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ABSTRACT 
Time series data are ubiquitous; large volumes of such data are 
routinely created in scientific, industrial, entertainment, medical 
and biological domains. Examples include ECG data, gait analysis, 
stock market quotes, machine health telemetry, search engine 
throughput volumes etc. VLDB has traditionally been home to 
much of the community’s best research on time series, with three 
to eight papers on time series appearing in the conference each 
year. 

What do we want to do with such time series? Everything! 
Classification, clustering, joins, anomaly detection, motif 
discovery, similarity search, visualization, summarization, 
compression, segmentation, rule discovery etc. Rather than a deep 
dive in just one of these subtopics, in this tutorial I will show a 
surprisingly small set of high-level representations, definitions, 
distance measures and primitives can be combined to solve the 
first 90 to 99.9% of the problems listed above. The tutorial will be 
illustrated with numerous real-world examples created just for 
this tutorial, including examples from robotics, wearables, medical 
telemetry, astronomy, and (especially) animal behavior.  
Moreover, all sample datasets and code snippets will be released 
so that the tutorial attendees (and later, readers) can first 
reproduce the results demonstrated, before attempting similar 
analysis on their data. 
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1 INTRODUCTION 

Time series data are ubiquitous; large volumes of such data are 
routinely created in scientific, industrial, entertainment, medical 
and biological domains. VLDB has traditionally been a home to 
much of the community’s research on time series, with three to 
eight papers on time series appearing in the conference each year 
[4][28][29][30]. 

There are many tasks of interest that we may wish to perform 
with time series, including: classification [1][11][24][26], 

clustering, joins [1][2][14][15], anomaly detection [1][23][27], 
motif discovery [1][5][6][9][10][13][17][18][20][21], similarity 
search [11][32], visualization [3][25], summarization [12], 
compression [12], segmentation [8], data labeling [15], evolving 
pattern discovery [7][24], and rule discovery [4]. 

Clearly, any one of those tasks could be the subject of a tutorial. 
However, this tutorial has a different ambition, and makes a 
strong and concrete claim. Given just two simple tools, and 
perhaps a handful of lines of minor supporting code, you can solve 
somewhere between 90 to 99.9% of all these problems. The fact 
that such a small number of atomic ideas can be combined to solve 
so many diverse problems may surprise some, but it is an 
increasingly prevalent idea in the data mining literature. The two 
ideas in question are: 

• The MASS algorithm [32]. 

• The Matrix Profile [1][2][10]. 

Both of these elements are now mature enough to be 
considered “command line” elements in most common data 
analytic environments (for concreteness, the tutorial will show 
MATLAB® snippets). I will show that using these tools with a 
single command line query, it is often possible outperform very 
complex methods on a dozen important time series processing 
tasks.     

2 CORE PRIMATIVES FOR TIME SERIES 

The MASS algorithm has been shown to be optimally fast, 
assuming only that the FFT algorithm is optimally fast. However, 
the situation is less clear for the Matrix Profile. If you only want 
the maximum value from the Matrix Profile, i.e., the time series 
discords, then DAMP provides an ultra scalable to find them [23].  

The situation is less clear if you wish this report the time series 
motifs. A handful of papers claim to report faster methods [33], 
but they are all based on a naïve misunderstanding or 
misrepresentation.  

Consider the following two time series, which are at extremes 
of difficulty for motif discovery. First we have R, an complete 
random vector, and E. The time series E is simply R, into which we 
have placed two identical copies of some pattern. It is easy to see 
that finding the closest pair of subsequences in R is an intrinsically 
O(|R|2) problem, whereas finding the closest pair of subsequences 
in E is just O(|E|) problem.  

It is possible to propose algorithms that are apparently fast, if 
the data searched almost E, that is to say, strong motifs in data 
that is otherwise not well conserved. However, such algorithms 
fail dramatically for even slightly harder problems (by fail, we 
mean take much longer than brute force search). In the tutorial 
we will show examples of this, but consider this simple example. 
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On a problem in E of length 100,000, Attimo takes 1.8 seconds and 
SCRIMP++ [10] takes 19.5 seconds. While the former is only 
approximately correct and the latter is exact, this is a large time 
difference. However, suppose we consider a harder problem. For 
example, R2: 

rng(2023); % set random seed 

R2 = rand(1,100000); 

R2(10001:10128) = TS(20001:20128)+ randn(1,128)/10; 

In the last line we have inserted a weak motif in order to to 
have a known ground truth (see also Time Series Sanity Checks 
below). For this task,  SCRIMP++ again takes 19.5 seconds, but 
Attimo takes 4.6 hours! In fact, as we will show in this tutorial, 
the apparent advantage of Attimo was illusionary. By exploiting 
the anytime algorithm properties of SCRIMP++ and the more 
general contract algorithm properties of the Matrix Profile (which 
takes a single line of code!), we find the motif in 0.1 seconds. 

2.1 Time Series Sanity Checks 

More than almost any other datatype, time series is an inherently 
visual data type. In this tutorial I will explain how we can exploit 
this fact to test hypotheses, perform sanity checks and convince a 
reader (an employer, a grant review panel, journal editors etc.) of 
a finding or viewpoint. For concreteness I will give a simple 
example. 

It can be useful to transform a raw time series into a piecewise 
linear approximation (PLA), either as a form of data compression 
or for feature extraction. The task is often phrased as: Given a time 
series T, approximate it with K segments (K << |T|), minimizing 
the RMSE. However, there a several essentially identical variants 
that minimize the maximum per segment error etc.  

 The optimal algorithm for this is known, but computationally 
untenable, therefore several fast approximate algorithms have 
been suggested, dating back at least thirty years. 

How can we know if we have a good algorithm, if we cannot 
compute the optimal solution? There is in fact a simple “trick”, we 
can create a toy dataset for which we know the optimal solution 
by out-of-band knowledge and test our algorithm on it. Because 
such toy datasets are necessarily special and a limited subset of 
the space of possible time series, succuss on them should only be 
taken as weak evidence that our algorithm is useful, but failure on 
them should be taken as strong evidence that our algorithm is 
worthless. In Figure 1 we create such an example. 

 
Figure 1: A toy dataset for which the optimal PLA for K = 9 
and K = 8 is obvious.  

The reader will appreciate that with K = 9, the optimal solution 
is that each constant region, including the short one at the right 
side), be approximated by its own segment. Moreover, doing this 
will give us a near zero RMSE. For  K = 8, the reader will further 
appreciate that two of the above segments must be merged, and it 
is obvious that the last two segments can be merged to give the 
smallest overall RMSE. 

In Figure 2 we segment the toy dataset with the Bottom-Up 
algorithm, which is at least thirty-five years old, but best known 
through its reference in [31]. 

 

Figure 2: The toy dataset segmented with the Bottom-Up 
algorithm (a special case of SWAB), with K = 9 and K = 8.  

At least in this case, the classic algorithm performs perfectly. 
By way of contrast, let us consider a more recently proposed 
algorithm, Sim-Piece [28]. With Sim-Piece you do not control the 
K directly, but by adjusting the error threshold parameter  we 
can make it produce different K approximations. In Figure 3: The 
toy dataset segmented my Sim-Piece with K = 9 ( =20%) and K = 
8 ( =47.5%). 

 

Figure 3: The toy dataset segmented my Sim-Piece with K = 
9 ( =20%) and K = 8 ( =47.5%).  

At a glance we see the value of visualizing results (amazingly, 
the original paper does not show a single visualization [28]). 

There are many other examples where simply visualizing the 
time series would make us realize that there is a huge gap between 
the apparent and actual utility of an idea. For example, many 
papers on TSAD report apparently impressive results in tables, 
but never show examples of the anomalies discovered.  In Figure 
4 I show an example of a slide that discusses this issue. As the 
reader will appreciate, the “anomaly” discovered is trivial, and 
surely not worthy of a complex algorithm. 

 
Figure 4: A sample slide from the tutorial that discusses 
TSAD.  

The tutorial is replete with such examples of the power of 
visualizing time series, and every example will have all code, data, 
and provenance to let the attendees reproduce the findings. 
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Appendix A: The Contract Algorithm Property 
of the Matrix Profile 

For all the Matrix Profile (MP) algorithms, SCRIMP, STAMP, 
STOMP, DAMP etc., we have a very nice property, they are all 
their own approximation algorithms! Moreover, you can precisely 
tune the approximation to use exactly the amount of 
computational time you have available.  

Let us see this with a case study. A paper [33] considers a time 
series C19 of length n = 26,415,043 and a motif length m = 18,000, 
very daunting numbers. If this is an important dataset, we may be 
willing to wait a day or even a week for the results, but surely, we 
will not wait for years. How long will this take? We can predict 
how long it will take? 

The time required is the square of the length of the time series, 
divided by some constant C. That constant depends on your 
machine but can easily be empirically determined. 

             TimeRequired = n2/C 

Which gives us:       

            C = n2/ TimeRequired 

Note that the time is independent of m. Thus, we can choose how 
long we wish to spend on motif hunting. 
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