
Time Series Data Mining: A Unifying View

Eamonn Keogh
 University of California, Riverside

Riverside, California, USA
 eamonn@cs.ucr.edu

ABSTRACT
Time series data are ubiquitous; large volumes of such data are
routinely created in scientific, industrial, entertainment, medical
and biological domains. Examples include ECG data, gait analysis,
stock market quotes, machine health telemetry, search engine
throughput volumes etc. VLDB has traditionally been home to
much of the community’s best research on time series, with three
to eight papers on time series appearing in the conference each
year.

What do we want to do with such time series? Everything!
Classification, clustering, joins, anomaly detection, motif
discovery, similarity search, visualization, summarization,
compression, segmentation, rule discovery etc. Rather than a deep
dive in just one of these subtopics, in this tutorial I will show a
surprisingly small set of high-level representations, definitions,
distance measures and primitives can be combined to solve the
first 90 to 99.9% of the problems listed above. The tutorial will be
illustrated with numerous real-world examples created just for
this tutorial, including examples from robotics, wearables, medical
telemetry, astronomy, and (especially) animal behavior.
Moreover, all sample datasets and code snippets will be released
so that the tutorial attendees (and later, readers) can first
reproduce the results demonstrated, before attempting similar
analysis on their data.

PVLDB Reference Format:

Eamonn Keogh. Time Series Data Mining: A Unifying View. PVLDB,
16(12): 3861 - 3863, 2023.
doi:10.14778/3611540.3611570

1 INTRODUCTION

Time series data are ubiquitous; large volumes of such data are
routinely created in scientific, industrial, entertainment, medical
and biological domains. VLDB has traditionally been a home to
much of the community’s research on time series, with three to
eight papers on time series appearing in the conference each year
[4][28][29][30].

There are many tasks of interest that we may wish to perform
with time series, including: classification [1][11][24][26],

clustering, joins [1][2][14][15], anomaly detection [1][23][27],
motif discovery [1][5][6][9][10][13][17][18][20][21], similarity
search [11][32], visualization [3][25], summarization [12],
compression [12], segmentation [8], data labeling [15], evolving
pattern discovery [7][24], and rule discovery [4].

Clearly, any one of those tasks could be the subject of a tutorial.
However, this tutorial has a different ambition, and makes a
strong and concrete claim. Given just two simple tools, and
perhaps a handful of lines of minor supporting code, you can solve
somewhere between 90 to 99.9% of all these problems. The fact
that such a small number of atomic ideas can be combined to solve
so many diverse problems may surprise some, but it is an
increasingly prevalent idea in the data mining literature. The two
ideas in question are:

• The MASS algorithm [32].

• The Matrix Profile [1][2][10].

Both of these elements are now mature enough to be
considered “command line” elements in most common data
analytic environments (for concreteness, the tutorial will show
MATLAB® snippets). I will show that using these tools with a
single command line query, it is often possible outperform very
complex methods on a dozen important time series processing
tasks.

2 CORE PRIMATIVES FOR TIME SERIES

The MASS algorithm has been shown to be optimally fast,
assuming only that the FFT algorithm is optimally fast. However,
the situation is less clear for the Matrix Profile. If you only want
the maximum value from the Matrix Profile, i.e., the time series
discords, then DAMP provides an ultra scalable to find them [23].

The situation is less clear if you wish this report the time series
motifs. A handful of papers claim to report faster methods [33],
but they are all based on a naïve misunderstanding or
misrepresentation.

Consider the following two time series, which are at extremes
of difficulty for motif discovery. First we have R, an complete
random vector, and E. The time series E is simply R, into which we
have placed two identical copies of some pattern. It is easy to see
that finding the closest pair of subsequences in R is an intrinsically
O(|R|2) problem, whereas finding the closest pair of subsequences
in E is just O(|E|) problem.

It is possible to propose algorithms that are apparently fast, if
the data searched almost E, that is to say, strong motifs in data
that is otherwise not well conserved. However, such algorithms
fail dramatically for even slightly harder problems (by fail, we
mean take much longer than brute force search). In the tutorial
we will show examples of this, but consider this simple example.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy
of this license. For any use beyond those covered by this license, obtain
permission by emailing info@vldb.org. Copyright is held by the owner/author(s).
Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611570

3861

https://creativecommons.org/licenses/by-nc-nd/4.0/

On a problem in E of length 100,000, Attimo takes 1.8 seconds and
SCRIMP++ [10] takes 19.5 seconds. While the former is only
approximately correct and the latter is exact, this is a large time
difference. However, suppose we consider a harder problem. For
example, R2:

rng(2023); % set random seed

R2 = rand(1,100000);

R2(10001:10128) = TS(20001:20128)+ randn(1,128)/10;

In the last line we have inserted a weak motif in order to to
have a known ground truth (see also Time Series Sanity Checks
below). For this task, SCRIMP++ again takes 19.5 seconds, but
Attimo takes 4.6 hours! In fact, as we will show in this tutorial,
the apparent advantage of Attimo was illusionary. By exploiting
the anytime algorithm properties of SCRIMP++ and the more
general contract algorithm properties of the Matrix Profile (which
takes a single line of code!), we find the motif in 0.1 seconds.

2.1 Time Series Sanity Checks

More than almost any other datatype, time series is an inherently
visual data type. In this tutorial I will explain how we can exploit
this fact to test hypotheses, perform sanity checks and convince a
reader (an employer, a grant review panel, journal editors etc.) of
a finding or viewpoint. For concreteness I will give a simple
example.

It can be useful to transform a raw time series into a piecewise
linear approximation (PLA), either as a form of data compression
or for feature extraction. The task is often phrased as: Given a time
series T, approximate it with K segments (K << |T|), minimizing
the RMSE. However, there a several essentially identical variants
that minimize the maximum per segment error etc.

 The optimal algorithm for this is known, but computationally
untenable, therefore several fast approximate algorithms have
been suggested, dating back at least thirty years.

How can we know if we have a good algorithm, if we cannot
compute the optimal solution? There is in fact a simple “trick”, we
can create a toy dataset for which we know the optimal solution
by out-of-band knowledge and test our algorithm on it. Because
such toy datasets are necessarily special and a limited subset of
the space of possible time series, succuss on them should only be
taken as weak evidence that our algorithm is useful, but failure on
them should be taken as strong evidence that our algorithm is
worthless. In Figure 1 we create such an example.

Figure 1: A toy dataset for which the optimal PLA for K = 9
and K = 8 is obvious.

The reader will appreciate that with K = 9, the optimal solution
is that each constant region, including the short one at the right
side), be approximated by its own segment. Moreover, doing this
will give us a near zero RMSE. For K = 8, the reader will further
appreciate that two of the above segments must be merged, and it
is obvious that the last two segments can be merged to give the
smallest overall RMSE.

In Figure 2 we segment the toy dataset with the Bottom-Up
algorithm, which is at least thirty-five years old, but best known
through its reference in [31].

Figure 2: The toy dataset segmented with the Bottom-Up
algorithm (a special case of SWAB), with K = 9 and K = 8.

At least in this case, the classic algorithm performs perfectly.
By way of contrast, let us consider a more recently proposed
algorithm, Sim-Piece [28]. With Sim-Piece you do not control the
K directly, but by adjusting the error threshold parameter we
can make it produce different K approximations. In Figure 3: The
toy dataset segmented my Sim-Piece with K = 9 (=20%) and K =
8 (=47.5%).

Figure 3: The toy dataset segmented my Sim-Piece with K =
9 (=20%) and K = 8 (=47.5%).

At a glance we see the value of visualizing results (amazingly,
the original paper does not show a single visualization [28]).

There are many other examples where simply visualizing the
time series would make us realize that there is a huge gap between
the apparent and actual utility of an idea. For example, many
papers on TSAD report apparently impressive results in tables,
but never show examples of the anomalies discovered. In Figure
4 I show an example of a slide that discusses this issue. As the
reader will appreciate, the “anomaly” discovered is trivial, and
surely not worthy of a complex algorithm.

Figure 4: A sample slide from the tutorial that discusses
TSAD.

The tutorial is replete with such examples of the power of
visualizing time series, and every example will have all code, data,
and provenance to let the attendees reproduce the findings.

ACKNOWLEDGMENTS

This work was supported by NSF 2103976 and gifts from MERL
LABs, Amazon Research and Google Research. All opinions
expressed are by the authors only. My brilliant students helped
me to prepare some of the materials presented.

0 4000

0 4000 0 4000

K = 9 K = 8

0 40000 4000

K = 9
 =20%

K = 8
 =47.5%

3862

PRESENTER’S BIOGRAPHY

Dr. Keogh is a Distinguished Professor of Computer Science at the
University of California. He is the inventor of many of the most
commonly used time series data mining primitives, including
PAA, the Matrix Profile, LBkeogh, SAX, Time Series Motifs and
Time Series Shapelets. He has won numerous awards, including:
The Bell Labs Bronze Prize 2021, the ACM SIGKDD 2022 Test of
Time Paper Award, the 2021 IEEE ICDM Research Contributions
Award, Two Google Faculty Awards and best paper awards at
SIGKDD(2), SIGMOD, ICDM(2) and SDM.

REFERENCES
[1] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei

Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, Eamonn J.
Keogh: Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying
View That Includes Motifs, Discords and Shapelets. ICDM 2016: 1317-1322.

[2] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael
Yeh, Gareth J. Funning, Abdullah Mueen, Philip Brisk, Eamonn J. Keogh:
Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the One
Hundred Million Barrier for Time Series Motifs and Joins. ICDM 2016: 739-748.

[3] Chin-Chia Michael Yeh, Helga Van Herle, Eamonn J. Keogh: Matrix Profile III:
The Matrix Profile Allows Visualization of Salient Subsequences in Massive
Time Series. ICDM 2016: 579-588.

[4] Chin-Chia Michael Yeh, Nickolas Kavantzas, Eamonn J. Keogh: Matrix Profile
IV: Using Weakly Labeled Time Series to Predict Outcomes. Proc. VLDB
Endow. 10(12): 1802-1812 (2017)

[5] Hoang Anh Dau, Eamonn J. Keogh: Matrix Profile V: A Generic Technique to
Incorporate Domain Knowledge into Motif Discovery. KDD 2017: 125-134.

[6] Chin-Chia Michael Yeh, Nickolas Kavantzas, Eamonn J. Keogh: Matrix Profile
VI: Meaningful Multidimensional Motif Discovery. ICDM 2017: 565-574

[7] Yan Zhu, Makoto Imamura, Daniel Nikovski, Eamonn J. Keogh: Matrix Profile
VII: Time Series Chains: A New Primitive for Time Series Data Mining (Best
Student Paper Award). ICDM 2017: 695-704

[8] Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar,
Liudmila Ulanova, Eamonn J. Keogh: Matrix Profile VIII: Domain Agnostic
Online Semantic Segmentation at Superhuman Performance Levels. ICDM
2017: 117-126.

[9] Yan Zhu, Abdullah Mueen, Eamonn J. Keogh: Matrix Profile IX: Admissible
Time Series Motif Discovery With Missing Data. IEEE Trans. Knowl. Data Eng.
33(6): 2616-2626 (2021)

[10] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar,
Eamonn J. Keogh: Matrix Profile XI: SCRIMP++: Time Series Motif Discovery
at Interactive Speeds. ICDM 2018: 837-846.

[11] Shaghayegh Gharghabi, Shima Imani, Anthony J. Bagnall, Amirali
Darvishzadeh, Eamonn J. Keogh: Matrix Profile XII: MPdist: A Novel Time
Series Distance Measure to Allow Data Mining in More Challenging Scenarios.
ICDM 2018: 965-970.

[12] Shima Imani, Frank Madrid, Wei Ding, Scott E. Crouter, Eamonn J. Keogh:
Matrix Profile XIII: Time Series Snippets: A New Primitive for Time Series Data
Mining. ICBK 2018: 382-389.

[13] Zachary Zimmerman, Kaveh Kamgar, Nader Shakibay Senobari, Brian Crites,
Gareth J. Funning, Philip Brisk, Eamonn J. Keogh: Matrix Profile XIV: Scaling
Time Series Motif Discovery with GPUs to Break a Quintillion Pairwise
Comparisons a Day and Beyond. SoCC 2019: 74-86

[14] Kaveh Kamgar, Shaghayegh Gharghabi, Eamonn J. Keogh:Matrix Profile XV:
Exploiting Time Series Consensus Motifs to Find Structure in Time Series Sets.
ICDM 2019: 1156-1161

[15] Frank Madrid, Shailendra Singh, Quentin Chesnais, Kerry Mauck, Eamonn J.
Keogh: Matrix Profile XVI: Efficient and Effective Labeling of Massive Time
Series Archives. DSAA 2019: 463-472

[16] Zachary Zimmerman, Nader Shakibay Senobari, Gareth J. Funning, Evangelos
E. Papalexakis, Samet Oymak, Philip Brisk, Eamonn J. Keogh: Matrix Profile
XVIII: Time Series Mining in the Face of Fast Moving Streams using a Learned
Approximate Matrix Profile. ICDM 2019: 936-945

[17] Shima Imani, Eamonn J. Keogh: Matrix Profile XIX: Time Series Semantic
Motifs: A New Primitive for Finding Higher-Level Structure in Time Series.
ICDM 2019: 329-338

[18] Frank Madrid, Shima Imani, Ryan Mercer, Zachary Zimmerman, Nader
Shakibay Senobari, Eamonn J. Keogh: Matrix Profile XX: Finding and
Visualizing Time Series Motifs of All Lengths using the Matrix Profile. ICBK
2019: 175-182

[19] Makoto Imamura, Takaaki Nakamura, Eamonn J. Keogh: Matrix Profile XXI: A
Geometric Approach to Time Series Chains Improves Robustness. KDD 2020:
1114-1122

[20] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Eamonn J. Keogh:
Matrix Profile XVII: Indexing the Matrix Profile to Allow Arbitrary Range
Queries. ICDE 2020: 1846-1849

[21] Sara Alaee, Kaveh Kamgar, Eamonn J. Keogh: Matrix Profile XXII: Exact
Discovery of Time Series Motifs under DTW. ICDM 2020: 900-905.

[22] Ryan Mercer, Sara Alaee, Alireza Abdoli, Shailendra Singh, Amy C. Murillo,
Eamonn J. Keogh: Matrix Profile XXIII: Contrast Profile: A Novel Time Series
Primitive that Allows Real World Classification. ICDM 2021: 1240-1245

[23] Yue Lu, Renjie Wu, Abdullah Mueen, Maria A. Zuluaga, Eamonn J. Keogh:
Matrix Profile XXIV: Scaling Time Series Anomaly Detection to Trillions of
Datapoints and Ultra-fast Arriving Data Streams. KDD 2022: 1173-1182.

[24] Ryan Mercer, Eamonn J. Keogh: Matrix Profile XXV: Introducing Novelets: A
Primitive that Allows Online Detection of Emerging Behaviors in Time Series.
ICDM 2022: 338-347.

[25] Maryam Shahcheraghi, Ryan Mercer, João Manuel De Almeida Rodrigues,
Audrey Der, Hugo Filipe Silveira Gamboa, Zachary Zimmerman, Eamonn J.
Keogh: Matrix Profile XXVI: Mplots: Scaling Time Series Similarity Matrices
to Massive Data. ICDM 2022: 1179-1184.

[26] Audrey Der, Chin-Chia Michael Yeh, Renjie Wu, Junpeng Wang, Yan Zheng,
Zhongfang Zhuang, Liang Wang, Wei Zhang, Eamonn J. Keogh: Matrix Profile
XXVII: A Novel Distance Measure for Comparing Long Time Series. ICKG
2022: 40-47.

[27] Sadaf Tafazoli and Eamonn Keogh: Matrix Profile XXVIII: Discovering Multi-
Dimensional Time Series Anomalies with K of N Anomaly Detection. SIAM
SDM 2023.

[28] Xenophon Kitsios, Panagiotis Liakos, Katia Papakonstantinopoulou, Yannis
Kotidis: Sim-Piece: Highly Accurate Piecewise Linear Approximation through
Similar Segment Merging. Proc. VLDB Endow. 16(8): 1910-1922 (2023).

[29] Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock: Anomaly Detection
in Time Series: A Comprehensive Evaluation. Proc. VLDB Endow. 15(9): 1779-
1797 (2022).

[30] Li Yan, Nerissa Xu, Guozhong Li, Sourav S. Bhowmick, Byron Choi, Jianliang
Xu: SENSOR: Data-driven Construction of Sketch-based Visual Query
Interfaces for Time Series Data. Proc. VLDB Endow. 15(12): 3650-3653 (2022).

[31] Eamonn J. Keogh, Selina Chu, David M. Hart, Michael J. Pazzani: An Online
Algorithm for Segmenting Time Series. ICDM 2001: 289-296.

[32] Abdullah Mueen, Yan Zhu, Chin-Chia Michael Yeh, Kaveh Kamgar,
Krishnamurthy Viswanathan, Chetan Gupta, and Eamonn Keogh. The fastest
similarity search algorithm for time series subsequences under euclidean
distance. http://www.cs.unm. edu/~mueen/FastestSimilaritySearch.html

[33] Matteo Ceccarello, Johann Gamper: Fast and Scalable Mining of Time Series
Motifs with Probabilistic Guarantees. Proc. VLDB Endow. 15(13): 3841-3853
(2022)

Appendix A: The Contract Algorithm Property
of the Matrix Profile

For all the Matrix Profile (MP) algorithms, SCRIMP, STAMP,
STOMP, DAMP etc., we have a very nice property, they are all
their own approximation algorithms! Moreover, you can precisely
tune the approximation to use exactly the amount of
computational time you have available.

Let us see this with a case study. A paper [33] considers a time
series C19 of length n = 26,415,043 and a motif length m = 18,000,
very daunting numbers. If this is an important dataset, we may be
willing to wait a day or even a week for the results, but surely, we
will not wait for years. How long will this take? We can predict
how long it will take?

The time required is the square of the length of the time series,
divided by some constant C. That constant depends on your
machine but can easily be empirically determined.

 TimeRequired = n2/C

Which gives us:

 C = n2/ TimeRequired

Note that the time is independent of m. Thus, we can choose how
long we wish to spend on motif hunting.

3863

