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ABSTRACT

The tutorial focuses on Private Information Retrieval (PIR), which

allows clients to privately query public or server-owned databases

without disclosing their queries. The tutorial covers the basic con-

cepts of PIR such as its types, construction, and critical building

blocks, including homomorphic encryption. It also discusses the

performance of PIR, existing optimizations for scalability, real-life

applications of PIR, and ways to extend its functionalities.
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1 INTRODUCTION

As more data moves to the cloud, privacy protection is becoming

increasingly crucial in the field of databases. While much of the

research in this area has focused on encryption-based solutions

for private databases, relatively little attention has been paid to

provide privacy for querying public or server-controlled databases

where a user cannot encrypt the data. This gap is where Private

Information Retrieval (PIR) [14, 15, 22] can play a crucial role. PIR

allows users to privately query a database without revealing any

information about the query, making it ideal for publicly available

or server-owned databases. Although PIR has limitations in terms

of performance and scalability, extensive research has been done

since its inception in 1995 [14] to address these issues. PIR has now

been applied in many real-life applications such as anonymous

communication [4, 6], content sharing [19], and keyword search [3,

31]. With the rise of big data and the increasing importance of

privacy protection, there is a growing need for research in this area.

Tutorial overview: This tutorial is 1.5 hours long and presented

in a lecture style. It covers the basics of Private Information Retrieval

(PIR), including its fundamentals, types, algorithm construction, and

performance optimization. It also explores various ways to extend

the functionalities of PIR and highlights potential areas for future

research. The target audience is researchers from academia and

industry. The tutorial is designed to be beginner-friendly, starts with

basic concepts, and does not require any specialized background

knowledge. The tutorial is organized as follows:

(1) Introduction to Private Information retrieval (15 mins).
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Figure 1: A schematic diagram illustrating the three steps of the

Private Information Retrieval (PIR) protocol.

(2) A primer on homomorphic encryption (15 mins).

(3) Computational PIR: construction and analysis (40 mins).

(4) Extension of PIR: key-value retrieval (15 mins).

(5) Conclusion and future research (5 mins)

2 INTRODUCTION TO PRIVATE

INFORMATION RETRIEVAL (PIR)

Private Information Retrieval (PIR) [14, 15, 22] enables a client to

retrieve an element at a specific array index from an untrusted

server without revealing which element was retrieved. A PIR proto-

col takes place between a PIR server and a PIR client as illustrated

in Figure 1. The server owns an array A of n elements, and the

client wants to retrieve the element at a specific index i without re-
vealing i or A[i] to anyone, including the server. The PIR protocol

comprises three steps. In step 1, the client generates a query q that

conceals the desired index i and sends q to the server. In step 2, the

server computes an answer r and sends it back to the client. Finally,
in step 3, the client decodes r to get the desired element A[i]. A
PIR protocol must provide the following two guarantees:

(1) Correctness: If a client requests the element at index i in the

array A, then the protocol must provide it with A[i].
(2) Privacy: The PIR server must not learn any information about

i orA[i]. Specifically, if the PIR client makes two separate PIR

queries with indices i and j, then the server must not be able to

distinguish between i and j with a non-negligible probability.

A strawman approach to PIR is for the client to download the

entire array A and then access the element at index i locally. This
approach is often referred to as trivial PIR in literature. However,

this scheme is not scalable as the response size grows with the size

of A. Therefore, we are particularly interested in solutions where

the response size is a function of the size of a single array element

rather than the entire array.

There are two main categories of private information retrieval

protocols: information theoretic PIR (IT-PIR) [14, 15] and computa-

tional PIR (CPIR) [22]. IT-PIR replicates the arrayA across multiple

servers and each server generates a share of the PIR response which
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the client can combine to obtain the desired element. This multi-

server PIR protocols make the assumption that the servers do not

collude among each other and thus provide information theoretic

security. However, the requirement of non-colluding servers in IT-

PIR can be difficult to achieve in practice. CPIR, on the other hand,

stores A on a single server and provides cryptographic security to

its clients. CPIR protocols use homomorphic encryption [18, 26] to

conceal the client’s query and response from the server. This tutorial

focuses on single server CPIR protocols, which are more practical

to deploy because they do not require non-colluding servers. How-

ever, a significant challenge of CPIR protocols is that they incur

higher computational overheads.Much of the recent innovations in

this field have been to develop techniques that reduce the costs of

homomorphic encryption, and hence making PIR practical in many

realistic large scale data management applications.

3 A PRIMER ON HOMOMORPHIC

ENCRYPTION

Homomorphic encryption allows computation over encrypted data.

As a result, a client can outsource computation to an untrusted cloud

without revealing its private data. The client starts by generating

a secret key, sk, and a public key, pk, following the parameters of

a particular homomorphic encryption scheme. In this tutorial, we

will discuss the following operations.

• Encrypt(v, pk) encrypts plaintext message v using public key
pk to produce ciphertext c. Generally, the size of the resulting
ciphertext, c, is greater than v. The ratio size (c)

size (v) is known as the

expansion factor (F ) of the homomorphic encryption scheme.

• Decrypt(c, sk) decrypts the ciphertext c using the secret key
to recover the original plaintext message v.

• Add(c1, c2) takes two ciphertexts c1 and c2 as input which are

encryptions of plaintexts v1 and v2 respectively, and outputs an

encryption of (v1 + v2).
• Multiply(c1, c2) takes two ciphertexts c1 and c2 as input which

are encryptions of plaintexts v1 and v2 respectively, and outputs

an encryption of (v1 ∗ v2).
• MultiplyPlain(v1, c2) takes a plaintext v1 and a ciphertext

c2 which is the encryption of a plaintexts v2, and outputs an

encryption of (v1 ∗ v2).
Homomorphic encryption schemes that support a subset of the

above homomorphic operations are called Partially Homomorphic

Encryption. They can be either additive, supporting Add andMulti-

plyPlain (e.g., Paillier [26]), ormultiplicative, supporting Multiply

over encrypted data (e.g., El Gamal [16]).

Fully Homomorphic Encryption (FHE) is the most powerful type

of homomorphic encryption scheme that supports all the operations

discussed above. In theory, Fully Homomorphic Encryption (FHE)

can perform any linear operation over encrypted data. However, the

computations in FHE can be significantly more expensive than the

corresponding operations over plaintext data. The first FHE scheme

was developed by Gentry [18] in 2009 using lattice-based cryptog-

raphy. Subsequently, several other schemes have been introduced,

such as BFV [8, 17], BGV [9], CKKS [11], TFHE [12], and more,

improving the performance by several orders of magnitude. These

schemes leverage lattice-based operations, which are faster than

traditional number-theoretic encryptions like Paillier and El Gamal.

Therefore, in certain scenarios, it may be preferable to use a subset

of FHE operations instead of a specifically additive or multiplicative

homomorphic encryption.

4 COMPUTATIONAL PIR: CONSTRUCTION

AND ANALYSIS

This section describes how we can build a Computational Private

Information retrieval (CPIR) [22] solution using additive homomor-

phism of an encryption scheme.

A CPIR query comprises an array of n additive homomorphic

ciphertexts, where n is the total number of elements in A at the

server. The ciphertext at the desired index i is an encryption of 1, and
the rest are encryptions of 0. Due to the non-deterministic property

of Encrypt (§3), all the encryptions of 0 will be distinct. To generate

a response, the server first uses the MultiplyPlain (§3) function

to multiply each ciphertext in the query with the corresponding

element in A. The response of a CPIR protocol is the sum of the

outputs of these MultiplyPlain operations, obtained using the

Add procedure. This results in an encryption of the element at

index i. The client can then Decrypt the response to obtain the

desired element A[i]. Note that, to answer a single PIR query,

the server needs to process all the elements in the database array

A. This is a fundamental lower bound of computation for PIR [7]

because if the server can exclude processing a subset of the array,

it will know that the client’s query does not involve that part of

the array, thus violating the privacy guarantee of PIR (§2). This

computation bound is a key challenge to the performance and

scalability of CPIR-based solutions.

There are three key performance metrics to consider when eval-

uating a PIR scheme: i) the size of the query, ii) the computation

time for response generation, and iii) the size of the response. These

metrics are often in conflict with each other, meaning that improv-

ing one may lead to a reduced performance in another. Therefore,

optimizing CPIR performance requires research on multiple fronts.

A popular technique, proposed by Stern [30], to address the issue

of query-size is called recursion. This approach involves arranging

the data array into a d-dimensional hypercube and performing PIR

along each dimension sequentially. This reduces the query size to

d · d√n ciphertexts instead of n. However, after each dimension, the

output is expanded by the expansion factor F (§3) of the encryption

scheme. Consequently, the final PIR response-size gets expanded

by a factor of Fd , making it impractical to use a large value of d.
This tutorial discusses three popular open-source CPIR schemes.

XPIR [1] was the first to use lattice-based cryptography to build

a CPIR solution, resulting in significant improvements over prior

works. SealPIR [5] developed a new query compression technique

that reduces query size significantly, but it comes with an addi-

tional server-side computational cost to expand queries. FastPIR [4]

reduces query size compared to XPIR by using the vectorized form

of BFV [8, 17] and taking advantage of the Single Instruction Mul-

tiple Data (SIMD) technique. It also reduces computation time by

applying cryptographic optimizations, but at the expense of a com-

promise in query size compared to SealPIR.

4.1 Retrieving Multiple Elements

Suppose a client wants to retrieve k ≥ 2 elements from an untrusted

server privately. One natural approach would be for the client to
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send k PIR queries. However, this approach is inefficient, as it

increases the query size, response generation time, and response

size by a factor of k. Instead, batch codes [21] can be used to reduce

the computation cost at the server. A batch code is an encoding

mechanism that takes n elements from a database as input and

generates a set ofm codewords distributed among b buckets, where
b > k and n < m < kn. The key feature of batch codes is that any

k elements from the original database can be retrieved privately

by fetching one codeword from each of the b buckets using PIR.

This incurs a computation cost of O(m), which is less expensive

than the O(kn) cost for k separate PIR queries over n elements.

However, the response size is increased to b ciphertexts instead of

k ciphertexts. One major drawback of batch codes is that for large

n and k, the response size b can become prohibitively large.

Angel et. al. [5] addressed this issue by proposing a new encoding

method named probabilistic batch codes (PBC). The PBC technique

keeps the number of bins b as a small multiple of k (e.g., b = 1.5k).
As a result, the response size is inflated by a small amount. However,

due to the probabilistic nature of their algorithm, there is a small

probability (≈ 2
−40

) that a client may not be able to retrieve all k
elements in a single multi-retrieval round.

4.2 A large-scale application of CPIR

In this section, we present a practical application of PIR to ensure

privacy in a real-life scenario at Internet scale. The Coeus [3] pro-

tocol addresses the issue of private retrieval of a document from a

public repository like Wikipedia, based on search keywords.

The problem can be summarized as follows: a user has a search

query containing multiple keywords, and a server has a set of public

documents. The user inputs the query into a web browser or app,

and through interaction with the server, the user can select and

view one of the K documents that are most relevant to the query.

The privacy requirement is that no one, including the server and

potential eavesdroppers, should be able to learn any information

about the query or the document the user views.

Coeus uses secure matrix-vector product for document ranking

based on the user query using the term frequency-inverse document

frequency (tf-idf) statistical method [29] and PIR for document

retrieval. The Coeus protocol for privately retrieving a document

involves three rounds. In the first round, the user encrypts their

query q and sends it to the server. The server responds by sending

encrypted relevance scores for the documents. This is achieved by

securely multiplying the query vector with the tf-idf matrix. In the

second round, the user retrieves short metadata descriptions for the

top-K scoring documents from a metadata library. Multi-retrieval

PIR [5] (§4.1) is used for this purpose. In the third and final round,

the user retrieves a single document that they wish to view in detail.

This is accomplished through single-retrieval PIR.

5 EXTENSION OF PIR: KEY-VALUE RETRIEVAL

So far, we focused on situations where the server considers the

data as an array of elements and the client knows the array-index

of the desired element. However, this requirement of knowing the

array-index poses limitations in many practical cases. For example,

the server may store the data as a key-value store, and the client

may want information associated with a particular key privately,

but lacks knowledge of the exact data organization at the server. As

an illustration, a customer may want details about a specific stock

ticker from a stockbroker or information about a particular disease

from amedical repositorywhile keeping the query keywords hidden

to safeguard their financial andmedical privacy. Due to the dynamic

nature of key-value stores, it may not be feasible for the client to

know the size of the array or index of a particular element at a given

time. In this section, we will explore the challenge of searching over

a public key-value store while maintaining privacy.

5.1 Keyword PIR

Chor et al. [13] propose a protocol named keyword-PIR to retrieve

the value corresponding to a key using multiple sequential rounds

of PIR. In this protocol, the server arranges the keys in a searchable

data structure, such as a binary search tree, and the protocol pro-

gresses in two phases. During the first phase, the client performs

PIR on each level of the binary search tree to determine the index

of the key. This results in ⌈log
2
(n + 1)⌉ round-trip PIR interactions

with the server, where n represents the total number of keys. Dur-

ing the second phase, the client utilizes this index to obtain the

corresponding value via another round of PIR. However, the draw-

back of this protocol is that the number of round trip interactions

increases with the size of the key-value store, making it a scalabil-

ity bottleneck. Additionally, since it is a multi-round protocol, it

may lead to consistency issues. Ideally, a single round solution for

private key-value retrieval would be preferred.

5.2 Single round value retrieval

Conceptually, a single-round solution to the private key-value re-

trieval problem can be designed using Fully Homomorphic Encryp-

tion (FHE) [9, 18] (§3). A client first encrypts the desired key using

FHE and sends it to the server. The server obliviously checks equal-

ity between the encrypted client key and each key in its key-value

store using a homomorphic equality operator. For each key in the

key-value store, this step outputs an encryption of 1 if it is equal to

the client’s query key, or an encryption of 0 otherwise. The output

of this step is used to retrieve the desired value using PIR.

The key challenge to the above mentioned approach is to de-

termine equality between two ciphertexts homomorphically. In

this tutorial, we briefly discuss two most recent works in this area:

Constant-weight Keyword PIR (CKP) [25] and Pantheon [2]. CKP

proposes a new method to check if a query key matches any of the

keys stored in a key-value store. Their approach involves using a

homomorphic equality operator which evaluates a homomorphic

boolean circuit to compare the two keys. However, this method

requires each bit of the keys to be encrypted separately, resulting in

a large number of expensive Multiply (§3) operations, which can

create a scalability bottleneck. Pantheon, on the other hand, takes a

different approach by using number theory and Fermat’s little theo-

rem [28] to develop a homomorphic equality operator. This method

significantly reduces the number of ciphertext multiplications re-

quired compared to CKP, resulting in much lower computation. For

example, when retrieving a value from a key-value store containing

2 million tuples, the latency is less than one second.

6 CONCLUSION AND FUTURE RESEARCH

Private Information Retrieval (PIR) has the potential to enhance

privacy in public databases, but further research is necessary to
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improve its performance and scalability. One active area of research

is offline-online PIR [7, 10]. The main idea here is to generate aux-

iliary information or hints during an offline preprocessing phase of

the database and then utilizing these hints during the online phase

to answer queries in sublinear time, thereby amortizing the offline

phase cost across multiple queries. The field of PIR can be extended

to support more expressive queries, such as SQL [27] and graph

queries [23], creating another potential area of research. Combin-

ing these research areas with cryptographic innovations [20] and

the design of specialized hardware [24] for PIR may eventually

minimize the cost overhead for privacy.
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