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ABSTRACT
Subgraphs are obtained by extracting a subset of vertices and a sub-
set of edges from the associated original graphs, and many graph
properties are known to be inherited by subgraphs. Subgraphs can
be applied in many areas such as social networks, recommender
systems, biochemistry and fraud discovery. Researchers from var-
ious communities have paid a great deal of attention to investi-
gate numerous subgraph problems, by proposing algorithms that
mainly extract important structures of a given graph. There are
however some limitations that should be addressed, with regard
to the efficiency, effectiveness and scalability of these traditional
algorithms. As a consequence, machine learning techniques—one
of the most latest trends—have recently been employed in the data-
base community to address various subgraph problems considering
that they have been shown to be beneficial in dealing with graph-
related problems. We discuss learning-based approaches for four
well known subgraph problems in this tutorial, namely subgraph
isomorphism, maximum common subgraph, community detection
and community search problems. We give a general description
of each proposed model, and analyse its design and performance.
To allow further investigations on relevant subgraph problems,
we suggest some potential future directions in this area. We be-
lieve that this work can be used as one of the primary resources,
for researchers who intend to develop learning models in solving
problems that are closely related to subgraphs.
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1 INTRODUCTION
Graphs are commonly used in representing pairwise relationships
between objects in which they involve in numerous real-world
applications [4, 12, 13] such as information systems, financial mar-
kets and community networks. Many problems are visualised using
graph models based on various graph properties, to understand
the process and to predict the solutions of these problems. This
approach has also been extended to subgraphs given that many
interesting graph properties (e.g., being a triangle-free or bipartite
graph) are known to be hereditary for subgraphs.

Subgraph problems are often solved by extracting some regular
patterns and structures from original graphs. Due to the complex-
ity [15] of the problems and the difficulty in extracting structures for
certain types of graphs, problems related to these classes of graphs
have been studied extensively via various graph representations
by using machine learning (ML) [20] techniques, to enhance the
overall performances particularly the efficiency and effectiveness
of conventional algorithms. In view of the abilities of ML in deal-
ing with numerous real-world problems and applications, applying
ML techniques on graph problems is therefore crucial to enrich
solutions to the related applications.

There are several benefits in employing ML techniques to ad-
dress graph related problems compared to conventional approaches.
First, ML techniques are more flexible and scalable. Various training
strategies can be employed and they can usually be used in dealing
with large and complex query graphs that have non-specific query
patterns. Second, ML techniques can be combined with conven-
tional frameworks to enhance their efficiency, e.g., RL strategies
and heuristic search. Third, learning models yield solutions that
have higher precision even for large query graphs, as evidenced by
recent findings [24]. In addition, they have been shown to be more
effective by employing various training strategies.

Given the popularity and significance of this research direction,
there are quite a number of surveys [21, 31] where ML frameworks
are used in solving graph and combinatorial optimisation problems.
Despite the increasing importance of subgraph extraction, no tuto-
rials or surveys focus on it. Hence, we provide a summary of ML
frameworks that have been developed over the past few years in
dealing with subgraph extraction. We focus on four representative
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Figure 1: The graph𝐺𝑐 contains a subgraph (a complete graph
of size four 𝐾4 coloured in blue) that is isomorphic to 𝐺𝑞

subgraph problems that cover a wide range of applications (see
the respective sections) in different fields. Based on the proposed
frameworks, we then suggest some future directions so that related
graph problems can be explored using analogous strategies.

Through this tutorial, we will convey the key concept that is pro-
posed to extract graph information in each framework to audiences,
and discuss some of their connections. We aim to trigger some
creative ideas to (1) enhance further the proposed frameworks, (2)
develop new learning models in solving related graph problems
and (3) improve data management based on ML. This work may
also serve as one of the references in perceiving graph problems
that have been solved by learning-based approaches, and ultimately
contribute practical concepts to relevant research communities in
managing data and solving real-world problems.

Tutorial overview. We split this 1.5-hour lecture-style tutorial
into the following sections:

(1) Introduction (5 mins): We introduce the concepts of ML
and graphs, as well as the connections between them.

(2) Subgraph isomorphism counting (20 mins): We cover
general graphs with both vertex and edge labels based on
three learning models in this problem.

(3) Maximum common subgraph (15 mins): We discuss two
learning frameworks in solving the MCS problem, where
one of them is developed based on a conventional approach.

(4) Community detection (20 mins): We cover three learning
methods that are proposed to solve overlapping CD as well
as CD in attributed graphs.

(5) Community search (15 mins): We focus on two learning
frameworks that are designed to address interactive and
attributed CS problems.

(6) Future directions (10 mins): We conclude with some po-
tential problems and challenges in solving subgraph prob-
lems using learning methods.

Target audience. The tutorial is designed for researchers and
practitioners who are interested on graphs, data management and
ML techniques.

2 TUTORIAL OUTLINE
2.1 Subgraph Isomorphism Counting
The subgraph isomorphism (SI) problem determines if a corpus graph
𝐺𝑐 contains a subgraph that is isomorphic to a query graph 𝐺𝑞 .
(see Figure 1 for example). Its applications [2] can be found in
recommender systems, bioinformatics and even social networks.
It is however known that the SI problem belongs to the class NP-
complete [6], and the counting version of this problem is hence

more complex. One such problem is the subgraph isomorphism
counting (SIC) problem that takes a corpus graph and a query graph
as input, and then determines the frequency of subgraphs of the
corpus graph that is isomorphic to the query graph.

We discuss three learning models in tackling the SIC problem.
(1) DIAMNet. Liu et al. [17] proposed a representation model to

retrieve essential information from the corpus and/or query graphs.
They introduced neural network structures that learn to predict
a count for a corpus graph based on the encoded elements from
both corpus and query graphs. An interaction layer is proposed to
aggregate information and output the prediction.

(2) ALSS. A semi-supervised framework ALSS that employs the
question-answering framework is proposed by Zhao et al. [33], by
utilising both sketch and active learnings. To count a query in a
corpus graph, the learned sketch extracts the corpus graph to a se-
ries of vectorised features, each corresponds to a basic substructure.
For the task-specific prediction, a multilayer perceptron (MLP) is
used to aggregate the corpus graph representation and the query
substructures, and to estimate the final count of queries. The active
learner queries the sketch model itself to choose the query graph.

(3) NeurSC. Wang et al. [27] proposed a semi-supervised ap-
proach NeurSC to extract and integrate different representations
from both corpus and query graphs, and produce outputs by using
an estimator. The extraction module only extracts useful vertices
from the corpus graph according to vertices in query graphs. The
estimator on the other hand utilises a graph isomorphism network
to capture substructures for the corpus graph and the individual
information for query graphs. To make predictions, features learned
by both GNNs are combined and passed to an MLP. Adversarial
trainings are also conducted given that representations between
query graphs and structures of the corpus graph could be different.

2.2 Maximum Common Subgraph
The maximum common subgraph (MCS) problem finds isomorphic
subgraphs in two graphs to identify the largest subgraph in com-
mon [5]. The MCS of 𝐺𝑞 and 𝐺𝑐 in Figure 1 is a 𝐾4 (there are
however other common subgraphs of smaller size), which is also
the graph 𝐺𝑞 . This problem is known to be NP-hard and computa-
tionally challenging. It is used to measure graph similarity and to
identify the degree of structural overlaps between networks, and
has a broad application [7] in various disciplines such as biochem-
istry, information retrieval and programme analysis.

We focus on two learning frameworks in addressing this problem.
(1) McSplit+RL. The state-of-the-art algorithm McSplit [19]

employs a branch and bound (BnB) heuristic search framework that
exhausts the search space efficiently in solving the MCS problem.
Liu et al. [18] proposed to improve the McSplit by combining it with
reinforcement learning (RL) strategies. The framework McSplit+RL
is developed based on the observation that the search algorithm
can be regarded as an agent that performs a sequence of actions
in finding maximum common subgraphs. RL strategies are used
together with the BnB algorithm in growing a candidate subgraph,
so that the optimal vertex is chosen upon learning. The search space
is also minimised by designing an appropriate reward function.

(2)GLSearch. Another RL-powered model GLSearch is proposed
by Bai et al. [3]. The GLSearch model deeply reshapes the process of
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Figure 2: A small community that has three clusters in social
network analysis, coloured in three different colours

reaching the optimal solution to solve the MCS problem directly in-
stead of just enhancing conventional search algorithms. The model
primarily learns according to a quality function, and conducts semi-
supervised learning by first pre-training small datasets with sole
BnB search, before it performs predictions on large datasets. The
RL algorithm not only performs branching point choices, but also
adjusts the order of the search so that solutions can be found effec-
tively without involving much backtracking and pruning processes.

2.3 Community Detection
Let 𝐺 be a graph. The community detection (CD) [9] problem aims
to partition 𝐺 into multiple groups such that the vertex set 𝑈 ⊆
𝑉 (𝐺) are densely connected among themselves within a group, but
sparsely connected with vertices in 𝑉 (𝐺) \𝑈 . It could be used in
identifying missing links in a network, fraud detection [22] as well
as social network analysis. A small example where a community
is partitioned into three groups that appears in social network
analysis can be found in Figure 2.

We discuss two learning frameworks in addressing overlapping
CD, and one for the CD problem in attributed networks.

(1) SMACD. Gujral and Papalexakis [11] developed SMACD, a
semi-supervised model that detects both non-overlapping and over-
lapping communities in multi-view graphs. Two constraints that
are meant to use for CD are included into the coupled matrix-tensor
factorisation [1] model, to develope an algorithm. An automated
mechanism is introduced so that a suitable sparsity regulariser
penalty 𝜆 will be selected based on the fact that 𝜆 and the sparsity
levels in the latent vectors are correlated.

(2) NOCD. Shchur and Günnemann [24] introduced a frame-
work NOCD that combines the Bernoulli-Poisson (BP) model [28]
and GNNs in discovering overlapping communities in undirected
graphs. They discovered a number of benefits by using GNN archi-
tectures in the CD problem. First, better outputs can be obtained
by using GNN models that produce identical affiliation matrices
for adjacent vertices, compared to simpler models such as free vari-
able and MLP. Second, vertex features can be integrated into GNN
models easily. Third, during the training phase, communities for
unseen vertices could also be predicted inductively.

(3) CE-MOEA. A continuous encoding multi-objective evolu-
tionary algorithm (CE-MOEA) that uses a GNN encoding method
was proposed by Sun et al. [26] to transform discrete problems
to continuous problems. The benefits of their learning framework
in dealing with attributed networks are as follows. First, for both
attributed and non-attributed graphs, the encoding method can
be applied regardless of whether they are undirected or directed.
Second, during the GNN encoding, the information of neighbouring

vertices are fully exploited, which makes it more robust. Third, by
dealing withmulti-objective continuous optimisation problems, any
MOEA can be employed resulting in a smoother fitness landscape.

2.4 Community Search
Let 𝐺 be a graph and 𝑣 ∈ 𝑉 (𝐺) be a query vertex. The community
search (CS) (or query-based CD) problem [8, 25] is a variant of CD
problems which aims to determine the most likely subgraph 𝐻 ⊆ 𝐺
such that 𝑣 ∈ 𝑉 (𝐻 ) and 𝐻 satisfies the cohesiveness and connec-
tivity constraints. Community search appears in many real-world
applications [8] including friend recommendation, e-commerce and
fraudulent group discovery.

To enhance further the performance of conventional algorithms,
learning-based frameworks have recently been proposed [10, 14].
We now discuss two frameworks that are designed to address (1)
interactive CS and (2) attributed community search (ACS) problems.

(1) ICS-GNN. Gao et al. [10] developed an interactive CS algo-
rithm ICS-GNN that uses a GNN to capture similarities between
vertices in an online social network. The model involves several
rounds of community search where feedback from users are incor-
porated during the search process. A ranking loss is introduced to
integrate implicit feedback from users so that a correct label can
be decided. In handling the special case where a query vertex is
equivalent to a boundary vertex of a community, a greedy measure
is introduced in which the authors used the global relative benefit
of a vertex to determine its membership.

(2) QD-GNN & AQD-GNN. Jiang et al. [14] proposed a super-
vised learning method namely QD-GNN to encode information
from both query vertices and graphs, which can be used in deal-
ing with both CS and ACS problems (with appropriate extensions).
Their model can be applied on attributed graphs, which extends the
ICS-GNN [10] framework. The QD-GNN model consists of three
encoders (for graph, query and attribute) and one feature fusion
operator, which encode graph information and utilise local query
information as well as global graph knowledge in obtaining the
final output. To solve the ACS problem, another variant namely
AQD-GNN is developed by incorporating query attributes into QD-
GNN. This new model consists of one extra encoder that provides
an interface for query attributes, and a revised fusion operator. To
support interactive attributed CS, the GNN model in ICS-GNN [10]
is replaced with QD-GNN and AQD-GNN.

2.5 Future Direction
Given that ML frameworks in solving subgraph problems are rel-
atively limited compared to other areas, we now suggest some
general research questions so that more learning models can be
explored in addressing similar graph problems.

Learning strategy. Since different learning strategies are adapted
in ML models, they could be characterised so that the most appro-
priate learning strategy that should be used in solving certain types
of graph problems can be determined, which may lead to a more
promising outcome.

Graph type. Existing learning frameworks for graph problems
could possibly be transformed to handle a wide range of subgraph
problems, i.e., problems that involve dynamic graphs [16] and di-
rected graphs [4, 29, 32] that are also used to model many real-world
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applications. This is somehow more challenging due to their re-
strictive graph properties.

GNN. Knowing that the proposed learning models using GNNs
outperform traditional algorithms in different aspects, it is natural
to explore the power of GNNs in relevant graph problems from
different perspectives such as the approximation ratios [23].

Model extension. Learning-based approaches have been shown
in providing better solutions in various circumstances. It is hence
worth to extend it to other subgraph problems, particularly those
related to a problem that has been addressed by learning models.
For instance, design learning frameworks for the densest subgraph
problem that are related to the maximum weight clique problem.
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