], SkinnerDB [22, 23], RTOS [32],
AlphaJoin [33], and JOGGER [2], have shown superior performance
over traditional methods. Join order selection is modeled as a
Markov Decision Process and solved by deep reinforcement learn-
ing methods like Deep Q-Network (DQN) [2, 8, 32] and Proximal
Policy Optimization (PPO) [16]. DRL-based approaches could be
categorized in various dimensions, such as offline and online learn-
ing (depending on whether queries and runtime metrics need to
be collected before learning), value-based and policy-based (de-
pending on learning a value function or a policy for solving the
JOS problem). Compared to conventional methods, these learning-
based methods could leverage prior experience through trial-and-
error strategies to provide better query plans within less optimiza-
tion time. In addition to DRL-based join order selection, several
end-to-end learned optimizers (e.g., Neo [15], Bao [14], Balsa [30],
HybridQO [31], Lero [34], LOGGER [3], and COOOL [27]) have been
proposed to provide more functionalities beyond join order selec-
tion, such as join operator selection, index selection, access method
selection, and query plan generation.

In this tutorial, we will focus on recent DRL-based approaches for
join order selection. We will provide a comprehensive overview and
detailed introduction to this topic, from the basic concepts, state-of-
the-art methods, and open-source implementations, to open chal-
lenges and future directions. Table 1 summarizes the main research
works we will present in this tutorial. Since we will concentrate on
the join order selection problem rather than the whole query opti-
mizer, we will only introduce the JOS component of those learned
optimizers. Figure 1 shows the relationships among those works.
Specifically, we will first introduce the fundamentals and critical
concepts of join order selection, such as query graphs, join trees,
join forests, cost models, and the NP-hardness of JOS. We will then
provide a comprehensive overview and detailed introduction of
the DRL-based methods with different categories. Next, we will
present two demonstrations with value-based and policy-based
implementations. Finally, we will discuss the open problems and
future directions of DRL-based methods for join order selection,
especially focusing on the difficulties in practical applications [6].
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Table 1: A summary of the DRL-based methods for join order selection.

Representation Learning DRL Framework

Reference Year
Features |

Encodings State ? Action Reward Algorithms

« Join trees « Join predicates

Row vector with relation

ReJOIN [16] 2018 . Selection predicates height in the join tree Join tree Join two subtrees Cost PPO
« Query graph « Selections ~ . ~ .
DQ [8] 2018 . Physical operators One-Hot Query graph Merge two vertices Cost & Latency Deep Q-Learning
Permutations « Number of join result
SkinnerDB [22, 23] 2019 n/a n/a ermu Choose tables tuples « Number of UCT algorithm
of tables .
Cartesian product tuples
AlphaJoin [33] 2020 + SQL queries » Query plans | One-Hot Join order Join Execution time MCTS
RTOS [32] 2020 - Join forest - Queries « One-Hot « Tree-LSTM Join forest Join two subtrees Cost & Latency « DON « Multi-task learning
« Table and columns
« Query graph « Join forest « GCN « DeepWalk . . . .
JOGGER [2] 2022 . Schema graph » Columns . Attention model Join forest Join two subtrees Cost DON « Curriculum learning
2019 + Queries « Query plans « One-Hot « Tree-CNN Partial plan Steps for building Latency « Value network « Learning

« Row vector embedding a query plan from demonstration

2021 Query plans « One-Hot « Tree-CNN Constant state | Select a hint Execution time : %{\‘AABS .
« Thompson sampling
2022 + Queries « Query plans « One-Hot « Tree-CNN Partial plan Add ope.rators to Latency : On-policy.learning
the partial plan « Safe learning
2022 « Queries « Join order « One-Hot « Tree-LSTM n/a n/a n/a MCTS
2023 « Queries « Query plans « One-Hot « Tree-CNN n/a n/a n/a n/a
« Join forest « Queries « Tree-LSTM Select the next table .
2023 . :]l'able and colQumns « Graph Transformer Query plan and join algorithm Latency State & Action Network
2023 Query plans « One-Hot « Tree-CNN n/a n/a n/a n/a

! Features are representations of the information about queries and databases, such as join trees (i.e., join orders), query graphs (i.e., the undirected graph based on join tables
and predicates), join predicates (i.e., the attributes for join), and database schema (e.g., tables, columns, and the primary-foreign key relationships among tables).
2 States are used to indicate the stages of the learning process. Join order selection is typically an episodic task, thus reaching the terminal state (i.e., all tables are joined in the

query plan) means the end of a learning episode.

( DRL-based JOS Methods and Optimizers )
I

Offline Learning

|
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[ 1
Value-based Policy-based ) ( Learn after execution ) ( Learn during execution )

i+ One-hot encoding
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1+ Tree-LSTM
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i+ Customized
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SkinnerDB
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+PPO +CMABs
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+Tree-CNN
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+ Learning from demonstration +Tree-LSTM
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Figure 1: Taxonomy and relationships among the DRL-based methods for JOS and query optimizer.

2 TUTORIAL OUTLINE

Part III: Two Open-Source Demos (10 min)

We plan to deliver a lecture-style tutorial within 1.5 hours: 3.1 ReJOIN': a policy-based method (4 min)
Part I: Fundamentals of JOS (15 min) 3.2 RTOS?: a value-based method (4 min)
1.1 Basic concepts and knowledge of join ordering (10 min) 3.3 Comparison of ReJOIN and RTOS (2 min)
1.2 Traditional approaches and their limitations (5 min) Part IV: Open Challenges and Future Directions (5 min)

Part II: DRL-Based Methods for JOS (60 min)

2.1 Basics of deep reinforcement learning (15 min)

2.2 DRL-based methods for JOS (45 min)

Uhttps://github.com/antonismand/ReJOIN
Zhttps://github.com/TsinghuaDatabaseGroup/AI4DBCode/tree/master/RTOS
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2.1 Fundamentals of Join Ordering

In this part, we will first introduce some basic and essential concepts
for join ordering [17]. Those concepts include query graphs (e.g.,
chain, star, cyclic, and clique graph), join trees (including left-deep,
right-deep, zig-zag, and bushy trees), join forest [32], cost functions
(e.g., Cour [4] and Cyym [9]), and the search space of join ordering.
We will use some join query examples from the JOB benchmark [9,
10] to help the audiences understand those concepts.

Then, we will give a brief overview of traditional approaches for
JOS by comparing and analyzing their shortcomings with learning-
based methods, especially when dealing with large and complex join
queries. Traditional methods can be categorized into heuristic meth-
ods (e.g., IKKBZ [7], GOO [5], GEQO [1], QuickPick [26]), dynamic
programming methods (e.g., DPsize [21], DPsub [25], DPccp [18],
and DPhyp [19]), adaptive methods (e.g., LinDP [20]), and massively
parallel methods (e.g., MPDP [13]). Some of those methods have been
widely used in open-source and commercial databases.

2.2 DRL-Based Methods for JOS

In this part, we will first briefly review DRL, including the general
framework of RL, the trade-off of exploration and exploitation, state
and action value functions, value-based and policy-based methods,
etc. Specifically, we will review some widely used algorithms in
previous works, such as Deep Q-Network (DQN), Proximal Policy
Optimization (PPO), Contextual Multi-Armed Bandits (CMABs),
Monte Carlo Tree Search (MCTS), and UCB applied to Trees (UCT).

Next, we will discuss how to apply DRL algorithms to solve
the JOS problem. We will introduce DRL-based methods and their
relationships (see Table 1 and Figure 1) as well as their weaknesses
and strengths. Based on whether we need to collect queries and
runtime metrics before the learning process, these methods could
be classified into offline and online learning.

Offline learning. ReJOIN [16] and DQ [8] are the first policy-based
and value-based methods for JOS, respectively. Despite their differ-
ences in the training data format and learning process, they both
adopt simple encodings to represent the join trees. RTOS [32] further
enhance the performance of ReJOIN and DQ in two aspects: 1) using
Tree-LSTM to capture the structural information of join trees, and
2) employing multi-task learning for joint cost and latency as the
reward in different training stages. AlphaJoin [33] utlizes MCTS
to replace the random search strategies in ReJOIN, DQ, and RTOS.
MCTS can simulate many possible join orders in one tree structure
and select join orders with the highest estimated performance. This
addresses the limitation of random search, which is prone to miss
high-quality join orders. JOGGER [2] is the latest work that aims
to address the inefficiency issues of DRL methods. The idea is to
reduce the number of parameters in Deep Neural Networks (DNNs)
through graph-based models, including a Graph Convolutional
Network (GCN) and a tailored-tree-based attention module. This
strategy enables JOGGER to achieve state-of-the-art performance
with less optimization time and computational resources.

Online learning. SkinnerDB [22, 23] is an online approach that
stands out from previous works in that it does not require collecting
training data beforehand. Instead, it can collect training data directly
online and produce optimal join orders quickly during the execution
of the current query. This online learning approach can provide
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a faster and more adaptive way to optimize query performance.
However, SkinnerDB requires customized execution engines, which
limits its practicality in general database systems.

Learned optimizer. In addition to individual learned components
for JOS, several end-to-end learned optimizers have been introduced
with more ingredients for join operator selection, index selection,
plan generation, and plan search. Neo [15] was the first end-to-end
learned optimizer that could directly predict query execution time
using a value network (a Tree-CNN model), without relying on cost
models or explicit cardinality estimates. Bao [14], inherited from
Neo, also uses the Tree-CNN to estimate the runtime of queries.
However, Bao only focuses on recommending query hints rather
than rebuilding the entire optimizer with learning models. Specifi-
cally, Bao utilizes CMABs to model the problem in which each hint
set (e.g., SET enable_nestloop TO off) is treated as an arm. Due
to the simple and efficient architecture, Bao is easy to train and inte-
grate into existing databases without extra modifications. Similar to
Neo, Balsa [30] uses the Tree-CNN model and a simple (best-first)
beam search strategy to find the best plan. The difference is that
Balsa does not rely on expert demonstrations, which are required
by Neo. HybridQO [31] is the first hybrid optimizer that combines
traditional cost-based and modern learning-based techniques. It
utilizes the same representation model as RTOS (i.e. Tree-LSTM)
to encode the query structure. Similar to Bao, it uses hints to gen-
erate high-quality candidate plans. The candidate plan space is
then explored by MCTS, which has better performance than DQN.
Moreover, HybridQO uses an uncertainty-based method to avoid
selecting bad plans. Lero [34] is a learning-to-rank optimizer that
selects query plans based on their relative order rather than the cost
or latency. Lero adopts a pairwise approach to compare two plans
and choose the better one. LOGGER [3] is a learned query optimizer
that aims at producing both high-quality join orders and operators.
It leverages a Graph Transformer to encode the relationships be-
tween tables and predicates and exploits e-beam search to explore
the plan space. COOOL [27] shares similar principles with Bao to
recommend learned query hints. However, COOOL incorporates the
learning-to-rank mechanism to compare query plans, while Bao
relies on regression models to estimate query latency.

2.3 Open Challenges and Future Directions

While some progress has been made in DRL-based methods for
join order selection, there are still open problems and challenges,
especially the difficulties in practical and real-world applications [6].
Some possible challenges and directions for future research include:

1) How to achieve a better trade-off of exploration (trying unex-
plored join orders) and exploitation (taking the most advantage of
the explored join orders) in the learning process?

2) How to speed up the slow learning and time-consuming
training process, especially for joins with a large number of tables?

3) How to improve the generalization performance to handle
various changes, including query changes (e.g., join graphs, join
predicates, and join table numbers) and schema changes?

4) How to provide an error bound to guarantee that the join
orders produced do not have extremely poor quality?

5) How to improve the performance of join order selection for
complex queries (e.g., nested and correlated subqueries)?



3 DIFFERENCES WITH PREVIOUS ONES

This tutorial has not been presented at other conferences. While
there are some related tutorials, they cover broader research topics
such as machine learning meets databases [11, 12, 28, 29] (including
AT4DB and autonomous databases) and learned optimizers [24, 35]
with topics like learned cardinality and cost estimations. In contrast,
this tutorial has a strong focus on reinforcement learning for join
order selection. In addition, we include recent advancements that
utilize graph neural networks and attention models for encoding
query structures. We also provide two demos to help the audience to
understand the differences between value-based and policy-based
methods. To the best of our knowledge, this is the first tutorial that
discusses deep reinforcement learning-based join order selection.

4 TARGET AUDIENCES AND GOALS

Intended Audience. This tutorial is intended for a broad scope of
researchers and practitioners from database and machine learning
fields, with a focus on deep reinforcement learning for join order
optimization. Those interested in query optimization and learned
optimizers will also gain useful knowledge from this tutorial to
guide their future research. Basic knowledge in query optimization
and machine learning is sufficient to follow this tutorial. Some
background in deep reinforcement learning would be quite helpful.

Learning Goals. The main goal of this tutorial is to provide a deep
introduction to recent works on DRL-based methods for JOS. The
learning goals include: (1) understanding the fundamental concepts
of join ordering, (2) knowing the traditional methods and their
limitations, (3) knowing the comprehensive picture of DRL-based
methods for JOS and recognizing their relationships and differences,
(4) identifying some open challenges and future directions.
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