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ABSTRACT

User-defined functions (UDFs) have been widely used to overcome
the expressivity limitations of SQL and complement its declarative
nature with functional capabilities. UDFs are particularly useful
in today’s applications that involve complex data analytics and
machine learning algorithms and logic. However, UDFs pose signif-
icant performance challenges in query processing and optimization,
largely due to the mismatch of the UDF execution and SQL pro-
cessing environments. In this tutorial, we present state-of-the-art
methods and systems towards efficient execution of UDFs in SQL
queries. We focus on low-level techniques for physical optimization
and compilation of UDF queries, describe and compare the core,
recent approaches in the area, discuss their advantages and limi-
tations, identify critical gaps in theory and practice, and propose
promising future research directions.
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1 INTRODUCTION

Relational databases, based on decades-old research and experi-
ence, provide many hooks for processing and managing efficiently
large data volumes, offering features such as optimized (distributed)
query processing, efficient storage, ACID properties, consistency,
fault tolerance, and many others. Still, the SQL language provides
limited expressive power, which cannot capture the data processing
requirements that nowadays are routinely met in modern applica-
tions in data science, data analytics, edge computing, etc. To that
end, all popular data engines support user-defined functions (UDFs)
that extend the relational paradigm with syntactic and semantic
support to capture complicated tasks and algorithms. However, the
performance of executing queries with UDFs (i.e., UDF queries)
inside a data engine is routinely subpar and creates significant bot-
tlenecks largely due to the impedance mismatch between relational
(SQL) evaluation and procedural (e.g., C/C++, Scala, Map-Reduce,
Java, R, Matlab, Python) execution.

The early research efforts to improve performance of UDF queries
focused on algebraic-style optimization and cost modeling of UDFs,
with a special interest to Map-Reduce UDFs. Techniques considered
for boosting UDF query performance included static partition and
parallel execution, query rewriting and reordering for aggregate
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functions, sharing of partial aggregates, table UDF parallelization,
and so on. Several of these efforts influenced commercial products
such as Teradata, SQL Server, Apache Flink, etc. Moreover, such
results offered developers a decent toolkit to handle UDFs designed
for alternative implementation of relational operators (e.g., parallel
join), schema transformations (e.g., one-to-many mappings, data
lineage, generate/remove fields, split a record across multiple tables,
derive new data from existing values), and data cleansing trans-
formations (e.g., duplicate detection and removal, expressing data
quality rules via integrity constraint checks).

In recent years, we experience an emerging and increasingly
growing interest in more advanced UDF functionality emanating
from applications in data science and data analytics, including ma-
chine learning (ML) pipelines, advanced data analytics (e.g., predic-
tive and prescriptive analytics, text/video analytics), new and com-
plex UDF types (e.g., analytic functions, ML algorithms and models,
ELT and continuous load functions), etc. This trend has exacerbated
significantly the UDF query performance problem and has led to a
different class of solutions that focus on low-level techniques for
physical optimization and compilation of UDF queries with an em-
phasis on UDFs coded in C/C++, Java, and Python. Python UDFs are
particularly interesting as they (a) tend to be very popular among
the growing communities of data science and data analytics [31],
and (b) present intriguing and limiting performance challenges due
to the conversions required between Python and C/C++, which is
the implementation choice of most data engines. Presenting and
comparing this new class of state-of-the-art solutions towards effi-
cient execution of UDFs in SQL queries is the topic of this tutorial.

Tutorial scope, duration, and outline. The tutorial focuses
on the problem of efficient execution of UDF queries from a sys-
tems perspective and present a comprehensive study answering
questions such as: (a) why my UDF queries are slow, (b) how does
the UDF execution landscape look like, (c) what have we learnt
about optimizing UDF query performance and what is still missing,
(d) what solution matches my application, and (e) how mature the
current solutions are and what is their potential to impact systems
in production. We propose a 90-min tutorial structured as follows:
(1) Introduction, challenges, and a taxonomy of solutions [~10’]
(2) UDF translation into SQL [~20’]

(3) UDF translation into an IR [~20’]
(4) UDF integration with data engines [~30]
(5) Open issues and research directions [~10’]

Related surveys and tutorials. Rheinldnder et al. [35] present
a survey on optimizing UDF dataflows focusing on three core as-
pects: (a) syntactical dataflow modification, including variable and
function inlining, group-by simplification, and query unnesting; (b)
semantics inference and rewriting options for UDFs via annotations
and code analysis; and (c) dataflow transformations toward redun-
dancy elimination, partial aggregation, operator (de-)composition,
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migration, and implementation. A first part of our tutorial was
given at ICDE 2023 [12]. The tutorial presented a broad coverage
of the approaches to UDF design and execution covering the early
works on algebraic, logical optimization of UDFs in relational and
object databases, as well as in data pipelines (such as Map-Reduce
pipelines), and also an overview of the modern approaches to phys-
ical optimization. Following the very positive feedback and sug-
gestions we received, we designed this tutorial to present in depth
the more recent, state-of-the-art work on low-level UDF optimiza-
tion and compilation, perform a multi-dimensional comparison of
existing works to identify the current gaps and limitations, and
conclude with a call to arms presenting remaining challenges and
open problems in this area.

Targeted audience and learning output. The tutorial targets
researchers and practitioners who are keen to know (a) the state-
of-the-art practices and approaches to UDF query optimization and
execution; (b) the technical limitations and the trade-offs between
design choices and achieved goals; and (c) the new challenges and
opportunities for data processing in modern data engines. This is
an interdisciplinary tutorial comprising cutting-edge aspects from
database systems and compilers research. Still no prior knowledge
is needed on systems or compilers research, but we assume basic
understanding of database and software concepts. The tutorial will
be example-driven showcasing the strengths and limitations of the
state of the art. The tutorial material will become publicly available.

2 THE UDF LANDSCAPE

Challenges. Several challenges render the optimization of UDF
execution a non-trivial problem.

Fragmented space. Databases support UDFs in many languages,
such as C/C++, Java, R, Matlab, Python, Scala, etc. And each lan-
guage presents its own intricacies as in turn they support many
libraries and frameworks. Hence, a one-size-fits-all solution does
not seem as a straightforward solution.

Expressiveness and usability. Modern applications require flexibil-
ity in UDF definitions, namely, expressiveness features as variety of
UDF types (e.g., scalar, aggregate, table, analytical, window), dynam-
ically typed UDFs, stateful execution, as well as usability features
such as parametric polymorphic UDFs and functional syntax.

Performance challenges. As UDFs typically run in an execution
environment different than the data engine, there are significant
overheads due to frequent context switches, data conversions and
copies, potential materialization of intermediate results, excessive
function calls, inefficient compilation, long UDF pipelines, and so on.
Such issues also relate to the engine’s execution model, i.e., iterator
(Volcano) or operator/vector at a time, or data centric models.

Query Optimization. Query optimizers generally treat UDFs as a
black-box, as they are not exposed to the UDF semantics and inter-
nal implementation. Techniques such as introspection [19] and code
analysis help in enabling logical style optimizations like operator
re-ordering or UDF push-down. Additional low-level techniques
(e.g., operator fusion) also seem promising.

Classification of solutions. Motivated by such challenges,
we classify the proposed approaches as follows. We start with
the method of UDF integration with the data engine, either via
UDF translation to SQL or to an internal representation (IR), or
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with engine-level UDF compilation and integration. Then, most ap-
proaches support UDFs in a specific programming language (with
Python being a popular choice). We also consider the techniques
supported organized as follows: (a) UDF optimization, (b) execution
model, (c) query optimization, and (d) usability and expressiveness.
UDF optimization techniques include: parallelization, vectoriza-
tion, function inlining, in-process or out-process execution, method
or tracing just-in-time (JIT) compilation. The execution model of
the data engine running the UDFs relates to how it processes the
data (e.g., tuple/vector/operator at a time) and its layout as column
or row store. Typical query optimization techniques enabled by
the UDF approaches include: operator reordering and fusion, and
rule or cost based heuristics. Another interesting dimension for the
classification includes whether the techniques proposed are engine
or library/framework specific and whether they support static or
dynamic data types. An abridged schematic classification of the
state of the art is shown in Figure 1. The tutorial will also cover
additional dimensions in detail such as UDF types supported etc.

3 UDF SOLUTIONS

UDF translation into SQL. Several approaches translate UDFs
written in various languages to semantically equivalent SQL [e.g.,
4, 6-8, 17, 20, 34, 37, 40]. In general, these works propose general
purpose optimizations, e.g., compilation optimizations and inlining,
to reduce context switches between SQL and UDF.

Froid [34] (offered with SQL Server) rewrites loop-less T-SQL
scalar UDFs into SQL and integrates them in the SQL query dur-
ing binding, employing optimizations as dynamic slicing, constant
folding, dead code elimination, and parallelization. Aggify [15] ex-
tends this logic to UDFs with cursor loops (loops over the query
results) and rewrites them into SQL. PLSQL/AWAY [8] transforms
PL/SQL functions with iterations into SQL queries using a recur-
sive common table expression (CTE) WITH RECURSIVE. Follow-up
work investigates efficient implementations of recursive CTEs us-
ing functional-style UDFs [7]. CLIS [43] optimizes Spark UDFs
using lazy inductive synthesis to generate a sequence of decompo-
sitions that correspond to increasingly harder inductive synthesis
problems.

A considerable volume of work focus on translating Python UDFs
to SQL. Blacher et al. [1] translates Python variables, functions,
conditions, loops, and errors, using mostly SQL’s WITH clause and
employing dynamic tuple-wise parallelization and pipelined SQL
optimization. Grizzly [17] translates Pandas operations into SQL
queries with Python UDFs. AIDA [6] provides abstractions for in-
database analytics with Python UDFs and translates mainly linear
algebra operation into MonetDB Numpy UDFs.

UDF translation into an IR. Another direction is to convert
UDFs into an Intermediate Representation (IR) and then to SQL,
which offers several optimizations and abstractions at the cost of
being limited to specific libraries (e.g., Matlab, NumPy).

Weld [28, 29] optimizes computations across functions and li-
braries using a common IR (WeldIR). Weld focuses on data move-
ment optimizations for data-parallel operators (e.g., relational, lin-
ear algebra), which tend to be time-consuming. HorsePower [3]
rewrites Matlab UDFs into an array-based IR (HorseIR) using com-
piler optimization strategies to produce efficient machine code.



UDF optimization Execution model Qry optimization | Usability & expr.
P
g | B
Elg|w Y E|Z|E|3 .
S 5|Els|8le|E|s|S|2 2|32 R
S| 82|88 lml= s |2|=e|&|E Sl 2o 1
2 E|E e |a 2 2|2 |E|F|E|R|S 8| Ele|L|glk
BB 5|5 8 2|5 825|251 z2|12]8|2|2|2| ¢
B 2| E|s|8B|E|E|2|5|&|S|2|g|E|E|S 5|2 |3 |
Froid [34] X x x x| x| x| x|x x
Aggify [15 X X X X | x | x| x X X
T-SQL - PL/SQL eify [15]
PLSQL/AWAY [8] x x x x| x| x| x|x X
Duta et al. [7] X x x x x X
Blacher et al. [1] X X | x| x| x| x|x X | x X X
 UDF-to-SQL Snakes on a plan [11] X X | x| x| x| x|x X | x X X
Python UDFs — Grizzly [17] x x [ x| x| x|x|x X | x X | X
AIDA [6] X X X | x X
Schiile et al. [38] x| x x | x x x | x [ x| x
Scala UDFs CLIS [43] X X X
Weld [28, 29] x | x x x | x x x| x| x
Python UDFs
4 C Raven [23] X X X x| x| x| x|x|x|x]|x
Flare [10] x| x x | x X x | x [ x| x
Scala - Java UDFs Boehm et al. [2] X | x X X x| x| x| x|x]|x
. — UDF-to-IR
UDF solutions | Emani et al. [9] X X X x| x | x| x
Matlab UDFs HorsePower [3] X X | X x | x X | x x | x
Babelfish [14] x x X | x x | x x
Multiple languages
P Buag E BabbleFlow [21, 22] X x | x X X x| x| x| x|x]|x X
PostgreSQL [30] X X X X X | x X
Data engines E MonetDB/NumPy [33] X | x X X | x X X X X
Schiile et al. [37] X X X x| x| x| x|x|x X
Java UDFs Rosenfeld et al. [36] X x x x | x x | x| x x
. Klibe et al. [25] X | x X X X X X
L In-engine UDF
Python UDFs YeSQL [13] X x| x| x| x X | x| x| x| x| x|x|[x]|X X | x
Tuplex [42] X X | x X X X X | x X X
C++ UDFs UDOs [39] X X X X X
Multiple languages — Tupleware [5] X X | x X X X | x | x [ x| x|Xx X

Figure 1: An abridged classification of approaches to UDF execution in data engines

Raven [23] integrates ML runtimes with SQL Server for inference of
trained ML models and employs an IR to enable cross-optimizations
between ML and database operators. [9] extracts SQL from impera-
tive code using a DAG based IR (D-IR) for applications, which is
translated first to a functional representation (fold IR) and then
into SQL. Flare [10] analyzes Spark’s optimized plans to encode
relational operators, data structures, Scala UDFs, data layout, and
other configurations, in order to generate native code for execution.
SystemML uses cost-based optimization of operator fusion plans
over DAGs of linear algebra operations to generate Java code [2].

Other approaches deal with UDF pipelines written in multi-
ple languages. BabbleFlow [21, 22] uses a unified representation
(xLM [41]) to translate a hybrid flow expressed in various languages
(e.g., SQL, Java, Javascript, Pig) to a semantically equivalent hy-
brid flow expressed in the same or a different set of languages
through optimizations such as operator fusion. Babelfish [14] con-
verts polyglot queries written in Java, Javascript, and Python to
an IR (Babelfish IR). It performs IR-based operator fusion between
built-in operators and UDFs in three steps: specialization, inlining,
and scalar replacement.

UDF integration with data engines. Most data engines of-
fer in-engine support for UDFs [e.g., 27, 30, 32]. Several research
approaches have dealt with low-level, in-engine optimization of
UDF queries, including (adaptive) compilation with JIT/LLVM [26]
and vectorized execution [24]. Direct embedding of UDFs in native
query execution engines has also been explored, e.g., in Spark [36].

Klabe et al. [25] explores out-process execution of Python UDFs
in Actian Vector with various compilation frameworks (e.g., Cython,
Nuitka, Numba), vectorization, and multi-process parallelization.
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Running UDFs in-process with the data engine eliminates over-
heads such as data exchange between processes. For example, Mon-
etDB/NumPy [33] exploits vectorization and same data representa-
tion in MonetDB and Python, to avoid data conversions in a UDF
call. UDO [39] integrates C++ user-defined operators, compiled in
shared libraries, into existing query plans, retaining ACID prop-
erties. Schiile et al. [37] extends PostgreSQL’s JIT compiler using
LLVM to inline lambda expressions in table functions. YeSQL [13]
goes a step further to operate with either server or embedded data
engines, employing a tuple-at-a-time model for Python UDFs, pro-
viding a SQL extension with language features to enhance usability,
and performing optimizations such as tracing JIT, stateful UDFs,
parallelization, and operator fusion. Fusion works at a higher-level
too; e.g., GOLAP [18] modifies pipelines to eliminate overheads
derived from (de-)serialization steps. Mutable [16] decouples UDF
optimization from low-level optimizations and delegates JIT com-
pilation, optimization, and adaptive execution to an underlying
engine (Google’s V8) using WebAssembly as an IR.

A special category includes systems that integrate engine capa-
bilities within the compilation, using LLVM as an IR (these systems
could be classified as UDF-to-IR as well). For example, Tupleware [5]
introspects UDFs and blends high-level query optimization with
low-level LLVM compilation to provide a language-agnostic front-
end for map-reduce style operators toward the automatic compila-
tion of UDF analytical workflows. In the same spirit, Tuplex [42]
is an end-to-end JIT compiler with LLVM for dynamically typed
Python UDFs, offering compilation and code generation optimiza-
tions, and simple, logical query optimizations.



4 ISSUES AND OPPORTUNITIES (ABRIDGED)

Open issues. Complexity. SQL is not designed for multi-lingual
data analytics, hence expressing complex algorithms in SQL usu-
ally results in cumbersome queries. Fragmentation. Most solutions
involving translation to IR or SQL are tailored to specific UDF
languages, frameworks, and libraries. Performance. UDF compi-
lation and translation strategies introduce significant overheads,
especially for short running queries. Expressiveness. Support for
dynamically typed and stateful UDFs is not trivial.

Research Opportunities. Modern pipelines involve UDFs. Data
engines should provide native support for various UDF types with-
out translation overhead and treat dynamically typed UDFs as first
class citizens. Optimization. Apply adaptive, multi-lingual fusion
techniques for relational and procedural operations alike, without
being limited to specific libraries/languages. Compilation. Catch-up
with recent advancements in related areas; for example instead of
re-engineering compilers, consider employing emerging compilers
(e.g., PyPy) and techniques (e.g., WebAssembly - WASM [16]).
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