
PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel
Yanli Zhao

Meta AI
yanlizhao@meta.com

Andrew Gu
Meta AI

andgu@meta.com

Rohan Varma
Meta AI

rvarm1@meta.com

Liang Luo
Meta AI

liangluo@meta.com

Chien-Chin Huang
Meta AI

chienchin@meta.com

Min Xu
Meta AI

m1n@meta.com

Less Wright
Meta AI

less@meta.com

Hamid Shojanazeri
Meta AI

hamidnazeri@meta.com

Myle Ott
Meta AI

myleott@gmail.com

Sam Shleifer
Meta AI

sshleifer@gmail.com

Alban Desmaison
Meta AI

albandes@meta.com

Can Balioglu
Meta AI

balioglu@meta.com

Pritam Damania
Meta AI

pritam.damania@gmail.com

Bernard Nguyen
Meta AI

bernardn@meta.com

Geeta Chauhan
Meta AI

gchauhan@meta.com

Yuchen Hao
Meta AI

haoyc@meta.com

Ajit Mathews
Meta AI

amath@meta.com

Shen Li
Meta AI

shenli@meta.com

ABSTRACT
It is widely acknowledged that large models have the potential
to deliver superior performance across a broad range of domains.
Despite the remarkable progress made in the field of machine learn-
ing systems research, which has enabled the development and
exploration of large models, such abilities remain confined to a
small group of advanced users and industry leaders, resulting in an
implicit technical barrier for the wider community to access and
leverage these technologies. In this paper, we introduce PyTorch
Fully Sharded Data Parallel (FSDP) as an industry-grade solution
for large model training. FSDP has been closely co-designed with
several key PyTorch core components including Tensor implemen-
tation, dispatcher system, and CUDA memory caching allocator, to
provide non-intrusive user experiences and high training efficiency.
Additionally, FSDP natively incorporates a range of techniques and
settings to optimize resource utilization across a variety of hardware
configurations. The experimental results demonstrate that FSDP is
capable of achieving comparable performance to Distributed Data
Parallel while providing support for significantly larger models
with near-linear scalability in terms of TFLOPS.

PVLDB Reference Format:
Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min
Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban
Desmaison, Can Balioglu, Pritam Damania, Bernard Nguyen, Geeta
Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. PyTorch FSDP:
Experiences on Scaling Fully Sharded Data Parallel. PVLDB, 16(12):
3848-3860, 2023.
doi:10.14778/3611540.3611569

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available
at https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/
fully_sharded_data_parallel.py/.

1 INTRODUCTION
The magnitude of neural network models is growing at an unprece-
dented rate, facilitating breakthroughs across a wide spectrum
of domains. Upon inception, the 175-billion-parameter GPT-3 [3]
model set a new record for almost all Natural Language Process-
ing tasks. The product applications constructed on top of GPT
models [23] have quickly demonstrated their potential to revolu-
tionize the entire industry. Modern large scale recommendation
models [19, 33] can reach beyond 1 trillion parameters, replete
with rapidly growing dense layer components. These models power
applications that serve multi-billions of users every day. As large
neural networks continue to push the limits of science and technol-
ogy, an industry-grade tool to simplify the training of such models
with high efficiency would help expedite the progress.

In recent years, the community has introduced and investigated
numerous advanced methodologies to enlarge neural network mod-
els. Pipeline parallelism [6, 8, 11, 15, 20] partitions a model instance
into stages and distributes stages across multiple devices, where
activations and gradients are communicated across stage bound-
aries. Tensor parallelism [9, 21, 31, 32] shards model parameters,
conducts partial computation on individual devices and communi-
cates activations at required layer boundaries. Zero-Redundancy
parallelism [27, 28, 30] shards parameters as well but communicates
parameters on-demand to recover their unsharded form and exe-
cutes the model as if it were replicated on every device. The afore-
mentioned techniques have served as the fundamental building

doi:10.14778/3611540.3611569

3848

https://doi.org/10.14778/3611540.3611569
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/fully_sharded_data_parallel.py/
https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/fully_sharded_data_parallel.py/
https://doi.org/10.14778/3611540.3611569
https://www.acm.org/publications/policies/artifact-review-and-badging-current


blocks to enable the training of large neural networks across vari-
ous applications. Nevertheless, two challenges still persist. Firstly,
some of these methods are tightly integrated with specific model
architectures, which hinder them from being utilized as a generic
solution for training large models. Secondly, some of these tech-
niques are built on top of rapidly-evolving internal interfaces of
underlying machine learning frameworks, which become vulnera-
ble to changes in framework implementations. Therefore, it is more
robust and efficient to have a native solution co-designed with the
core functionalities of machine learning frameworks. Additionally,
constructing such a solution in a composable and customizable man-
ner could potentially facilitate the community’s future innovations
as well.

This paper presents PyTorch [24] Fully Sharded Data Parallel
(FSDP), which enables the training of large-scale models by shard-
ing model parameters. The FSDP algorithm is motivated by the
ZeroRedundancyOptimizer [27, 28] technique from DeepSpeed but
with a revised design and implementation that is aligned with the
other components of PyTorch. FSDP breaks down a model instance
into smaller units and then flattens and shards all of the parameters
within each unit. The sharded parameters are communicated and
recovered on-demand before computations, and then they are im-
mediately discarded afterwards. This approach ensures that FSDP
only needs to materialize parameters from one unit at a time, which
significantly reduces peak memory consumption. The design and
implementation of FSDP faces the following challenges.

• User Experience is critical for achieving broad adoption.
When working on prior PyTorch distributed training fea-
tures such as DistributeDataParallel (DDP) [14], we observed
that aligning the user experience of distributed training
with that of local training can significantly lower the learn-
ing barrier. Techniques like DDP require the model to be
replicated on every device, which implies that the entire
model can be constructed on the target device. However,
although FSDP can easily adopt DDP’s API design, large
models might not fit into one GPU device and therefore
cannot even be initialized efficiently.

• Hardware Heterogeneity often exists in modern GPU
clusters, whereby interconnects are partitioned into high-
bandwidth islands within eachmachine and low-bandwidth
mesh across machines. Additionally, there may be further
hierarchical structures at the rack or pod levels. Conse-
quently, the design of FSDP must accommodate such het-
erogeneity and optimize accordingly.

• Resource Utilization is usually tightly linked with capi-
tal and operational expenditures, especially for companies
that depend on large GPU clusters to power their mission-
critical systems. To ensure that GPU devices remain fully
utilized during distributed training, it is essential to mini-
mize downtime caused by non-computational operations.

• Memory Planning plays a crucial role in large model
training. PyTorch makes GPU memory block allocation
efficient and transparent through caching. Frequent mem-
ory defragmentations can significantly slow down training,
which becomes particularly acute when working with large
models. In such scenarios, practitioners typically seek to

saturate GPU memory as much as possible to accommo-
date the largest batches or models. However, operating near
GPU memory capacity significantly increases the chance
to trigger defragmentations.

FSDP tackles the aforementioned challenges through a variety
of techniques. Firstly, to improve user experience, FSDP introduces
deferred initialization that allows users to create a model instance
on a dummy device and record operations invoked during initializa-
tion. Then, the model can be initialized and sharded unit by unit by
replaying the recorded operations on a real GPU device. With this
technique, FSDP can provide similar user experiences as local train-
ing, while effectively scaling large models. Secondly, FSDP offers
configurable sharding strategies that can be customized to match
the physical interconnect topology of the cluster to handle hard-
ware heterogeneity. Thirdly, although parameter sharding design
inevitably inserts communications, which might block computa-
tions and introduces bubbles during execution, FSDP can squeeze
out bubbles using an abundant set of tools to aggressively overlap
communication with computation through operation reordering
and parameter prefetching. Lastly, FSDP optimizes memory usage
by prudently restricting the amount of blocks allocated for inflight
unsharded parameters and suspending CPU execution if necessary.

We evaluated the performance of FSDP on various models includ-
ing popular language models and recommendation system models,
utilizing up to 512 80GB A100 GPUs. The experiments showed that
FSDP can achieve similar performance to that of DDP on small
models. Beyond that FDSP can facilitate significantly larger models
with near-linear scalability in terms of TFLOPS. FSDP is currently
a beta feature as of PyTorch 2.0 release, and has been battle-tested
by both industrial and research applications.

To simplify presentation, the rest of this paper uses FSDP to
refer to the techniques in general and FullyShardedDataParallel to
denote the Python implementation. The remainder of the paper
is organized as follows. Section 2 introduces background on some
popular distributed training techniques. Section 3 and Section 4
elaborate system design and implementation details. Evaluations
are presented in Section 5. Section 6 surveys related work, and
Section 7 discusses topics related to FSDP but falls outside of FSDP
core. Finally, Section 8 concludes the paper.

2 BACKGROUND
PyTorch [24] has emerged as a fundamental cornerstone for a
plethora of machine learning endeavors. PyTorch stores values
in Tensor objects, which are versatile n-dimensional arrays featur-
ing a rich set of data manipulation operations. Every Tensor object
has an associated storage that is allocated on a specific device.
When Tensors only represent simple transformations such as reshape
and split, they can share the same underlying storage. Each Module

describes a transformation from input to output values, and its
behavior during the forward pass is specified by its forward member
function. Such a module may feature Tensor objects as parameters,
with the Linear module being an example that contains both weight

and bias parameters. During the forward pass, the Linear module
applies these parameters to the input to produce the output by
means of multiplication and addition operations, respectively.

3849



As both the data size and model complexity continue to escalate
at a staggering pace, the need for an industry-grade distributed
training framework becomes increasingly imperative for applica-
tions built on top of PyTorch. This section elucidates the trajectory
of PyTorch’s distributed training capabilities.

2.1 Model Replication
Model replication approaches are designed to tackle high-volume
datasets by scaling out and distributing computations across multi-
ple devices. DistributedDataParallel (DDP) [14] is the first end-to-end
distributed training feature in PyTorch that falls into this category.
DDP’s adoption has been extensive, spanning both the academic
and industrial domains.

DDP maintains a model replica on each device and synchronizes
gradients through collective AllReduce operations in the backward
pass, thereby ensuring model consistency across replicas during
training. To expedite training, DDP overlaps gradient communica-
tion with backward computation, facilitating concurrent workload
executions on diverse resources. However, one conspicuous limi-
tation is that DDP requires all model parameters, gradients, and
optimizer states to fit in the memory of one GPU device. Conse-
quently, DDP is inadequate for supporting large models, which are
critical for cutting-edge machine learning breakthroughs. For exam-
ple, when training models with more than one billion parameters
using a 40GBGPU device, DDPwill likely encounter out-of-memory
errors on each device.

2.2 Model Partitioning
As the size of models grow, they may no longer fit in a single GPU
device. In such cases, a viable solution is to partition the model into
smaller components and distribute them across multiple devices.
Both pipeline parallelism [8] and Tensor RPC [25] are along this
direction. Pipeline parallelism involves breaking a sequence of lay-
ers into stages and feeding inputs to different stages in a pipelined
fashion to optimize resource utilization. On the other hand, Tensor
RPC provides a lower-level toolkit that enables arbitrary computa-
tions to be executed on remote devices. While both techniques are
capable of scaling large models across multiple devices, they either
limit the model to a sequence of stages or require modifications to
the model authoring code to insert remote computations, which
can pose a significant obstacle to users’ adoption. Moreover, many
industrial training infrastructures only support the single-program
multi-data paradigm, which necessitates a simpler entry point to
handle large models.

2.3 Model Sharding
In addition to partitioning, sharding the parameters of a model can
also help reduce its memory footprint and support models with sizes
beyond the memory capacity of a single GPU device. After sharding
models, each rank only holds a shard of the model parameters,
which prevents it from performing the same computations as local
training. To guarantee correctness, the training process needs to
employ one or both of the following techniques:

• Perform computations with parameter shards and commu-
nicate activations accordingly. With this approach, ranks
never need to fully materialize any parameter. However,

layer0layer0

layer1

layer2

layer3

layer4

layer5

Wrap 
& 

Shard

FSDP Unit0

FS
D

P 
U
n
i
t
1

FS
D

P 
U
n
i
t
2

layer1

layer2

layer3

layer4

layer5

layer1

layer2

gather full 
params

free peer 
shards

Forward Backward

Exec

layer1

layer2

free peer 
shards

gather full 
params

synchronize 
gradients

Figure 1: FSDP Algorithm Overview

each communication will appear in the critical path as it is
inserted between two consecutive and dependent compu-
tation operations. As a result, this communication cannot
easily overlap with computations, unless non-dependent
computations or computations from other iterations can be
re-ordered to overlap with communication.

• Perform the same computation as local training by com-
municating parameter on-demand before computations.
Since parameter communications do not have any data de-
pendency on preceding computations, they can overlap
with the preceding computations performed in the same
forward or backward pass. However, this approach requires
that the on-demand communicated parameters could be
fully materialized and could fit in the memory of a single
GPU device.

FSDP falls into the second category of communicating parame-
ters. Based on our observations and experiments, this approach is
sufficient to support the vast majority of large model applications
today and in the near future. It is worth noting that if the require-
ment of fully materializing each parameter unit on GPU becomes a
blocker, we can further combine both techniques to support such
use cases.

3 SYSTEM DESIGN
Fully Sharded Data Parallel (FSDP) is capable of scaling to accom-
modate large models that may not fit in a single GPU device by
sharding the dense parameters. More specifically, FSDP decom-
poses the model instance into smaller units and handles each unit
independently. During forward and backward computation, FSDP
only materializes unsharded parameters and gradients of one unit
at a time, and otherwise, it keeps parameters and gradients sharded.
Throughout the training loop, the optimizer states are kept sharded.
The memory requirements for FSDP are proportional to the size
of the sharded model plus the size of the largest fully-materialized
FSDP unit.

Figure 1 demonstrates the overall workflow using a simple six
layer model. Suppose FSDP decomposes the model into three parts,
namely, [layer0, layer3], [layer1, layer2], and [layer4, layer5]. The
decomposition behavior can be controlled by user-defined func-
tions. FSDP then wraps each of these three parts into one FSDP unit
and shards parameters accordingly. To ensure correctness, FSDP
needs to recover the unsharded parameters before corresponding

3850



computations. Let us consider FSDP unit1 that contains [layer1,

layer2] to explain this process. Before forward computation enters
layer1, FSDP collects the unsharded parameters for layer1 and layer2

by gathering shards from other peer ranks. With the unsharded
parameters, FSDP runs the local computation of those layers and
then frees the peer shards it just collected to reduce memory foot-
print. Therefore, during the entire forward pass, FSDP only needs
to fully materialize one unit at a time, while all other units can
stay sharded. Similarly, during the backward computation, FSDP
unit1 recovers the unsharded parameters for layer1 and layer2 be-
fore backward reaches layer2. When the autograd engine finishes
the backward computation of these two layers, FSDP frees the peer
shards and launches ReduceScatter to reduce and shard gradients.
Hence, after backward computation, each rank only keeps a shard
of both parameters and gradients.

FSDP offers a wide spectrum of optimizations and knobs to
account for diverse model structures and hardware capabilities. The
remainder of this section delves further into the intricacies of model
initialization, sharding strategies, communication optimizations,
and memory management, which are all critical components of
FSDP’s underlying design.

3.1 Model Initialization
Before the advent of FSDP, PyTorch mandated the full materializa-
tion of the entire model instance on one device. Although users can
allocate different sub-modules to different devices, this would re-
quire modifying the model source code, which may not be feasible,
particularly if model authors and application developers belong to
different parties. To facilitate a smooth transition from local to dis-
tributed training, FSDP must effectively aid in the materialization
and initialization of a massive model, which poses two challenges:

• How to create a model instance without materializing any
tensor storage, postponing initialization until a storage on
a concrete device is attached to the tensor.

• How to ensure accurate initialization of model parame-
ters in line with the user’s implementation, even when the
model is too large to fit on a single GPU.

To overcome the first challenge, we have introduced a mecha-
nism called deferred initialization, which involves the allocation of
model parameter tensors on a simulated or "fake" device. During
this process, all initialization operations performed on the tensor
are recorded. Subsequently, when the tensor is moved from the
"fake" device to a GPU device, all recorded operations are auto-
matically replayed. By adopting this technique, users can generate
a model instance from any third-party library without allocating
any GPU memory blocks, while still accurately capturing their
parameter initialization implementations.

As illustrated in Figure 1, once the FSDP has wrapped the model,
it is evenly distributed across all GPUs, with each device holding
only one shard in its memory. Therefore, in order to address the
second challenge, each rank should ideally only materialize and
initialize the shard that it owns. However, this is not always practi-
cal, since we cannot predict what initialization logic the user will
implement in the model init method. The initialization logic may
rely on having a unsharded parameter on the device, which makes
it impossible to shard the initialization. Consequently, FSDP must

All-Gather Base
(Even)

All-Gather
(Even)

All-Gather
(1 Numel
Uneven)

All-Gather
(1e6 Numel

Uneven)

18

19

20

21

22

23

24

T
im

e
p

er
A

ll
-G

at
h

er
(m

s)

(a) Uneven Input Sizes

1073M
536M

268M
134M 67M 33M 16M 8M 4M

Numel per All-Gather

100

150

200

250

300

350

T
ot

al
C

om
m

u
n

ic
at

io
n

T
im

e
(m

s)

(b) Reducing Input Size

Figure 2: Communication Efficiency vs. Input Size

prepare the unsharded parameters before executing Tensor initializa-
tion operations and simultaneously reduce the memory footprint.
Given that sharding initialization is unsafe, FSDP applies the same
approach as how it handles model forward and backward passes,
i.e., initialize one FSDP unit at a time and shard the unit before mov-
ing on to the next one. When combined with deferred initialization,
FSDP traverses the fake device model instance to decompose it into
FSDP units, moves one unit to a GPU device at a time, and replays
the recorded initialization operations for tensors in that FSDP unit.

3.2 Sharding Strategies
The sharding strategy is an important element in FSDP that plays
a significant role in determining the memory footprint and com-
munication overhead. FSDP offers a variety of sharding strategies,
ranging from fully replicated to fully sharded. To generalize these
sharding strategies, we introduce the sharding factor 𝐹 as the num-
ber of ranks over which parameters are sharded. By setting the
sharding factor to 1, FSDP fully replicates the model and simplifies
to vanilla data parallelism that uses AllReduce for gradient reduction.
By setting the sharding factor equal to the number of devices (i.e.,
global world size𝑊 ), FSDP fully shards the model, with each device
only holding 1

𝑊
of the model. Hybrid sharding occurs when the

sharding factor ranges between 1 and𝑊 . The remainder of this
section focuses on full sharding and hybrid sharding since the full
replication strategy is similar to the existing DDP [14].

3.2.1 Full Sharding.

The full sharding strategy leads to the lowest memory footprint
but incurs the most communication overhead, for example, full
sharding has 1.5x communication overhead and volume over DDP
if using bandwidth optimal ring algorithm. Therefore, FSDP must
carefully organize communications to maximize its efficiency under
this strategy.

We conducted two sets of experiments to understand the im-
pact of input size on collective communication efficiency. Results
are shown in Figure 2, which helped identify two ingredients for
efficiencies:

(1) Even Input Size: The Nvidia NCCL [22] library offers effi-
cient collective implementations for all-gather and reduce-
scatter that require even input tensor sizes across ranks.

3851



10 7

8 9 15

...

...

Sharding Group

Full Sharding
(F = 16)

Local Shard

1

8

FlatParameter
1 2 3 4 5 6 7 8 9 10 11

12
13
14

i Rank i

weight
1 2 3

4 5 6 7
8 9 10 11

0

0

0

9

bias

7

12 13 14

Padding

Figure 3: Full Sharding Across 16 GPUs

(2) Larger Input Size: For fixed communication volume, batch-
ing data and issuing fewer collectives improves perfor-
mance by avoiding the collectives’ launch overhead and
increasing network bandwidth utilization.

For (1), NCCL’s AllGather API requires even input tensor size
and writes outputs into one single tensor. PyTorch’s ProcessGroup

wraps the NCCL API and enhances it by supporting uneven input
tensor sizes across ranks and allowing users to provide a list of
output tensors. The flexibility comes with an efficiency trade-off,
as shown in Figure 2 (a). We use All-Gather Base to denote NCCL’s
AllGather behavior, and All-Gather to denote the one that takes a list
of tensors as outputs. The latter incurs additional copies between
the individual output tensors and the consolidated single large
output tensor before and after the communication. Moreover, for
uneven inputs, ProcessGroupmimics AllGather’s behavior using group
Broadcast, which is slower than All-Gather Base. In the experiments,
we created artificial unevenness by moving 1 element and 1𝑒6
elements from rank 1 to rank 0 respectively. The results show that
the All-Gather Base with even input size achieved highest efficiency.

For (2), Figure 2 (b) fixes the total communication to be 230 ≈
1B FP32 elements and varies the size per All-Gather, i.e., smaller
AllGather size means more AllGather invocations. Once the AllGather

size decreases below 33M elements, the total communication time
begins increasing rapidly.

Thus, to deliver highly efficient communications, FSDP orga-
nizes all parameters within one FSDP unit into a large FlatParameter,
where the FlatParameter coalesces the communications of its indi-
vidual parameters and also evenly shards them across ranks. More
specifically, the FlatParameter is a 1D tensor constructed by concate-
nating 𝑝 flattened original parameters and padding on the right
to achieve a size divisible by the sharding factor. To shard the
FlatParameter, FSDP divides it into equal-sized chunks, where the
number of chunks equals the sharding factor, and assigns one chunk
per rank. The FlatParameter’s gradient inherits the same unsharded
and sharded shapes from the FlatParameter, and the FlatParameter

and its gradient own the underlying storage of the original parame-
ters and their gradients, respectively. Figure 3 depicts one example,
where we use one FSDP unit to shard a 4 × 3 nn.Linear layer across
16 GPUs. In this case, every GPU only holds one element from the
FlatParameter with the last rank holding the padded value.

0

10 7

8 9 15

...

...

Sharding Group

Replication Group

Hybrid Sharding (F = 8)

0

0 1

Local Shard

FlatParameter

1

1 7

2 3 4 5 6 7

7

i Rank i

Figure 4: Hybrid Sharding on 16 GPUs: GPUs are configured
into 2 sharding groups and 8 replication groups

This flatten-concat-chunk algorithm permits each original pa-
rameter to have arbitrary shape while minimizing the required
padding (to be at most 𝐹 − 1), reflecting its generality. Moreover,
under this algorithm, the sharded and unsharded FlatParameter and
its gradient have the exact data layout expected by AllGather and
ReduceScatter, respectively. This enables calling the collectives with-
out any additional copies for either the input or output tensors.

More formally, suppose for a model with Ψ number of elements,
FSDP constructs 𝑁 FlatParameters with numels 𝜓1, . . . ,𝜓𝑁 , where∑︁𝑁
𝑖=1𝜓 = Ψ. For sharding factor 𝐹 , the peak parameter memory

contribution is in 𝑂 (∑︁𝑁𝑖=1 𝜓𝑖𝐹 + max𝑁
𝑖=1𝜓𝑖 ) because FSDP always

keeps each local sharded FlatParameterwith size 𝜓𝑖
𝐹

in GPU memory
and must materialize each unsharded FlatParameter with size𝜓𝑖 one
by one during forward and backward. Since the first

∑︁𝑁
𝑖=1𝜓𝑖 = Ψ

is fixed, the peak parameter memory contribution is determined by
max𝑁

𝑖=1𝜓𝑖 . At the same time, the number of collectives per iteration
is in 𝑂 (𝑁 ). This evidences FSDP’s memory-throughput trade-off:
Finer-grained FlatParameter construction decreases peak memory
but may decrease throughput by requiring more collectives. Users
can control this trade-off by specifying how to wrap sub-modules
into FSDP units.

3.2.2 Hybrid Sharding.

We refer to the strategy when the sharding factor is greater than
1 but less than𝑊 as hybrid sharding, as it combines both sharding
and replication. For global world size𝑊 and sharding factor 𝐹 ,
the parameters are sharded within each group 𝑆1, . . . , 𝑆𝑊 /𝐹 and
are replicated within each complementary group 𝑅1, . . . , 𝑅𝐹 , where
each 𝑆𝑖 , 𝑅 𝑗 ⊆ {1, . . . ,𝑊 } gives the ranks in the sharded or replicated
group, respectively.

For gradient reduction, the single reduce-scatter over all ranks
becomes a reduce-scatter within each of the sharded groups fol-
lowed by an all-reduce within each of the replicated groups to
reduce the sharded gradients. The equivalence follows from the
decomposition

𝑊∑︂
𝑟=1

𝑔𝑟 =

𝑊 /𝐹∑︂
𝑖=1

∑︂
𝑟 ∈𝑆𝑖

𝑔𝑟 , (1)

where 𝑔𝑟 represents the gradient on rank 𝑟 .

3852



Hybrid sharding can take advantage of datacenter locality for
accelerated training and can reduce cross host traffic to avoid as
much contention in the oversubscribed environment as possible. At
the same time, it provides a graduating trade-off between memory
saving and throughput degradation, which is particularly helpful
for models whose required memory footprint when trained with
full replication is just slightly above the device capacity and do not
want full sharding. Figure 4 shows one example.

Specifically, datacenters typically adopt a fat-tree network topol-
ogy [16] with over-subscription, leading to abundant locality to
exploit and a well-motivated reason to reduce cross-host traffic [17].
Hybrid sharding can provide a natural mechanism to map the de-
vice mesh into the datacenter layout to exploit such locality. For
example, consider a cluster as a group of𝑊 accelerators grouped
into hosts of of 𝐺 accelerators each (where the communication
among accelerators on the same host is much faster than the com-
munication across hosts), we can set 𝐹 = 𝑊

𝐺
to limit the AllGather

(and ReduceScatter) operations within the same host, while creating
a replication group for accelerators with the same local rank across
hosts. For an𝑀-sized model, we can then compute the total cross-
host traffic per GPU in the hybrid setup to be 2𝑀𝑊 −1

𝐺𝑊
, a drastic

reduction compared to full replication’s 2𝑀𝑊 −1
𝑊

and full sharding’s
3𝑀𝑊 −1

𝑊
. Additionally, since the AllReduce collectives used in hybrid

sharding operates at a smaller world size, they empirically achieve
a better performance than invoking collectives at the global scale
(in the case of full replication and full sharding), due to straggler
effects and larger network interference.

Another important design motivation for hybrid sharding is the
needs from medium-sized models. These models are large enough
to cause out of memory issues when trained with full replication
but are not large enough to fully utilize accelerator memory when
used with full sharding, leading to both runtime overhead and
memory waste. The hybrid sharding strategy creates a much richer
memory-throughput trade-off space by simply adjusting 𝐹 .

3.2.3 Autograd.

FSDP’s FlatParametermust inter-operate with PyTorch’s autograd
engine to ensure (1) correct gradient propagation and (2) timely gra-
dient reduction. For (1), recall that the FlatParameter and its gradient
own the underlying storage of the original parameters and their gra-
dients, respectively. To achieve this, before forward computation,
FSDP sets the original parameters to be views into their unsharded
FlatParameter using autograd-visible torch.split() and torch.view()

calls. Then, the autograd engine naturally allocates the unsharded
FlatParameter gradient and writes each original parameter’s gradi-
ent to the appropriate offset as defined by torch.split()’s backward
function. For (2), FSDP registers a gradient hook that only runs once
the FlatParameter’s gradient is finalized. The hook represents the
post-backward logic and includes the gradient reduction. Notably,
FSDP’s approach builds on top of PyTorch’s autograd engine in-
stead of hacking around it. As a result, FSDP automatically handles
unconventional cases such as when not all parameters are used in
the forward or when there are multiple forwards before a backward.

FSDP Unit i
0

AG0

FWD1

1 1 2 2

FWD2

CPU

GPU Comp.
Stream

GPU Comm.
Stream

2

BWD2

Forward Backward

RS2AG2

1 2FWD0 FWD0

AG2AG1

0 0 2 2

2 BWD1

AG1

1 0

0 01

RS1 RS0

1 01 Parameter Free

All-Gather (AG)
Reduce-Scatter (RS)
Forward Comp. (FWD)
Backward Comp. (BWD)

i

BWD0 BWD0

Figure 5: Overlap Communication and Computation

3.3 Communication Optimizations
The FSDP framework incorporates a range of native communi-
cation optimization techniques. This section unveils four major
ones: overlapping, backward pre-fetching, forward pre-fetching,
and accumulation.

3.3.1 Overlapping Communication and Computation.

The PyTorch c10d library has a ProcessGroup abstraction that repre-
sents a group of processes that can run collectives together. For the
NCCL backend, the ProcessGroupNCCL implementation has an internal
NCCL stream per device, where the separate internal stream is for
asynchronous execution with the current stream, which is typi-
cally the default stream running computation. Those asynchronous
collectives return Work objects, where calling Work.wait() blocks the
CPU thread until the collective finishes. For general correctness,
ProcessGroupNCCL synchronizes the internal stream with the current
stream before running the collective. DistributedDataParallel lever-
ages the async-collective-and-wait() approach to overlap the gradi-
ent All-Reduces with backward computation. However, in contrast
to DDP’s backward where the AllReduce proceeds the computation
with which to overlap, FSDP’s forward issues the AllGather following
the computation with which to overlap since in eager execution,
FSDP cannot know which FlatParameter to AllGather next to reorder
it before the computation. This difference in kernel-issue order
makes following the async-collective-and-wait() approach infea-
sible for FSDP. Namely, since ProcessGroupNCCL synchronizes with
the current (default) stream, the All-Gather will not run until the
computation with which to overlap finishes. To address this, FSDP
uses a separate CUDA stream to issue the AllGathers, bypassing the
false dependency on preceding computation in the default stream
and allowing each AllGather to overlap. As a result, FSDP’s collective
synchronization operates on streams, not simply Work objects. Fig-
ure 5 illustrates one example. Note that the backward pass excludes
the AG0 All-Gather because FSDP intentionally keeps the outermost
FSDP unit’s parameters in memory to avoid redundantly freeing at
the end of forward and then re-All-Gathering to begin backward.

3.3.2 Backward Prefetching.

FSDP enforces a single CUDA device per rank and uses a single
process group for both AllGather and ReduceScatter, which means
that its collectives run sequentially in the process group’s internal
NCCL stream. In the backward pass, FSDP issues the ReduceScatter

for the current FlatParameter and then the AllGather for the next
FlatParameter. Hence, the single NCCL stream forces the ReduceScatter

3853



to block the next AllGather, which in turn blocks the next gradient
computation and may become exposed on the critical path.

To avoid two consecutive exposed communication calls in the
backward pass, FSDP backward prefetching issues the next AllGather
before the current ReduceScatter. However, as mentioned before, a
challenge for eager execution is knowing which FlatParameter to
AllGather next. FSDP resolved this challenge by recording the reverse
forward execution order of modules as the proxy of their backward
execution order. Moreover, the forward order is freshly recorded
each iteration, meaning that the backward prefetching is compatible
with dynamism across iterations.

3.3.3 Forward Prefetching.

For some workloads with relatively slow CPU execution, the
CPU threadmay not be able to issue the next forward AllGather early
enough to efficiently fill the NCCL stream. If the model follows a
static computational graph across iterations, then FSDP can assume
the forward execution order of modules from the previous itera-
tion and prefetch the next AllGather explicitly in the forward pass.
This forward prefetching issues the next AllGather before forward
computation of current FSDP unit.

3.3.4 Gradient Accumulation.

FSDP offers two variations of gradient accumulation: with and
without communication. With communication, FSDP still reduces
gradients across ranks, and each rank saves the sharded gradi-
ents. Simply running multiple iterations without clearing gradients
achieves this. Without communication, FSDP does not reduce gradi-
ents across ranks, and each rank saves the unsharded gradients. This
latter variation trades off increased memory usage with decreased
communication, which can increase end-to-end throughput.

3.4 Memory Management
PyTorch uses a CUDA caching allocator as a middle layer to serve
GPU allocation and free requests for PyTorch programs. In order to
effectively manage memory, FSDP uses a rate limiter to take into
account the memory impact of the caching allocator on programs
that use several CUDA streams and run fast CPU threads.

3.4.1 How Does PyTorch Caching Allocator Affect Memory.

The caching allocator avoids frequent calls to cudaMalloc and
cudaFree, where the latter incurs a costly device synchronization.
Specifically, the caching allocator requests CUDA memory blocks
and internally determines how to split and reuse the blocks without
returning them to CUDA with the goal being to reach a steady state
without further calls to cudaMalloc and cudaFree.

The caching allocator runs from the CPU thread, meaning that it
must decide which caching allocator block to use for an allocation
when the CPU thread processes the allocation request. It cannot
wait until the GPU kernel needing the allocation actually runs,
which may be much later.

For a single stream, the caching allocator can directly reuse mem-
ory blocks by the stream’s sequential ordering semantics. However,
for separate producer and consumer streams, there are no inter-
stream ordering guarantees, and the caching allocator cannot be

certain that a block is safe to reuse until the last GPU kernel depend-
ing on that memory finishes running. Hence, if the CPU thread
runs far ahead of the GPU execution, then the caching allocator
cannot reuse blocks for the producer stream with pending GPU
kernels from the consumer stream.

Furthermore, caching allocator blocks are allocated per stream
and cannot be reused for a different stream, this over-allocates
blocks to the producer stream that could otherwise be used for
the consumer stream (e.g. for activations). The GPU itself may
have enough memory to serve a new allocation in the consumer
stream, but the overallocation to the producer stream may lead
to the caching allocator failing to serve it. This forces a blocking
sequence of cudaFrees to reset the caching allocator memory state
called a cudaMalloc retry that greatly degrades training throughput.

3.4.2 Rate Limiter.

FSDP allocates the AllGather destination tensor representing the
unsharded FlatParameter in a producer stream, and the forward and
backward computations using the AllGathered parameters run in
a consumer stream (typically the default stream). For a fast CPU
thread, there may be pending GPU computation kernels when the
caching allocator must serve the next AllGather, leading to no block
reuse. Even after the blocks are not active in the AllGather producer
stream, these reserved blocks can not serve default computation
stream’s allocation requests, and thus may force blocking cudaFrees
and cudaMallocs.

FSDP offers a rate limiter that intentionally blocks the CPU
thread to ensure proper caching allocator block reuse. It allows at
most two inflight AllGathers, which is the minimum amount to still
achieve communication and computation overlap.

4 IMPLEMENTATION
This section delves into the intricacies of FSDP implementation,
which although do not alter the FSDP core algorithm, are crucial to
understand before adopting FSDP.

Users can access FSDP through twoAPIs, FullyShardedDataParallel
model wrapper and fully_shardmodule annotator. The formerwraps
the entire model and replaces sub-modules with corresponding
FSDP units. In contrast, the latter installs FSDP logic as nn.Module

forward and backward hooks, preserving both model structures
and parameter fully-qualified names.

4.1 Initialization
Section 3.2.1 described FSDP’s solution to efficiently initialize large
models, which works well when sub-module initializations are self-
contained. In a rare situation where one sub-module’s initialization
depends on a parameter from the different sub-module, the on-
demand materialization and record-replay approach might break
if the parameter belongs to a different FSDP unit, because the un-
sharded version of that parameter could have been discarded to
reduce memory footprint. Therefore, besides the advanced deferred
initialization, FSDP offers two more options:

• Initialize unsharded model on GPU. The memory re-
quirement for model initialization may be smaller than that
for training since training also involves gradients, activa-
tions, and optimizer states. Consequently, if the training

3854



step cannot be performed on a single GPU device, users
might still be able to initialize the entire model on a GPU
and pass it to FSDP. Then, optimizers should be instanti-
ated after FSDP shards the model, to reduce the memory
footprint and align with the sharded gradients produced by
FSDP.

• Initialize unsharded model on CPU. If the size of the
unsharded model surpasses the capacity of GPU memory
and can only be accommodated in CPUmemory, it becomes
impracticable to move the unsharded model entirely to the
GPU before handing it over to FSDP for parameter shard-
ing. To overcome this challenge, FSDP adopts a streaming
approach, where the model is migrated to the GPU unit by
unit. Upon arrival to the GPU, the parameters of each unit
are immediately sharded, which in turn reduces the mem-
ory overhead before processing the next unit. This approach
remains viable even when there are cross-submodule depen-
dencies during initialization, given that all parameters of
the entire unsharded model are present in the CPUmemory.

Note that both approaches above are subject to their own limi-
tations. The first method entails the entire model fitting within a
single GPU device and thus becomes infeasible for larger models.
The second method, on the other hand, can handle larger models
since the CPU has considerably larger memory. However, this ap-
proach may experience substantial slowdowns in comparison to
deferred initialization due to the limited memory bandwidth and
parallelization capabilities of the CPU. In light of these observations,
users may still prefer deferred initialization, even when dealing
with models of the size range encompassed by the previous two
methods.

To delimit the scope of each FSDP unit, users may choose to em-
ploy the FullyShardedDataParallel wrapper by intrusively applying
it to sub-modules in model source code, or alternatively, provide a
custom function to the auto_wrap_policy argument upon instantia-
tion. Selecting the optimal wrapping approach typically requires
some experiments and measurements.

4.2 Flat Parameters
The FlatParameter class inherits from nn.Parameter and behaves like
an nn.Parameter. FSDP implements an accompanying FlatParamHandle

class that is responsible for managing individual FlatParameter in-
stances. The frontend, either FullyShardedDataParallel or fully_shard,
interfaces with the FlatParameters only through FlatParamHandle.

One FlatParameter accommodates storage for all parameter ten-
sors within one FSDP unit. The boundary of the FSDP unit controls
the timing for AllGather and ReduceScatter, which has a direct im-
pact on overall FSDP performance. In the ideal case, FSDP unit
boundaries should align with model execution order.

FSDP has access to the model’s static nn.Module structure at con-
struction time. Fortunately, although this structure does not guaran-
tee to faithfully representmodel execution order, model authors con-
ventionally translate layers and broader blocks to nested nn.Module

definitions that may naturally have the desired parameter locality.
FSDP can leverage that structure to choose the FlatParameter con-
struction. Indeed, FSDP supports annotating nn.Modules and follows
a simple rule: All parameters in the annotated nn.Module are assigned

to one FlatParameter, excluding those parameters already assigned.
This rule lends itself naturally to nested annotation, where blocks
are annotated, forming well-sized FlatParameters, and any residual
parameters are assigned to their parent.

Another approach we explored is using the execution order
and reconstructing FlatParameters dynamically. This approach starts
with an initial small FlatParameter construction, runs a possibly in-
efficient first iteration while observing the execution order, and
reconstructs the FlatParameters by coalescing the existing small
FlatParameters according to the observed order.

4.3 Runtime
FSDP augments a local model instance by incorporating commu-
nication operations to reduce gradients and gather parameters.
Timely initiation of these operations is of paramount importance
for ensuring both correctness and efficiency. Starting communi-
cation too soon would cause the parameters or gradients with
pending updates to be consumed, while initiating communication
too late would result in wasting network bandwidth and delay in
subsequent computations.

To insert communication-related code to the model forward pass,
the FullyShardedDataParallel nn.Module wrapper overrides nn.Module’s
forward() method to install pre-forward and post-forward logic,
whereas the functional fully_shard implements them by registering
nn.Module hooks throughmethods such as register_forward_pre_hook()
and register_forward_hook(). It is more challenging to capture appro-
priate signals from the backward pass, as PyTorch automatically
and transparently handles the backward pass. Fortunately, the auto-
grad engine exposes a variety of hooks that enable the installation
of custom logic with precise granularity.

• Hooks on Tensor through register_hook() allows to run cus-
tom function when the gradient of a Tensor is generated.
This can help anchor FSDP logic to an activation’s gradient
computation in the backward pass. FSDP registers this type
of hook to the forward output tensor of every FSDP unit
to insert communications before backward pass enters that
FSDP unit.

• Hooks on backward() through queue_callback() run right be-
fore exiting the current autograd GraphTask, which is usually
the end of overall backward pass. FSDP relies on this hook
to wait for pending communications so that the subsequent
optimizer step will not consume gradients too early.

• Hooks on AccumulateGrad autograd function fires when the
gradient of a parameter has finished accumulation in the
current backward pass. FSDP attaches this type of hook to
each FlatParameter’s AccumulateGrad function to immediately
launch ReduceScatter when gradients are ready. Note that
the Tensor hook mentioned above can potentially achieve
the same behavior, but might incur unnecessary delay as it
needs to wait for gradient computations for input activa-
tions as well.

The aforementioned methodologies collectively integrate the
FSDP algorithm with the PyTorch nn.Module and autograd engine in
a non-intrusive and efficient manner.

3855



4.4 Native Mixed Precision
FSDP offers a versatile native mixed precision mechanism. In terms
of parameter management, it adheres to the standard mixed preci-
sion technique, which maintains both low and full precision copies
of parameters [18]. Forward and backward computation use the low
precision, and the optimizer step uses full precision. FSDP permits
user-specified precisions for parameters, gradient reduction, and
non-trainable buffers, each independently if desired.

For Ψ number of parameter elements (torch.numel), 𝐾low bytes
per low precision element, and𝐾full bytes per full precision element,
this approach to mixed precision normally increases the memory
overhead from 𝐾fullΨ to (𝐾low + 𝐾full)Ψ due to maintaining both
precision copies. However, FSDP can sidestep the problem given
our design to always keep each local sharded FlatParameter in GPU
memory and only dynamically allocate the unsharded FlatParameter.
For 𝑁 FlatParameters with numels given by𝜓1, . . . ,𝜓𝑁 , the param-
eter peak memory contribution for FSDP actually decreases from
𝐾full
𝐹

∑︁𝑁
𝑖=1𝜓𝑖 +𝐾fullmax𝑁

𝑖=1𝜓𝑖 to
𝐾full
𝐹

∑︁𝑁
𝑖=1𝜓𝑖 +𝐾lowmax𝑁

𝑖=1𝜓𝑖 bytes.
In other words, FSDP directly reduces the second 𝐾fullmax𝑁

𝑖=1𝜓𝑖
term to 𝐾lowmax𝑁

𝑖=1𝜓𝑖 .
In contrast to torch.amp.autocast that performs just-in-time casts

at the operator level, FSDP’s native mixed precision only incurs a
full-to-low-precision cast per FlatParameter in its pre-forward and,
if resharding after forward, its pre-backward. Moreover, FSDP’s
mixed precision permits running all collectives in the low precision,
which saves communication volume.

Users most commonly choose FP16 or BF16 as the low precision
and FP32 as the full precision. FP16’s smaller dynamic range com-
pared that of FP32 exposes FP16 to greater risk of numeric underflow
and overflow. The standard solution includes a gradient scaler [1]
that scales gradients to a safe magnitude. However, since FSDP
shards gradients across ranks, a normal local gradient scaler im-
plementation breaks mathematical equivalence, and instead, FSDP
provides its own sharded gradient scaler.

5 EVALUATION
We conducted an empirical evaluation of FSDP on large language
models and recommendation system models and compared the re-
sults with those of DDP. Experiment specifications are described in
Section 5.1. Then, we organize experiments into three categories.
Section 5.2 focuses on how well FSDP handles different sizes of
models. Then, Section 5.3 discusses the impact of throttling commu-
nications. Finally, Section 5.4 demonstrate FSDP’s ability to scale
to gigantic models.

5.1 Experiment Setup
In these experiments, we conducted evaluations on the Hugging-
Face T5-11B transformer [26], minGPT-175B transformer [3], and
DHEN recommendation model [33]. The recommendation models
consist of 768B sparse parameters and 550M dense parameters, the
sparse parameter tensors were sharded using the first approach
mentioned in Section 2.3, which communicates activations instead
of parameters, while the dense parameters were trained using FSDP
on 8 to 512 A100 80GB GPUs interconnected by a 2Tb/s RoCE net-
work. The objective was to assess the capability and scalability of
FSDP in training large-scale models. Additionally, we employed

T5-611M, T5-2B and T5-11B transformers to evaluate the perfor-
mance of various sharding strategies, communication efficiency
of prefetching, and communication throttling using rate limiter.
Metrics employed in these experiments included TFLOPS per GPU,
latency per batch, peak memory allocated, peak memory active,
and peak memory reserved.

5.2 Model Scale
In this section, we investigate the performance of FSDP when deal-
ing with models of different sizes, spanning from 611M to 175B,
and make a comparison with DDP [14].

The experimental results on T5 models are displayed in Fig-
ure 6 (a). The performance of FSDP and DDP is similar when evalu-
ating 611M and 2.28B models. However, DDP encounters an out-of-
memory error when attempting to wrap models larger than 2.28B.
In contrast, FSDP can effortlessly accommodate the 11B model and
achieve significantly higher TFLOPS by turning on BF16. These ex-
periments illustrate that practitioners can utilize FSDP for both
small and large models, and seamlessly transition across different
model configurations.

Then, we conduct additional experiments to measure the accel-
eration attained through backward pre-fetching. This time we use
a larger GPT-175B model, where communication overhead is more
prominent. Results are presented in Figure 6 (b), where pre-fetching
leads to approximately 18% speedup, and this TFLOPS gain per-
sists across different GPU cluster sizes. Therefore, for subsequent
experiments, we always turn-on backward pre-fetching.

5.3 Throttle Communications
In the subsequent analysis, we investigate the implications of throt-
tling FSDP communications. As expounded in Section 3.4, launching
AllGather too aggressively can lead to unnecessarily high memory
footprint, as the CPU thread needs to allocate CUDAmemory blocks
when the communication kernel is added into the CUDA stream.
This predicament may sometimes result in significant performance
problems when the CPU thread runs too fast in comparison to
CUDA streams. To gauge its efficacy in varying scenarios, we apply
rate limiting to three different types of models and applied the
maximum feasible batch size in each experiment.

• RegNet [29]: model size 9B, and batch size 48 for 2 nodes
and 72 for 4 nodes.

• T5 [26]: model size 11B, and batch size 2.
• DeepViT [36]: model size 8B, and batch size 105 for 2 nodes

and 120 for 4 nodes.
Experiment results are plotted in Figure 6 (c). One notable ob-

servation is that the rate limiter’s effectiveness is not consistent,
as it does not attain any speedups in the RegNet experiments,
and even impedes the DeepViT ones. This behavior is expected
since throttling the communications can only boost training if the
fast CPU thread aggressively allocates GPU memory blocks and
causes defragmentations. If it is difficult to identify with certainty
from latency measurements or profiled traces, CUDA malloc retry
can serve as a helpful indicator, which can be obtained from the
num_alloc_retries key in the torch.cuda.memory_stats() dictionary.

The experiments conducted with T5 models have demonstrated
that the rate limiter technique can greatly benefit training efficiency,

3856



611M 2.28B 11.3B

Model Size (Numel)

0

20

40

60

80

100

120

140

T
F

L
O

P
S

/G
P

U

15.18 27.40

148.48

15.28 27.70

145.81

14.61 25.76

14.65 26.04

Full Sharding

Hybrid Sharding

Full Replication

DDP

(a) Model Scale

128 256 512

Number of GPUs

140

145

150

155

160

165

170

175

T
F

L
O

P
S

/G
P

U

Backward Prefetching

No Prefetching

(b) GPT-175B Backward Prefetch

RegNet
(2 Ms)

RegNet
(4 Ms)

T5
(2 Ms)

T5
(4 Ms)

DeepViT
(2 Ms)

DeepViT
(4 Ms)

0

5

10

15

20

M
ed

ia
n

L
at

en
cy

p
er

B
at

ch
(s

)

14.81

21.70

8.36

5.02

18.78

22.79

14.80

21.81

18.61

15.33
18.00

21.64
Limit

No Limit

(c) Rate Limiter (Ms = Machines)

Figure 6: Model Scale and Training Efficiency

yielding up to 5X speedups. However, for DeepViT models, intro-
ducing communication throttling can result in an additional 5%
overhead. This is due to the fact that delaying the AllGather com-
munication can potentially block subsequent model computations
that rely on the AllGathered parameters, especially in cases where
communication is the dominant factor. Therefore, before enabling
rate limiting, practioners should verify whether defragmentation
has taken place during training.

5.4 Efficient Training for Large Models
To evaluate capability of using FSDP for large models, we ran three
types of models using Full Sharding with prefetching and rate lim-
iter turned on. Activation checkpointing and BF16 mixed precision
are also applied in these experiments. Adam optimizer is used to
reflect a production workload setup and to incur the costly two
optimizer states per parameter.

• DHEN large recommendation model [33]: model size -
768B sparse parameters and 550M dense parameters, and
batch size 1024.

• minGPT transformer [10]: model size 175B, vocab size
50000, block size 2048, batch size 1 and 2 for 128, 192, 256,
384 and 512 GPUs.

• HuggingFace T5 transformer [26]: model size 11B, se-
quence length 512, batch size 8 and 16 for 8, 16, 32, 64, 128,
256, 512 GPUs.

In the DHEN experiments, we further combine sharding strate-
gies with two different configurations:

• RAF: reshard-after-forward frees AllGathered shards from
other GPUs after forward pass and unshards them again
before backward computation. This reduces peak memory
consumption at the cost of higher communication overhead.

• NRAF: no-reshard-after-forward is the opposite where the
unsharded model parameters stay in GPU memory after
forward pass until backward computations finish, which
trades higher memory footprint for lower communication
overhead.

The experimental results in Figure 7 (a) and Figure 8 (a) indicate
that FSDP is capable of accommodating DHEN models on a large
GPU cluster. It was observed that Full Sharding with RAF yields the

smallest memory footprint but with a corresponding trade-off of re-
duced QPS. Conversely, Hybrid Sharding with NRAF demonstrated
the opposite behavior, as it has employs both a smaller sharding
group and skips one reshard. When adding more GPUs to in the
cluster, the peak memory usage consistently decreases as a result
of a decrease in the size of each rank’s model shard.

With the 175B model, the experiments achieved more than 173
and 186 TFLOPS per GPU with batch size equal to 1 and 2 respec-
tively as shown in Figure 7 (b). This is equivalent to approximately
55% and 60% of GPU hardware utilization, given that the A100’s
peak is 312 TFLOPS using the BF16 tensor core. Furthermore, the
model demonstrated linear scalability from 128 GPUs to 512 GPUs,
in terms of TFLOPS, which affirms the efficacy of FSDP in handling
large models with expensive computations or high-speed network
interconnections. Notably, with 128 GPUs, setting the batch size to
2 resulted in a considerably lower per-GPU TFLOPs in comparison
to other scenarios. This was due to CUDAmemory defragmentation
during the backward pass. The backward pass contributed 85.56%
of the iteration latency for the 128 GPU batch size equals 2 case,
while a normal backward pass only accounted for about 67% in
these experiments. Using 128 GPUs is more likely to trigger de-
fragmentation, as each GPU needs to accommodate a larger model
shard. Figure 8 confirms this explanation, where the PyTorch CUDA
caching allocator depletes all 80GB of the CUDA memory as shown
on the top left corner.

Finally, for T5-11B models as shown in Figure 8 (c), all exper-
iments are executed comfortably below GPU memory capacity,
where defragmentations are unlikely to happen. Nevertheless, as
the number of GPUs increases from 8 to 512, a 7% regression in
per-GPU TFLOPS is still evident as illustrated in Figure 7 (c). This
suggests that communications begin to outweigh computations on
large clusters, and a near-perfect overlap between communication
and computation is no longer attainable.

6 RELATEDWORK
The DDP [14] model wrapper, which is based on the model replica-
tion design, was an initial distributed training feature introduced
in PyTorch [24]. Although it can handle large datasets, it cannot ac-
commodate the ever-increasing model sizes that are now prevalent
in the field.

3857



32 64 128 256 512

Number of 80 GB A100s

2800

3000

3200

3400

3600

3800

4000

4200

4400

P
90

Q
P

S

Full Sharding (RAF)

Full Sharding (NRAF)

Hybrid Sharding (RAF)

Hybrid Sharding (NRAF)

(a) DHEN QPS

128 192 256 320 384 448 512

Number of 80 GB A100s

100

120

140

160

180

T
F

L
O

P
S

/
G

P
U

B = 1

B = 2

(b) GPT-175B TFLOPS

8 16 32 64 128 256 512

Number of 80 GB A100s

142

144

146

148

150

152

154

T
F

L
O

P
S

/
G

P
U

B = 8

B = 16

(c) T5-11B TFLOPS

Figure 7: Training Throughput: To conform with DHEN convention, we use sample/ GPU/second (QPS) for DHEN.

32 64 128 256 512

Number of 80 GB A100s

30

40

50

60

70

P
ea

k
M

em
or

y
(G

B
)

Full Sharding (RAF)

Full Sharding (NRAF)

Hybrid Sharding (RAF)

Hybrid Sharding (NRAF)

(a) DHEN

150 200 250 300 350 400 450 500

Number of 80 GB A100s

0

10

20

30

40

50

60

70

80

P
ea

k
M

em
or

y
(G

B
)

Alloc (B = 1)

Active (B = 1)

Reserved (B = 1)

Alloc (B = 2)

Active (B = 2)

Reserved (B = 2)

(b) GPT-175B

8 16 32 64 128 256 512

Number of 80 GB A100s

0

10

20

30

40

50

60

P
ea

k
M

em
or

y
(G

B
)

Alloc (B = 8)

Active (B = 8)

Reserved (B = 8)

Alloc (B = 16)

Active (B = 16)

Reserved (B = 16)

(c) T5-11B

Figure 8: Memory Footprint

ZeRO [27, 28] and cross-replica sharding [30] inspired the FSDP
design, but FSDP is intrinsically different. Prior work employs
model partitioning or per-parameter sharding to distribute param-
eter tensors, and rely on Broadcast and Gather collective communi-
cation primitives to synchronize values. Although this design can
achieve the same functionality, it could lead to uneven workload
distribution across GPU devices, which hampers the efficiency of
synchronized distributed training. Additionally, since this approach
modifies the internals of the machine learning framework, such as
tensor storage and memory management, it might no longer work
when the internal implementation is updated or new features are
introduced. Therefore, a native solution that is co-designed with the
core components of the framework would provide a more robust
and consistent user experience.

MiCS [34] and FSDP differ in gradient communication strategies.
MiCS uses a global AllReduce followed by sharding within each par-
tition group, whereas FSDP employs AllGather and ReduceScatter. As
a result, each rank in MiCS must hold the entire model gradients,
leading to higher memory usage than FSDP’s approach of sharding
a single layer. While both MiCS and FSDP use a hybrid commu-
nication strategy to improve efficiency at scale, FSDP’s approach
schedules AllGather within a flexibly-sized sharded group, poten-
tially resulting in lower runtime latency than the two-hop AllGather

utilized by MiCS. This reduced latency is crucial as the AllGather

operation is critical to execution, and limiting the world size and

participants of AllGather to accelerators within a group with good
locality can result in lower latency and higher throughput.

Pipeline parallelism [5, 8] involves partitioning model parame-
ters and their activations across multiple devices through the divi-
sion of models into pipeline stages. However, pipeline parallelism
requires model changes and meticulous tuning for microbatch sizes,
number of stages and partitions, as well as intricate scheduling
procedures to optimize performance by squeezing out bubbles.

Additionally, specific attention is given to high profile architec-
tures such as transformers. For example, sequence parallelism [13]
reduces activation memory in conjunction with tensor parallelism;
Pipetransformer [6] designed a dynamic 2D parallelism that allows
changing the dimensions of pipeline and data parallelism on the fly,
depending on learning signals. These methods are highly effective
but can be difficult to generalize as they either rely on the specific
implementation or the model’s layered structure.

Many existing solutions combine data parallelism with other par-
allelisms to achieve speedup. For example, Megatron [21] demon-
strated highly efficient deep transformer training on large clusters
using 3D (data, tensor and pipeline) parallelism. Further, compiler-
based techniques such as Alpa [35], GSPMD [31], and FlexFlow [9]
leverage profiling, performance modeling, user annotations and
search to find the best configuration across the parallelism space of

3858



data, tensor and pipeline for a given cluster. In all cases, FSDP pro-
vides the benefit of being a drop-in replacement for data parallelism
that reduces data redundancy along the data parallel axis.

Orthogonal memory-saving techniques include gradient com-
pression [2], mixed-precision training [7], tensor rematerializa-
tion [12] and CPU-offloading [4], but they could have implications
on model accuracy and incur overhead in (un)compression, quanti-
zation, recomputation, and host-to-device copies, respectively.

7 DISCUSSION
This section discusses how FSDP can be combined with other par-
allelism paradigms and known limitations when adopting FSDP.

7.1 FSDP Interoperability
Further increasing scalability and efficiency of distributed training
requires combining FSDP with other paradigms. This section briefly
highlights how the FSDP design enables mixing and matching with
other types of parallelisms.

7.1.1 Pipeline Parallelism.

Pipeline parallel can be functionally integrated with FSDP by
employing FSDP to wrap each individual pipeline stage. However,
as pipeline parallel divides input mini-batches into smaller micro-
batches, the default full sharding strategy in FSDP would have to
unshard model parameters for every micro-batch. Consequently,
combining these approaches with default FSDP configurations may
lead to significant communication overhead. Fortunately, FSDP
offers alternative sharding strategies that can keep parameters
unsharded after the forward pass, avoiding unnecessary AllGather

communications per micro-batch. Admittedly, this requires stor-
ing parameters of an entire pipeline stage on the GPU device, but
FSDP can still reduce memory usage as it still shards gradients and
optimizer states.

7.1.2 Tensor Parallelism.

In contrast to FSDP, tensor parallel keeps parameters sharded
during computation, which is necessary if any sub-module is too
large to fit in GPUmemory. Presently, PyTorch provides a prototype
feature called parallelize_module that can be combined with FSDP
to construct 2D parallelism. It works by organizing devices into
a 2D mesh where PyTorch’s distributed tensor DTensor manages
tensor parallelism on one dimension and FSDP applies sharded
data parallelism on the other dimension. These two dimensions
communicate activations and parameters, respectively. We usually
keep the tensor-parallel communications, which block subsequent
computation, intra-node to leverage the higher network bandwidth,
and allow the FSDP communications operate on the other mesh
dimension inter-node.

7.2 Limitations
During our work with production and research applications, we
have encountered certain limitations associatedwith FSDP. This sec-
tion aims to discuss two tricky caveats that are not readily apparent
and pose significant challenges when it comes to troubleshooting.

7.2.1 Mathematical Equivalence.

FSDP cannot ensure that it always achieves the same mathe-
matical equivalence as local training, especially with respect to
the optimizer computation. This stems from the fact that the op-
timizer step operates on the sharded parameters, whose data lay-
out is a function of FSDP’s FlatParameter sharding algorithm that
does not respect individual parameter boundaries. As a result, any
optimizer computation that depends on an original parameter’s
unsharded value (e.g. vector norm), its tensor structure (e.g. approx-
imate second-order optimizers), or require global states over all
parameters will become invalid. Addressing this requires uneven
sharding, padding, or extra communication, all of which hurt perfor-
mance. Co-designing such optimizer computations with sharding
is an open research question.

7.2.2 Shared Parameters.

For shared parameters, FSDPmust ensure to not flatten them into
multiple FlatParameters and to ensure that they are unsharded prop-
erly when needed for all usages. If handled incorrectly, PyTorchmay
raise an error regarding missing tensor storage or size mismatch,
which can happen when an FSDP unit attempts to use a shared pa-
rameter that has already been resharded by a preceding FSDP unit.
The current recommendation is to construct FSDP units such that
the shared parameter belongs to the lowest-common-ancestor unit
to ensure that the shared parameter is unsharded throughout all
usages. This may require some inspection of the model structure to
do correctly and may undesirably keep the FlatParameter unsharded
for a large interval, so we are investigating approaches to improve
shared parameter handling.

8 CONCLUSION
This manuscript elucidates the underlying rationale, design philos-
ophy, and implementation of FullyShardedDataParallel as of PyTorch
2.0 release. FSDP attains usability and efficiency through a set of ad-
vanced techniques, including deferred initialization, flexible shard-
ing strategies, communication overlapping and prefetching, and
rate limiting communication collectives. All of these techniques are
closely co-designed with other key PyTorch components to ensure
the solution is sound and robust. Evaluations show that FSDP can
facilitate large language and recommendation models with near
linear scalability.

ACKNOWLEDGMENTS
We are grateful to the PyTorch community and PyTorch FSDP users
for their feedback and contributions.

REFERENCES
[1] 2023. torch.amp Gradient Scaling. https://pytorch.org/docs/2.0/amp.html#

gradient-scaling.
[2] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong, Feng Yan, Ruichuan Chen,

and Yinlong Xu. 2021. Gradient compression supercharged high-performance
data parallel dnn training. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles. 359–375.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

3859

https://pytorch.org/docs/2.0/amp.html##gradient-scaling
https://pytorch.org/docs/2.0/amp.html##gradient-scaling


[4] Jiarui Fang, Zilin Zhu, Shenggui Li, Hui Su, Yang Yu, Jie Zhou, and Yang You. 2022.
Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory
Management. IEEE Transactions on Parallel and Distributed Systems 34, 1 (2022),
304–315.

[5] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil
Devanur, Greg Ganger, and Phil Gibbons. 2018. Pipedream: Fast and efficient
pipeline parallel dnn training. arXiv preprint arXiv:1806.03377 (2018).

[6] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. 2021.
Pipetransformer: Automated elastic pipelining for distributed training of trans-
formers. arXiv preprint arXiv:2102.03161 (2021).

[7] Xin He, Jianhua Sun, Hao Chen, and Dong Li. 2022. Campo: Cost-Aware Per-
formance Optimization for Mixed-Precision Neural Network Training. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 505–518. https://www.usenix.org/conference/atc22/presentation/
he

[8] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks using pipeline parallelism.
Advances in neural information processing systems 32 (2019).

[9] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond Data and Model
Parallelism for Deep Neural Networks. https://doi.org/10.48550/ARXIV.1807.
05358

[10] Andrej Karpathy. 2020. MinGPT Transformer model. https://github.com/
karpathy/minGPT.

[11] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon
Yoon, Ildoo Kim, Sungbin Lim, and Sungwoong Kim. 2020. torchgpipe: On-the-fly
pipeline parallelism for training giant models. arXiv preprint arXiv:2004.09910
(2020).

[12] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike
He, Jared Roesch, Tianqi Chen, and Zachary Tatlock. 2020. Dynamic Tensor
Rematerialization. https://doi.org/10.48550/ARXIV.2006.09616

[13] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael An-
dersch, Mohammad Shoeybi, and Bryan Catanzaro. 2022. Reducing activation
recomputation in large transformer models. arXiv preprint arXiv:2205.05198
(2022).

[14] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[15] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn
Song, and Ion Stoica. 2021. Terapipe: Token-level pipeline parallelism for training
large-scale language models. In International Conference on Machine Learning.
PMLR, 6543–6552.

[16] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and
Kishore Atreya. 2017. Incbricks: Toward in-network computation with an in-
network cache. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems.
795–809.

[17] Liang Luo, Peter West, Jacob Nelson, Arvind Krishnamurthy, and Luis Ceze. 2020.
Plink: Discovering and exploiting locality for accelerated distributed training on
the public cloud. Proceedings of Machine Learning and Systems 2 (2020), 82–97.

[18] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2017. Mixed Precision Training. https://doi.org/10.
48550/ARXIV.1710.03740

[19] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Andrew Tulloch, Srinivas
Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo, et al.
2021. High-performance, distributed training of large-scale deep learning rec-
ommendation models. arXiv preprint arXiv:2104.05158 (2021).

[20] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized pipeline parallelism for DNN training. In Proceedings of

the 27th ACM Symposium on Operating Systems Principles. 1–15.
[21] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,

Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–15.

[22] NVIDIA. 2023. The NVIDIA Collective Communication Library (NCCL). https:
//developer.nvidia.com/nccl.

[23] OpenAI. 2023. ChatGPT. https://chat.openai.com/.
[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., 8024–8035. http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[25] Team PyTorch. 2023. DISTRIBUTED RPC FRAMEWORK. https://pytorch.org/
docs/stable/rpc.html.

[26] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research 21, 1 (2020), 5485–5551.

[27] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[28] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-Offload:
Democratizing Billion-Scale Model Training.. In USENIX Annual Technical Con-
ference. 551–564.

[29] Nick Schneider, Florian Piewak, Christoph Stiller, and Uwe Franke. 2017. Reg-
Net: Multimodal sensor registration using deep neural networks. In 2017 IEEE
intelligent vehicles symposium (IV). IEEE, 1803–1810.

[30] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Hongjun Choi, Blake Hechtman,
and Shibo Wang. 2020. Automatic cross-replica sharding of weight update in
data-parallel training. arXiv preprint arXiv:2004.13336 (2020).

[31] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang,
Rahul Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
2021. GSPMD: general and scalable parallelization for ML computation graphs.
arXiv preprint arXiv:2105.04663 (2021).

[32] Jinhui Yuan, Xinqi Li, Cheng Cheng, Juncheng Liu, Ran Guo, Shenghang Cai, Chi
Yao, Fei Yang, Xiaodong Yi, Chuan Wu, et al. 2021. Oneflow: Redesign the dis-
tributed deep learning framework from scratch. arXiv preprint arXiv:2110.15032
(2021).

[33] Buyun Zhang, Liang Luo, Xi Liu, Jay Li, Zeliang Chen, Weilin Zhang, Xiaohan
Wei, Yuchen Hao, Michael Tsang, Wenjun Wang, Yang Liu, Huayu Li, Yasmine
Badr, Jongsoo Park, Jiyan Yang, Dheevatsa Mudigere, and Ellie Wen. 2022. DHEN:
A Deep and Hierarchical Ensemble Network for Large-Scale Click-Through Rate
Prediction. https://doi.org/10.48550/ARXIV.2203.11014

[34] Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis, Trishul
Chilimbi, Mu Li, and Xin Jin. 2022. MiCS: near-linear scaling for training gigantic
model on public cloud. arXiv preprint arXiv:2205.00119 (2022).

[35] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al.
2022. Alpa: Automating Inter-and {Intra-Operator} Parallelism for Distributed
Deep Learning. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 559–578.

[36] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang,
Qibin Hou, and Jiashi Feng. 2021. Deepvit: Towards deeper vision transformer.
arXiv preprint arXiv:2103.11886 (2021).

3860

https://www.usenix.org/conference/atc22/presentation/he
https://www.usenix.org/conference/atc22/presentation/he
https://doi.org/10.48550/ARXIV.1807.05358
https://doi.org/10.48550/ARXIV.1807.05358
https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT
https://doi.org/10.48550/ARXIV.2006.09616
https://doi.org/10.48550/ARXIV.1710.03740
https://doi.org/10.48550/ARXIV.1710.03740
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://chat.openai.com/
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://pytorch.org/docs/stable/rpc.html
https://pytorch.org/docs/stable/rpc.html
https://doi.org/10.48550/ARXIV.2203.11014

	Abstract
	1 Introduction
	2 Background
	2.1 Model Replication
	2.2 Model Partitioning
	2.3 Model Sharding

	3 System Design
	3.1 Model Initialization
	3.2 Sharding Strategies
	3.3 Communication Optimizations
	3.4 Memory Management

	4 Implementation
	4.1 Initialization
	4.2 Flat Parameters
	4.3 Runtime
	4.4 Native Mixed Precision

	5 Evaluation
	5.1 Experiment Setup
	5.2 Model Scale
	5.3 Throttle Communications
	5.4 Efficient Training for Large Models

	6 Related Work
	7 Discussion
	7.1 FSDP Interoperability
	7.2 Limitations

	8 Conclusion
	Acknowledgments
	References

