Efficient Execution of User-Defined Functions in SQL Queries

Yannis Foufoulas
University of Athens, Athena R.C.
Athens, Greece
johnfouf@di.uoa.gr

ABSTRACT

User-defined functions (UDFs) have been widely used to overcome
the expressivity limitations of SQL and complement its declarative
nature with functional capabilities. UDFs are particularly useful
in today’s applications that involve complex data analytics and
machine learning algorithms and logic. However, UDFs pose signif-
icant performance challenges in query processing and optimization,
largely due to the mismatch of the UDF execution and SQL pro-
cessing environments. In this tutorial, we present state-of-the-art
methods and systems towards efficient execution of UDFs in SQL
queries. We focus on low-level techniques for physical optimization
and compilation of UDF queries, describe and compare the core,
recent approaches in the area, discuss their advantages and limi-
tations, identify critical gaps in theory and practice, and propose
promising future research directions.

PVLDB Reference Format:

Yannis Foufoulas and Alkis Simitsis. Efficient Execution of User-Defined
Functions in SQL Queries. PVLDB, 16(12): 3874 - 3877, 2023.
doi:10.14778/3611540.3611574

1 INTRODUCTION

Relational databases, based on decades-old research and experi-
ence, provide many hooks for processing and managing efficiently
large data volumes, offering features such as optimized (distributed)
query processing, efficient storage, ACID properties, consistency,
fault tolerance, and many others. Still, the SQL language provides
limited expressive power, which cannot capture the data processing
requirements that nowadays are routinely met in modern applica-
tions in data science, data analytics, edge computing, etc. To that
end, all popular data engines support user-defined functions (UDFs)
that extend the relational paradigm with syntactic and semantic
support to capture complicated tasks and algorithms. However, the
performance of executing queries with UDFs (i.e., UDF queries)
inside a data engine is routinely subpar and creates significant bot-
tlenecks largely due to the impedance mismatch between relational
(SQL) evaluation and procedural (e.g., C/C++, Scala, Map-Reduce,
Java, R, Matlab, Python) execution.

The early research efforts to improve performance of UDF queries
focused on algebraic-style optimization and cost modeling of UDFs,
with a special interest to Map-Reduce UDFs. Techniques considered
for boosting UDF query performance included static partition and
parallel execution, query rewriting and reordering for aggregate
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611574

3874

Alkis Simitsis
Athena Research Center
Athens, Greece
alkis@athenarc.gr

functions, sharing of partial aggregates, table UDF parallelization,
and so on. Several of these efforts influenced commercial products
such as Teradata, SQL Server, Apache Flink, etc. Moreover, such
results offered developers a decent toolkit to handle UDFs designed
for alternative implementation of relational operators (e.g., parallel
join), schema transformations (e.g., one-to-many mappings, data
lineage, generate/remove fields, split a record across multiple tables,
derive new data from existing values), and data cleansing trans-
formations (e.g., duplicate detection and removal, expressing data
quality rules via integrity constraint checks).

In recent years, we experience an emerging and increasingly
growing interest in more advanced UDF functionality emanating
from applications in data science and data analytics, including ma-
chine learning (ML) pipelines, advanced data analytics (e.g., predic-
tive and prescriptive analytics, text/video analytics), new and com-
plex UDF types (e.g., analytic functions, ML algorithms and models,
ELT and continuous load functions), etc. This trend has exacerbated
significantly the UDF query performance problem and has led to a
different class of solutions that focus on low-level techniques for
physical optimization and compilation of UDF queries with an em-
phasis on UDFs coded in C/C++, Java, and Python. Python UDFs are
particularly interesting as they (a) tend to be very popular among
the growing communities of data science and data analytics [31],
and (b) present intriguing and limiting performance challenges due
to the conversions required between Python and C/C++, which is
the implementation choice of most data engines. Presenting and
comparing this new class of state-of-the-art solutions towards effi-
cient execution of UDFs in SQL queries is the topic of this tutorial.

Tutorial scope, duration, and outline. The tutorial focuses
on the problem of efficient execution of UDF queries from a sys-
tems perspective and present a comprehensive study answering
questions such as: (a) why my UDF queries are slow, (b) how does
the UDF execution landscape look like, (c) what have we learnt
about optimizing UDF query performance and what is still missing,
(d) what solution matches my application, and (e) how mature the
current solutions are and what is their potential to impact systems
in production. We propose a 90-min tutorial structured as follows:
(1) Introduction, challenges, and a taxonomy of solutions [~10’]
(2) UDF translation into SQL [~20’]

(3) UDF translation into an IR [~20’]
(4) UDF integration with data engines [~30]
(5) Open issues and research directions [~10’]

Related surveys and tutorials. Rheinldnder et al. [35] present
a survey on optimizing UDF dataflows focusing on three core as-
pects: (a) syntactical dataflow modification, including variable and
function inlining, group-by simplification, and query unnesting; (b)
semantics inference and rewriting options for UDFs via annotations
and code analysis; and (c) dataflow transformations toward redun-
dancy elimination, partial aggregation, operator (de-)composition,

https://doi.org/10.14778/3611540.3611574
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611574

migration, and implementation. A first part of our tutorial was
given at ICDE 2023 [12]. The tutorial presented a broad coverage
of the approaches to UDF design and execution covering the early
works on algebraic, logical optimization of UDFs in relational and
object databases, as well as in data pipelines (such as Map-Reduce
pipelines), and also an overview of the modern approaches to phys-
ical optimization. Following the very positive feedback and sug-
gestions we received, we designed this tutorial to present in depth
the more recent, state-of-the-art work on low-level UDF optimiza-
tion and compilation, perform a multi-dimensional comparison of
existing works to identify the current gaps and limitations, and
conclude with a call to arms presenting remaining challenges and
open problems in this area.

Targeted audience and learning output. The tutorial targets
researchers and practitioners who are keen to know (a) the state-
of-the-art practices and approaches to UDF query optimization and
execution; (b) the technical limitations and the trade-offs between
design choices and achieved goals; and (c) the new challenges and
opportunities for data processing in modern data engines. This is
an interdisciplinary tutorial comprising cutting-edge aspects from
database systems and compilers research. Still no prior knowledge
is needed on systems or compilers research, but we assume basic
understanding of database and software concepts. The tutorial will
be example-driven showcasing the strengths and limitations of the
state of the art. The tutorial material will become publicly available.

2 THE UDF LANDSCAPE

Challenges. Several challenges render the optimization of UDF
execution a non-trivial problem.

Fragmented space. Databases support UDFs in many languages,
such as C/C++, Java, R, Matlab, Python, Scala, etc. And each lan-
guage presents its own intricacies as in turn they support many
libraries and frameworks. Hence, a one-size-fits-all solution does
not seem as a straightforward solution.

Expressiveness and usability. Modern applications require flexibil-
ity in UDF definitions, namely, expressiveness features as variety of
UDF types (e.g., scalar, aggregate, table, analytical, window), dynam-
ically typed UDFs, stateful execution, as well as usability features
such as parametric polymorphic UDFs and functional syntax.

Performance challenges. As UDFs typically run in an execution
environment different than the data engine, there are significant
overheads due to frequent context switches, data conversions and
copies, potential materialization of intermediate results, excessive
function calls, inefficient compilation, long UDF pipelines, and so on.
Such issues also relate to the engine’s execution model, i.e., iterator
(Volcano) or operator/vector at a time, or data centric models.

Query Optimization. Query optimizers generally treat UDFs as a
black-box, as they are not exposed to the UDF semantics and inter-
nal implementation. Techniques such as introspection [19] and code
analysis help in enabling logical style optimizations like operator
re-ordering or UDF push-down. Additional low-level techniques
(e.g., operator fusion) also seem promising.

Classification of solutions. Motivated by such challenges,
we classify the proposed approaches as follows. We start with
the method of UDF integration with the data engine, either via
UDF translation to SQL or to an internal representation (IR), or

3875

with engine-level UDF compilation and integration. Then, most ap-
proaches support UDFs in a specific programming language (with
Python being a popular choice). We also consider the techniques
supported organized as follows: (a) UDF optimization, (b) execution
model, (c) query optimization, and (d) usability and expressiveness.
UDF optimization techniques include: parallelization, vectoriza-
tion, function inlining, in-process or out-process execution, method
or tracing just-in-time (JIT) compilation. The execution model of
the data engine running the UDFs relates to how it processes the
data (e.g., tuple/vector/operator at a time) and its layout as column
or row store. Typical query optimization techniques enabled by
the UDF approaches include: operator reordering and fusion, and
rule or cost based heuristics. Another interesting dimension for the
classification includes whether the techniques proposed are engine
or library/framework specific and whether they support static or
dynamic data types. An abridged schematic classification of the
state of the art is shown in Figure 1. The tutorial will also cover
additional dimensions in detail such as UDF types supported etc.

3 UDF SOLUTIONS

UDF translation into SQL. Several approaches translate UDFs
written in various languages to semantically equivalent SQL [e.g.,
4, 6-8, 17, 20, 34, 37, 40]. In general, these works propose general
purpose optimizations, e.g., compilation optimizations and inlining,
to reduce context switches between SQL and UDF.

Froid [34] (offered with SQL Server) rewrites loop-less T-SQL
scalar UDFs into SQL and integrates them in the SQL query dur-
ing binding, employing optimizations as dynamic slicing, constant
folding, dead code elimination, and parallelization. Aggify [15] ex-
tends this logic to UDFs with cursor loops (loops over the query
results) and rewrites them into SQL. PLSQL/AWAY [8] transforms
PL/SQL functions with iterations into SQL queries using a recur-
sive common table expression (CTE) WITH RECURSIVE. Follow-up
work investigates efficient implementations of recursive CTEs us-
ing functional-style UDFs [7]. CLIS [43] optimizes Spark UDFs
using lazy inductive synthesis to generate a sequence of decompo-
sitions that correspond to increasingly harder inductive synthesis
problems.

A considerable volume of work focus on translating Python UDFs
to SQL. Blacher et al. [1] translates Python variables, functions,
conditions, loops, and errors, using mostly SQL’s WITH clause and
employing dynamic tuple-wise parallelization and pipelined SQL
optimization. Grizzly [17] translates Pandas operations into SQL
queries with Python UDFs. AIDA [6] provides abstractions for in-
database analytics with Python UDFs and translates mainly linear
algebra operation into MonetDB Numpy UDFs.

UDF translation into an IR. Another direction is to convert
UDFs into an Intermediate Representation (IR) and then to SQL,
which offers several optimizations and abstractions at the cost of
being limited to specific libraries (e.g., Matlab, NumPy).

Weld [28, 29] optimizes computations across functions and li-
braries using a common IR (WeldIR). Weld focuses on data move-
ment optimizations for data-parallel operators (e.g., relational, lin-
ear algebra), which tend to be time-consuming. HorsePower [3]
rewrites Matlab UDFs into an array-based IR (HorseIR) using com-
piler optimization strategies to produce efficient machine code.

UDF optimization Execution model Qry optimization | Usability & expr.
P
g | B
Elg|w Y E|Z|E|3 .
S 5|Els|8le|E|s|S|2 2|32 R
S| 82|88 lml= s |2|=e|&|E Sl 2o 1
2 E|E e |a 2 2|2 |E|F|E|R|S 8| Ele|L|glk
BB 5|5 8 2|5 825|251 z2|12]8|2|2|2| ¢
B 2| E|s|8B|E|E|2|5|&|S|2|g|E|E|S 5|2 |3 |
Froid [34] X x x x| x| x| x|x x
Aggify [15 X X X X | x | x| x X X
T-SQL - PL/SQL eify [15]
PLSQL/AWAY [8] x x x x| x| x| x|x X
Duta et al. [7] X x x x x X
Blacher et al. [1] X X | x| x| x| x|x X | x X X
 UDF-to-SQL Snakes on a plan [11] X X | x| x| x| x|x X | x X X
Python UDFs — Grizzly [17] x x [x| x| x|x|x X | x X | X
AIDA [6] X X X | x X
Schiile et al. [38] x| x x | x x x | x [x| x
Scala UDFs CLIS [43] X X X
Weld [28, 29] x | x x x | x x x| x| x
Python UDFs
4 C Raven [23] X X X x| x| x| x|x|x|x]|x
Flare [10] x| x x | x X x | x [x| x
Scala - Java UDFs Boehm et al. [2] X | x X X x| x| x| x|x]|x
. — UDF-to-IR
UDF solutions | Emani et al. [9] X X X x| x | x| x
Matlab UDFs HorsePower [3] X X | X x | x X | x x | x
Babelfish [14] x x X | x x | x x
Multiple languages
P Buag E BabbleFlow [21, 22] X x | x X X x| x| x| x|x]|x X
PostgreSQL [30] X X X X X | x X
Data engines E MonetDB/NumPy [33] X | x X X | x X X X X
Schiile et al. [37] X X X x| x| x| x|x|x X
Java UDFs Rosenfeld et al. [36] X x x x | x x | x| x x
. Klibe et al. [25] X | x X X X X X
L In-engine UDF
Python UDFs YeSQL [13] X x| x| x| x X | x| x| x| x| x|x|[x]|X X | x
Tuplex [42] X X | x X X X X | x X X
C++ UDFs UDOs [39] X X X X X
Multiple languages — Tupleware [5] X X | x X X X | x | x [x| x|Xx X

Figure 1: An abridged classification of approaches to UDF execution in data engines

Raven [23] integrates ML runtimes with SQL Server for inference of
trained ML models and employs an IR to enable cross-optimizations
between ML and database operators. [9] extracts SQL from impera-
tive code using a DAG based IR (D-IR) for applications, which is
translated first to a functional representation (fold IR) and then
into SQL. Flare [10] analyzes Spark’s optimized plans to encode
relational operators, data structures, Scala UDFs, data layout, and
other configurations, in order to generate native code for execution.
SystemML uses cost-based optimization of operator fusion plans
over DAGs of linear algebra operations to generate Java code [2].

Other approaches deal with UDF pipelines written in multi-
ple languages. BabbleFlow [21, 22] uses a unified representation
(xLM [41]) to translate a hybrid flow expressed in various languages
(e.g., SQL, Java, Javascript, Pig) to a semantically equivalent hy-
brid flow expressed in the same or a different set of languages
through optimizations such as operator fusion. Babelfish [14] con-
verts polyglot queries written in Java, Javascript, and Python to
an IR (Babelfish IR). It performs IR-based operator fusion between
built-in operators and UDFs in three steps: specialization, inlining,
and scalar replacement.

UDF integration with data engines. Most data engines of-
fer in-engine support for UDFs [e.g., 27, 30, 32]. Several research
approaches have dealt with low-level, in-engine optimization of
UDF queries, including (adaptive) compilation with JIT/LLVM [26]
and vectorized execution [24]. Direct embedding of UDFs in native
query execution engines has also been explored, e.g., in Spark [36].

Klabe et al. [25] explores out-process execution of Python UDFs
in Actian Vector with various compilation frameworks (e.g., Cython,
Nuitka, Numba), vectorization, and multi-process parallelization.

3876

Running UDFs in-process with the data engine eliminates over-
heads such as data exchange between processes. For example, Mon-
etDB/NumPy [33] exploits vectorization and same data representa-
tion in MonetDB and Python, to avoid data conversions in a UDF
call. UDO [39] integrates C++ user-defined operators, compiled in
shared libraries, into existing query plans, retaining ACID prop-
erties. Schiile et al. [37] extends PostgreSQL’s JIT compiler using
LLVM to inline lambda expressions in table functions. YeSQL [13]
goes a step further to operate with either server or embedded data
engines, employing a tuple-at-a-time model for Python UDFs, pro-
viding a SQL extension with language features to enhance usability,
and performing optimizations such as tracing JIT, stateful UDFs,
parallelization, and operator fusion. Fusion works at a higher-level
too; e.g., GOLAP [18] modifies pipelines to eliminate overheads
derived from (de-)serialization steps. Mutable [16] decouples UDF
optimization from low-level optimizations and delegates JIT com-
pilation, optimization, and adaptive execution to an underlying
engine (Google’s V8) using WebAssembly as an IR.

A special category includes systems that integrate engine capa-
bilities within the compilation, using LLVM as an IR (these systems
could be classified as UDF-to-IR as well). For example, Tupleware [5]
introspects UDFs and blends high-level query optimization with
low-level LLVM compilation to provide a language-agnostic front-
end for map-reduce style operators toward the automatic compila-
tion of UDF analytical workflows. In the same spirit, Tuplex [42]
is an end-to-end JIT compiler with LLVM for dynamically typed
Python UDFs, offering compilation and code generation optimiza-
tions, and simple, logical query optimizations.

4 ISSUES AND OPPORTUNITIES (ABRIDGED)

Open issues. Complexity. SQL is not designed for multi-lingual
data analytics, hence expressing complex algorithms in SQL usu-
ally results in cumbersome queries. Fragmentation. Most solutions
involving translation to IR or SQL are tailored to specific UDF
languages, frameworks, and libraries. Performance. UDF compi-
lation and translation strategies introduce significant overheads,
especially for short running queries. Expressiveness. Support for
dynamically typed and stateful UDFs is not trivial.

Research Opportunities. Modern pipelines involve UDFs. Data
engines should provide native support for various UDF types with-
out translation overhead and treat dynamically typed UDFs as first
class citizens. Optimization. Apply adaptive, multi-lingual fusion
techniques for relational and procedural operations alike, without
being limited to specific libraries/languages. Compilation. Catch-up
with recent advancements in related areas; for example instead of
re-engineering compilers, consider employing emerging compilers
(e.g., PyPy) and techniques (e.g., WebAssembly - WASM [16]).

5 PRESENTERS

Yannis Foufoulas received his PhD degree from University of Athens
in 2023, and currently, he is a research associate at Athena Research
Center. He works in the EU-funded projects OpenAIRE-Nexus and
Human Brain Project and his research interests include modern
databases, query optimization, and data/text in-database analytics.

Alkis Simitsis is a Research Director at Athena Research Center.
Previously, he held positions with HP/HPE Labs, Micro Focus, Un-
ravel Data, and IBM Research, including Chief/Principal Scientist.
He has 20+ years of experience building innovative solutions for
scalable big data infrastructure, data-intensive analytics, distributed
databases, and systems optimization. He holds 45 patents, has pub-
lished 110+ papers (7000+ citations, h-index: 43), and frequently
serves in various roles in PC’s of top-tier int’l scientific conferences.

REFERENCES

[1] Mark Blacher, Joachim Giesen, Séren Laue, Julien Klaus, and Viktor Leis. 2022.
Machine Learning, Linear Algebra, and More: Is SQL All You Need?. In CIDR.
Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-
dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion
Plans for Large-Scale Machine Learning in SystemML. PVLDB 11, 12 (2018).
Hanfeng Chen, Joseph Vinish D’silva, Laurie J. Hendren, and Bettina Kemme.
2021. HorsePower: Accelerating Database Queries for Advanced Data Analytics.
In EDBT. 361-366.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
database-backed applications with query synthesis. In SIGPLAN. 3-14.
Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig,
Ugur Cetintemel, and Stan Zdonik. 2015. An Architecture for Compiling UDF-
centric Workflows. PVLDB 8, 12 (2015), 1466—1477.

Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. 2018. AIDA -
Abstraction for Advanced In-Database Analytics. PVLDB 11, 11 (2018).
Christian Duta and Torsten Grust. 2020. Functional-Style SQL UDFs With a
Capital 'F’. In SIGMOD. 1273-1287.

Christian Duta, Denis Hirn, and Torsten Grust. 2020. Compiling PL/SQL Away.
In CIDR.

K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya, and S. Su-
darshan. 2016. Extracting Equivalent SQL from Imperative Code in Database
Applications. In SIGMOD. ACM, 1781-1796.

Grégory M. Essertel, Ruby Y. Tahboub, James M. Decker, Kevin J. Brown, Kunle
Olukotun, and Tiark Rompf. 2018. Flare: Optimizing Apache Spark with Native
Compilation for Scale-Up Architectures and Medium-Size Data. In USENIX.
Tim Fischer, Denis Hirn, and Torsten Grust. 2022. Snakes on a Plan: Compiling
Python Functions into Plain SQL Queries. In SIGMOD. ACM, 2389-2392.
Yannis E. Foufoulas and Alkis Simitsis. 2023. User-Defined Functions in Modern
Data Engines. In ICDE. IEEE.

[11]

[12

3877

(13

[14

[15

[16]

(17

(19]

[20

[21]

[22]

[24]

[25

[26

[27]

(28]

™~
20,

'@
=

(35]
[36]

(37]

(38]

(39]

[40

[41

[42

[43

Yannis E. Foufoulas, Alkis Simitsis, Eleftherios Stamatogiannakis, and Yannis E.
Toannidis. 2022. YeSQL: "You extend SQL" with Rich and Highly Performant
User-Defined Functions in Relational Databases. PVLDB 15, 10 (2022).

Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. 2022. Babelfish: Effi-
cient Execution of Polyglot Queries. PVLDB 15, 2 (2022), 196-210.

Surabhi Gupta, Sanket Purandare, and Karthik Ramachandra. 2020. Aggify:
Lifting the Curse of Cursor Loops using Custom Aggregates. In SIGMOD.
Immanuel Haffner and Jens Dittrich. 2023. A simplified Architecture for Fast,
Adaptive Compilation and Execution of SQL Queries. In EDBT. 1-13.

Stefan Hagedorn, Steffen Klabe, and Kai-Uwe Sattler. 2021. Putting Pandas in a
Box. In CIDR.

Anna Herlihy, Periklis Chrysogelos, and Anastasia Ailamaki. 2022. Boosting
Efficiency of External Pipelines by Blurring ApplicationBoundaries. In CIDR.
Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald, Kostas
Tzoumas, Volker Markl, and Johann-Christoph Freytag. 2013. Peeking into the
optimization of data flow programs with MapReduce-style UDFs. In ICDE.
Alekh Jindal, K. Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes,
Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra, Carlo Curino, Andreas
Mueller, Wentao Wu, and Hiren Patel. 2021. Magpie: Python at Speed and Scale
using Cloud Backends. In CIDR.

Petar Jovanovic, Alkis Simitsis, and Kevin Wilkinson. 2014. BabbleFlow: a
translator for analytic data flow programs. In SIGMOD. 713-716.

Petar Jovanovic, Alkis Simitsis, and Kevin Wilkinson. 2014. Engine independence
for logical analytic flows. In ICDE. 1060-1071.

Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Doris Xin, Supun Nakandala, Subru Krish-
nan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo Curino. 2020.
Extending Relational Query Processing with ML Inference. In CIDR.

Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter A. Boncz. 2018. Everything You Always Wanted to Know About
Compiled and Vectorized Queries But Were Afraid to Ask. PVLDB 11, 13 (2018).
Steffen Klabe, Robert DeSantis, Stefan Hagedorn, and Kai-Uwe Sattler. 2022.
Accelerating Python UDFs in Vectorized Query Execution. In CIDR.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In IEEE/ACM CGO. 75-88.
MonetDB. 2022. User Defined Functions. Available at: https://www.monetdb.
org/documentation-Sep2022/dev-guide/sql-extensions/user-defined-functions.
Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman P. Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating
End-to-End Optimization for Data Analytics Applications in Weld. In PVLDB.
Shoumik Palkar, James Thomas, Anil Shanbhag, Malte Schwarzkopf, Saman P.
Amarasinghe, and Matei Zaharia. 2017. A Common Runtime for High Perfor-
mance Data Analysis. In CIDR.

PostgreSQL. 2022. PL/pgSQL, SQL Procedural Language. Available at: https:
/Iwww.postgresql.org/docs/current/plpgsql.html.

Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Matteo Interlandi, Avrilia Floratou,
Konstantinos Karanasos, Wentao Wu, Ce Zhang, Subru Krishnan, Carlo Curino,
and Markus Weimer. 2019. Data Science through the looking glass and what we
found there. CoRR abs/1912.09536 (2019). http://arxiv.org/abs/1912.09536
PySpark. 2022. Available at: https://pypi.org/project/pyspark.

Mark Raasveldt and Hannes Miihleisen. 2016. Vectorized UDFs in Column-Stores.
In SSDBM. 16:1-16:12.

Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halverson,
César A. Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of
Imperative Programs in a Relational Database. PVLDB 11, 4 (2017), 432-444.
Astrid Rheinlander, Ulf Leser, and Goetz Graefe. 2017. Optimization of Complex
Dataflows with User-Defined Functions. ACM Comput. Surv. 50, 3 (2017).
Viktor Rosenfeld, René Miiller, Pinar T6ziin, and Fatma Ozcan. 2017. Processing
Java UDFs in a C++ environment. In SoCC. 419-431.

Maximilian E. Schiile, Jakob Huber, Alfons Kemper, and Thomas Neumann. 2020.
Freedom for the SQL-Lambda: Just-in-Time-Compiling User-Injected Functions
in PostgreSQL. In SSDBM. 6:1-6:12.

Maximilian E. Schiile, Luca Scalerandi, Alfons Kemper, and Thomas Neumann.
2023. Blue Elephants Inspecting Pandas: Inspection and Execution of Machine
Learning Pipelines in SQL. In EDBT. OpenProceedings.org, 40-52.

Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Efficiently
Integrating Custom Algorithms into Modern Databases. PVLDB 15, 5 (2022).
Varun Simhadri, Karthik Ramachandra, Arun Chaitanya, Ravindra Guravannavar,
and S. Sudarshan. 2014. Decorrelation of user defined function invocations in
queries. In ICDE. 532-543.

Alkis Simitsis and Kevin Wilkinson. 2014. The specification for xLM: an encoding
for analytic flows. Technical Report, HP Labs.

Leonhard F Spiegelberg, Rahul Yesantharao, Malt Schwarzkopf, and Tim Kraska.
2021. Tuplex: Data Science in Python at Native Code Speed. In SIGMOD.
Guogqiang Zhang, Yuanchao Xu, Xipeng Shen, and Isil Dillig. 2021. UDF to SQL
translation through compositional lazy inductive synthesis. OOPSLA 5 (2021).

https://www.monetdb.org/documentation-Sep2022/dev-guide/sql-extensions/user-defined-functions
https://www.monetdb.org/documentation-Sep2022/dev-guide/sql-extensions/user-defined-functions
https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/plpgsql.html
http://arxiv.org/abs/1912.09536
https://pypi.org/project/pyspark

	Abstract
	1 Introduction
	2 The UDF Landscape
	3 UDF Solutions
	4 Issues and Opportunities (abridged)
	5 Presenters
	References

