
Automatic SQL Error Mitigation in Oracle
Krishna Kantikiran Pasupuleti

Oracle America Inc.
Redwood City, CA, USA
kanti.kiran@oracle.com

Jiakun Li
Oracle America Inc.

Redwood City, CA, USA
jiakun.li@oracle.com

Hong Su
Oracle America Inc.

Redwood City, CA, USA
hong.su@oracle.com

Mohamed Ziauddin
Oracle America Inc.

Redwood City, CA, USA
mohamed.ziauddin@oracle.com

ABSTRACT
Despite best coding practices, software bugs are inevitable in a
large codebase. In traditional databases, when errors occur during
query processing, they disrupt user workflow until workarounds
are found and applied. Manual identification of workarounds often
relies on a trial-and-error method. The process is not only time-
consuming but also requires domain expertise that users are often
lacking. In this paper, we propose a framework to automatically
mitigate errors that occur during query compilation (including op-
timization and code generation) without any user intervention. An
error is intercepted by the database internally, a workaround is
identified for it, and the query is recompiled using the workaround.
The entire process remains transparent to the user with the query
being executed seamlessly. The proposed technique handles SQL
errors during query compilation and provides three types of miti-
gation strategies – i) quickly failover to one of the readily-available
historical plans for the statement ii) apply targeted error-correcting
directives (hints) identified from the optimizer context at the time
of the error iii) modify the global configuration of the optimizer
using hints.

This feature has been implemented and will be released in an
upcoming version of Oracle Autonomous Database.

PVLDB Reference Format:
Krishna Kantikiran Pasupuleti, Jiakun Li, Hong Su, and Mohamed Ziauddin.
Automatic SQL Error Mitigation in Oracle. PVLDB, 16(12): 3835 - 3847,
2023.
doi:10.14778/3611540.3611568

1 INTRODUCTION
One of the most appealing aspects of cloud offerings of database
management systems is savings in cost. A cloud offering helps cus-
tomers reduce not only their investment in proprietary hardware,
but also the labor cost involved in database administration. A fully
managed database service is the industrial trend nowadays and
offers a work out of box" experience to customers. It minimizes
human intervention by automating database provisioning, software

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611568

upgrade, security, performance tuning etc. In addition to the labor
cost savings, such services further aim to eliminate human errors,
offer insider’s expertise that a database administrator (DBA) often
lacks and optimize user experience.

SQL query failures that cause interruptions in the workflow due
to errors in software undoubtedly lead to poor user experience.
However, such errors are inevitable. Database systems are complex
pieces of software that are built from large codebases. With con-
stant innovation, as more features are developed and modularized,
their interaction can sometimes lead to unexpected errors. When an
error happens in a traditional on-premises database environment,
DBAs must quickly find a workaround to bypass the faulty code
path. Without access to the source code, they often use a trial-and-
error method to figure out a workaround. Additionally, if multiple
workarounds exist, they need to pick the one that gives the optimal
performance. Such an iterative process is time-consuming, and its
effectiveness relies heavily on the expertise of the DBAs. Moreover,
after a workaround has been identified, the customer must re-run
the query that has previously failed to resume the workflow. Fi-
nally, to get the root cause fixed, the customer needs to contact the
vendor’s support team, provide the details of the error and wait
for a fix. The amount of human intervention involved in the whole
process leads to high turnaround time and support fee.

1.1 Automatic Error Mitigation Framework
Using auto errormitigation (AEM) framework, we address the above
pain points in the context of Oracle’s fullymanaged database service
on cloud called Autonomous Database (ADB). The proposed design
intercepts errors and attempts to mitigate them by automatically
discovering and applying workarounds, all transparent to the user.
Meanwhile the system maintains information about the error and
its workaround, that are immediately provided to Oracle support
for better observability and diagnosis, thus contributing to quicker
root-cause fixes. In the first phase of this endeavor, we focus on
SQL query failures due to assertions. Assertions are commonly used
in programming languages. An assertion failure indicates certain
pre-conditions have not been met and program execution must be
stopped before more harm is done. For example, an assertion can
be added to check whether a pointer is null before its de-reference
and is fired if the pointer is found to be null. In our experience,
assertions account for a large percent of bugs filed for SQL query
compilation failures. Therefore, our initial focus is on mitigating
errors during query compilation that spans query optimization and

3835

https://doi.org/10.14778/3611540.3611568
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611568

code generation. Error mitigation during query execution has its
distinct challenges, such as cleaning up processes and restarting
them (parallel execution further complicates the situation), dealing
with partial results that have been generated, etc. However, our
framework is designed with extensibility in mind so that it can
accommodate failures during query execution in the future.

The following are the main design goals for the first version of
the feature.

End-user transparency: When an error occurs, we suppress it
internally and automatically find a workaround. If a workaround
exists, the query continues to compile and execute. The user may
experience a delay in query compilation but doesn’t notice the
error.

Reasonable query compilation time: We impose an upper
bound on the time spent in error mitigation. This is because a query
that takes a very long time to compile may itself create a poor user
experience even if error mitigation is successful.

No repetitive mitigation: It is important to avoid repeated at-
tempts to mitigate errors for a query when prior attempts have been
unsuccessful. We need a fair balance between avoiding repeated
attempts and ensuring timely error mitigation.

Integration with Oracle’s diagnostic framework: A work-
around is not the eventual solution as it may not always be as per-
formant. Eventually a code fix is required so that the workaround
can be removed. Therefore, the internal diagnostic information per-
taining to the original assertion failure (called "incident" in Oracle)
is generated regardless of whether error mitigation is successful or
not. Additional information regarding how the workaround was
identified (e.g., the internal strategies that have been tried and
whether they were successful) is logged so that it would i) help
developers understand, triage and debug the problem better, ii)
expedite identification of duplicate bugs etc. Such information can
also be mined by DevOps for various purposes like monitoring
the quality of new features, identifying problems and proactively
disabling a feature or withdrawing a regressed patch to prevent
problems from affecting more customers.

In summary, the design is based on the premise that a query
that uses a workaround and continues to seamlessly execute in a
reasonable time creates a superior user experience than a query
that fails and possibly entails human intervention.

While there is literature on automatic error corrections in sys-
tems software and hardware, to the best of our knowledge our work
is the first that attempts automatic error mitigation in SQL query
processing in a database system. We present our survey of Related
Work in Section 7.

We have implemented the automatic error mitigation feature in
Oracle autonomous database. Our testing and customer support
teams have verified its efficacy on internal and customer reported
bugs. Although some of our ideas rely on the expressive power
of hint framework in Oracle, the technique is general and can be
extended to other database systems using hints and other knobs
that may be available in them.

2 OVERVIEW
In this section we briefly describe certain concepts that are the
building blocks of our solution before presenting an overview of

the proposed auto error mitigation (AEM) framework. Section 3
and 4 describe in detail how these components work together to
achieve error transparency.

2.1 SQL Hints
SQL Hints are directives that obligate the optimizer to honor ac-
tions they specify and can be used to make corrections when the
optimizer fails to produce a desirable plan. In Oracle, hints have the
semantic flexibility to dictate an action at various granular levels of
a SQL statement, e.g., a designated table, a specific query block or
the entire statement. All operations that constitute a query plan can
be represented and controlled by corresponding hints. We propose
using this versatility and precision of hints to disable the specific
operation that is active at the time of error.

2.2 Optimizer Version Control
Oracle database provides a mechanism to control the version of
the optimizer that can be used to compile queries. The version
can be specified using a hint or a parameter. All new features,
enhancements and bug fixes made to the optimizer source code are
tied to their respective optimizer versions. When a query is hinted
with a version, the optimizer compiles the query using the hinted
version’s capability.

2.3 Automatic Error Mitigation (AEM)
We propose two mechanisms to mitigate query compilation errors:
one that uses historical alternate plans for query failover and the
other that identifies and uses error-correcting hints.

Figure 1 shows the overview of the control flow of AEM. The
left-most column depicts the user session that submits a query to
the database and awaits results. After necessary pre-processing
like syntactic parsing, the query compiler (middle column) takes
over and compiles the query, performing a series of tasks including
optimization and code generation. If an error is encountered during
this process, AEM intercepts the error and attempts error mitigation
via a sequence of actions, as shown in the middle column. At certain
points, AEM reads from and writes to the storage layer (right-most
column) to realize functionalities such as plan retrieval, workaround
generation, operational monitoring and diagnostics etc.

A new exception handler is instantiated to catch errors raised
during compilation. When an error is raised within the protected
section, the following sequence of events take place.

(1) At the time of the error, fine-grained candidate hints are
generated based on the context and stored in dictionary
tables.

(2) Subsequently, an attempt is made to retrieve alternate plans
available in the system. If any of the alternate plan compiles
successfully, the statement proceeds to execution.

(3) If no alternate plans exist or none of them succeeds in com-
pilation, the AEM driver applies the fine-grained candidate
hints generated in step 1. If the hints fail to mitigate the
error, the driver uses hints to modify certain global config-
urations (e.g., reverting the optimizer to an older version)
and recompiles the statement.

(4) If any workaround hint succeeds, the statement is com-
piled with the hint and proceeds to execution. An object

3836

Figure 1: Overview of Automatic Error Mitigation (AEM).

containing the hint (called a SQL Patch) is generated and
persisted so that it is used for future compilations of the
same statement as described in Section 4.

(5) If no workaround is found, the error is returned to the user.

Handling Recursive Errors

It is possible that the process of error mitigation itself may en-
counter errors. Such errors can be classified as "recursive" as they
are not related to the original (top) error that is being mitigated. The
framework’s exception handler intercepts these recursive errors
and ignores them deeming the underlying operation to have failed.
For instance, if an error occurs while choosing an alternate plan,
the process moves to the next available alternate plan.

In subsequent sections we describe the two core parts of our
design in detail.

3 AEM USING ALTERNATE PLAN
When a SQL error occurs, the optimizer first attempts to use an
alternate plan for the SQL statement. This is a quick way to avoid
the error when an alternate plan that compiled successfully exists.
Oracle database captures and stores all historical plans generated
for each statement in various sources e.g., Auto SQL Tuning Set

(Auto STS) [6], Automatic Workload Repository (AWR) [14] and in-
memory plan cache. These sources together form a pool of SQL plan
repositories from which AEM retrieves alternate plans for a SQL
statement. Each plan is logically represented by a collection of hints
called the plan outline. A plan outline specifies the sequence of hints
(aka compilation steps) that when applied during compilation of a
statement, generates (or reproduces) the same plan. [25] describes
how plans can be reproduced deterministically using plan outlines.

3.1 Switch to Alternate Plan
In response to an error, the optimizer retrieves alternate plans from
plan repository and attempts to reproduce each of them using their
corresponding plan outlines. The plans are examined in temporal
order from the newest to oldest, as newer plans are generated using
fresher statistics and are likely to be better. The first plan that com-
piles successfully is chosen and used ensuring a quick switch to the
alternate plan. However, the optimizer can explore more alternate
plans if available, cost them and choose the cheapest among them
ensuring better plan quality at the expense of additional latency
to the user query. We defer the exploration of this aspect to future
work.

3.2 Benefit
Plan outline driven compilation is quick as the outline contains
a hint for every step of compilation obligating the optimizer to
honor the hint. As a result, the optimizer doesn’t explore the po-
tentially vast search space of optimization and quickly generates
the intended plan.

The other benefit of relying on alternate plans is assurance of
the quality of the plan. As alternate plans correspond to the best
plans generated by the optimizer in the past, their performance
tends to be reasonably good and predictable.

4 AEM USING SQL PATCH
When alternate plans are not available for a SQL statement, a
workaround needs to be identified in order to overcome the er-
ror and compile the statement. A successful workaround depends
on the nature of the error and the context in which it is raised. For
example, some errors may be specific to the logical transformation
[2] that is being attempted on the query at the time of the error
whereas others may disappear when certain set of features are
disabled for the entire query.

This section presents techniques to identify effectiveworkarounds.
They contain hints identified at different levels of granularity that
help in avoiding error conditions. After a workaround is iden-
tified, an object called "SQL Patch" is created for the statement
that contains the corresponding set of hint(s) that implement the
workaround. When the statement is recompiled, the SQL Patch is
attached to it and the hints present in the patch steer the optimizer
away from the error generating conditions.

The SQL Patch generated for the statement is persisted in the
database so that all future compilations benefit from it. As this
method is a one-time mitigation effort, the amortized (over a period)
cost of time spent in identifying a workaround is low.

3837

Figure 2: Query Q1 with two query blocks and their initial
names.

This section is organized as follows. Section 4.1 gives an overview
of transformations and how query blocks are "named" during com-
pilation. Section 4.2 describes how fine-grained candidate hints can
be targeted using the query block names. Section 4.3 gives a quali-
tative assessment of how fine-grained hints can affect query plans.
Section 4.4 describes the process of identification of a successful
workaround using the candidate hints and Section 4.5 addresses
the issue of time budget for error mitigation.

4.1 Transformations
Transformations are logical query rewrite techniques that the opti-
mizer uses to transform a query to its semantically equivalent but
more efficient form. A transformation is finalized using a cost-based
framework where the optimizer explores and costs different ways
(called "states") in which it can apply the transformation on the
query and chooses the cheapest among them (called the best state).
The complete set of states corresponds to the total state space of the
transformation. The optimizer may explore the entire state space
or a sub-space depending on the search algorithm chosen based on
budget. We show a sample transformation sequence and describe
how query block names represent the essence of this sequence.

Sample Sequence of Transformations

During optimization, multiple transformations may be applied
on a query one after the other, leading to a final optimal repre-
sentation. Consider a query Q1 that has two query blocks SEL$1
and SEL$2 as shown in Figure 2. The optimizer initially "merges"
the view V1 (SEL$2) into its outer query block SEL$1. After this
transformation, SEL$1 has three tables s, d1 and d2. Subsequently,
the joins between these tables are optimized by grouping their
rows prior to performing the joins. Grouping may significantly
reduce the number of rows that participate in a join making it
more efficient. However, the cost of grouping must also be consid-
ered before finalizing this option. This cost-based transformation is
called "Group-By Placement" (GBP). In Q1, GBP transformation is
applied on the outer query block generating the final plan shown
in Figure 3. The plan contains two group-by views, VW_GBC_1
and VW_GBF_2, over different sets of tables.

The sequence of transformations for this query is i) View Merge
followed by ii) Group-By Placement (GBP).

Figure 3: Final Plan of Q1 with two grouped views.

Figure 4: Query Block Registry graph for Q1.

Query Block Names and Registry

Query blocks are assigned names at the beginning of parse. The
names are prefixed with string "SEL$" and suffixed with a mono-
tonically increasing sequence number. Each transformation applied
on a query block generates a new name for it using the result of a
deterministic hash function. For instance, when a transformation
X is applied on a query block, a new name is assigned that is based
on a hash signature computed using i) the identity of the trans-
formation X ii) parameters of X (for example the tables or other
objects involved) and iii) the old name of the query block. At the
end of compilation, the names of the query blocks are their final
names. As each hash signature depends on its prior signature, a
signature at any point indirectly captures the entire sequence of
transformations that have been applied on the query block until
that point. The names generated for all query blocks in a SQL state-
ment are tracked internally in a directed acyclic graph called Query
Block Registry whose vertices are names and edges are transforma-
tions. The graph for Q1 is shown in Figure 4 (edges representing
some internal operations are not shown for conceptual clarity).
In the beginning, the query blocks are SEL$1 and SEL$2. At the
end of transformations, they are replaced by the final query block,
SEL$5E14EA2A. (The dotted edge represents additional argument
to the View Merge transformation).

3838

4.2 Candidate Hint Generation
A candidate hint is a fine-grained hint that is generated based on
the premise that an error is correlated to the context that exists at
that time. It is a "negative" hint that disables a transformation or its
state(s) that is active at the time of the error. The first argument of
the hint is a query block name indicating that the hint can only be
applied to the query block with the specified name. For example,
the hint NO_UNNEST(@SEL$2) disables the transformation named
"UNNEST" on a query block whose name is SEL$2.

As described earlier, the name of a query block is a proxy to all
prior transformations that happened on and consequently, it is a
proxy to the structure of the query block. Errors are often corre-
lated to query block structure. This is because operations during
compilation modify query blocks and their associated structures
in certain ways and code assertions enforce the structural sanity.
Hence, a negative hint that uses the name of the query block pre-
cisely targets the error. In subsequent compilations, if the query
block gets a different name its structure will be different, and the
hint will not be applied which is desirable.

Fine-grained hints are less disruptive to the quality of query
plans and have the following advantages.

• They disable specific states of a transformation keeping the
rest of the state space open to the optimizer for exploration
and costing.

• They are applied at a relatively finer granularity of query
blocks without affecting the entire SQL statement.

• They precisely capture the structural conditions underwhich
an error must be mitigated using query block names as
proxies.

When an error occurs during compilation, as a first step, an
"incident" is generated and information about the error is logged in
system tables under the incident. Incidents have unique identifiers
that can be used by the system to retrieve all the necessary infor-
mation about them. After this step, control reaches the exception
handler for automatic error mitigation. The handler checks if the
error qualifies for mitigation based on the type of the statement
and parameter settings. Subsequently, it invokes the candidate gen-
eration code that uses the context of the error to generate hints
that may be successful in mitigating the error.

There are three types of fine-grained hints – i) hints that disable
specific states of a transformation ii) hints that disable all states
of a transformation and iii) hints that disable a sub-space of a
transformation.

4.2.1 Disable a Specific State of a Transformation. In this section,
we explain how fine-grained hints are generated for specific states
of a transformation using an example that shows the state space
of GBP. Consider query Q1 (from Section 4.1) whose query block
SEL$1 is first transformed by merging the view query block SEL$2
into it. The equivalent query representation Q1M, after the trans-
formation is shown in Figure 5(along with the query block’s name
at that point). Subsequently, GBP transformation is applied on the
merged query block.

Figure 5: Representation of Q1 after view-merging.

State Space of GBP Transformation

GBP divides the tables in a query block (tables s, d1 and d2 in
Q1M) into one or two sets and creates Group-by views over each
set.

• One set is called a "coalesced" group (C) and must nec-
essarily contain all the tables appearing in the aggregate
functions of the query block (table s as it appears in SUM())
along with any combination of other tables (tables d1, d2).

• The other set is called a "factored" group (F) that contains
any combination of tables that do not appear in the aggre-
gates of the query block (tables d1, d2).

Coalesced groups create partial aggregates while factored groups
create multiplicative factors. Either C or F may be empty and hence
not present in the final plan. In Q1M, tables s, d1 and d2 can be
divided into sets C and F in various ways adhering to the above
conditions thus generating a combinatorial state space. The state
space explored by the optimizer is shown in Table 1. The columns
"C" and "F" correspond to coalesced and factored groups and indi-
cate the tables that will be present in them. Table s appears in the
aggregate function SUM() and hence always appears in set C.

Table 1: State Space of GBP Transformation for Query Q1M.

Tables {s d1 d2} Coalesced Group C Factored Group F

{1 1 1} {s, d1, d2} Ø
{1 1 0} {s, d1} {d2}
{1 0 1} {s, d2} {d1}
{1 0 0} {s} {d1,d2}

{0 * *} Invalid states
(Table s appears in SUM(); must be in C)

Query Q1T in Figure 6 shows the transformed query correspond-
ing to state {1 0 1} (view VW_GBC_1 corresponds to set C and view
VW_GBF_2 corresponds to set F of the state).

If an error occurs while the optimizer is processing state {1
0 0} shown in red in Table 1, AEM generates a candidate fine-
grained hint, "NO_PLACE_GROUP_BY (@SEL$F5BB74E1 (s)
(d1 d2))" to disable this state. (The query block name for Q1M is
SEL$F5BB74E1 as shown in Figure 4 and Figure 5. The name of the
negative hint for GBP is NO_PLACE_GROUP_BY).

3839

Figure 6: Query Q1M transformed according to state {1 0 1}.

Figure 7: Query Q2 with three sub-queries.

4.2.2 Disable All States of a Transformation. A hint that disables all
states of a transformation is another type of fine-grained hint that is
generated and is relatively more disruptive. Taking the earlier exam-
ple of GBP transformation, the negative hintNO_PLACE_GROUP
_BY(@SEL$F5BB74E1) disables all states of GBP in the query
block SEL$F5BB74E1 and hence the transformation cannot take
place in it.

4.2.3 Disable Sub-space of a Transformation. For certain transfor-
mations it is possible to generate a negative hint that disables a
subset of the entire transformation state space (or a sub-space). For
example, consider a query Q2 shown in Figure 7 that contains three
subqueries SEL$2, SEL$3 and SEL$4 in an outer query block SEL$1.
"Subquery unnesting" (SU) is a cost-based transformation that de-
correlates one or more subqueries converting them into join(s) in
the outer query block. The state space of SU is defined over the
three subqueries SEL$2, SEL$3 and SEL$4. An equivalent binary
form (like Table 1) consists of all combinations of {𝑥1, 𝑥2, 𝑥3}, where
each 𝑥𝑖 ∈ {0, 1} and denotes whether the corresponding subquery
is unnested or not. Hence, there is a total of 8 states.

If an error occurs in state {1, 0, 1}, two fine-grained hints - NO_
UNNEST(@SEL$2) and NO_UNNEST(@SEL$4) - are generated
one for each subquery. Each of these hints disables one half of the
state space. For instance, NO_UNNEST(@SEL$2) disables unnest-
ing of subquery SEL$2, i.e., disables all states {1, 𝑥2, 𝑥3} where
{𝑥2, 𝑥3} ∈ {0, 1}. Similarly, NO_UNNEST(@SEL$4) disables all
states {𝑥1, 𝑥2, 1} where {𝑥1, 𝑥2} ∈ {0, 1}.

4.3 Impact of Fine-Grained Hints on Query Plan
In this section we analyze the circumstances under which a query
plan generated with a fine-grained hint, referred to as "mitigated
plan", may differ from the plan generated when there is no error
(e.g., after the error is fixed), referred to as "no-error plan". This
helps us determine circumstances under which these plans may be
different and consequently have different performance. The analysis
is presented for a mitigation strategy that uses a fine-grained hint
that disables one state of a transformation; however, other types of
fine-grained hints also follow a similar pattern with the caveat that
they can be more disruptive.

Consider a sample transformation T. There are two possibilities
for the no-error plan - either the plan contains T or it doesn’t
contain T. Further, consider that an error occurs in state s1 of a
transformation T and a fine-grained hint that disables the state s1
is generated.

If the no-error plan contains T, themitigated planmay sometimes
differ from the no-error plan as follows. If s1 is any state other than
the best state (a transformation with N states, has N-1 non-best
states and 1 best state), the mitigated plan is the same as the no-
error plan because disabling a non-best state doesn’t prevent the
optimizer from choosing the best state. In the less likely situation
where s1 is the best state (that is disabled), the optimizer chooses
the second-best state for T. It is possible that this choice of state
results in a different sequence of downstream transformations that
take place after T. The quality of the mitigated plan thus depends
on the extent of the difference between the best and the second-
best states of T as well as the cumulative effect of the downstream
decisions that follow transformation T.

If the no-error plan does not contain T because it is expensive, the
mitigated plan also doesn’t choose T irrespective of the state that is
disabled because all of them would be expensive. The combinations
are shown in Table 2.

Table 2: State Space of GBP Transformation for Query Q1M.

Mitigated Plan Error occurs in Error occurs in
same Non-best States of Best State of

No-Error Plan? Transformation T Transformation T

Transformation T
is NOT chosen in
No-Error Plan

✓ ✓

Transformation T
is chosen in
No-Error Plan

✓
×

(Plan uses second-
best state and

possibly different
transformations
downstream)

4.3.1 Non-transformation errors. Fine-grained hints can also be
generated for errors that happen post-transformations during phys-
ical optimization. For instance, an assertion failure may happen

3840

while generating a hash join on a particular table and can possibly
be fixed by avoiding hash join and using a different join method. Or
it may go away if the build and the probe tables of the hash join are
switched. Another possibility is the error may depend on a specific
join order and may not occur when the same hash join is attempted
in a different join order. There can be many such candidates for
fine-grained hints. We plan to extend our ideas in the future to
handle such errors.

4.4 AEM Driver
After candidate hints for mitigation are generated, the AEM dri-
ver component needs to identify from the candidates a hint that
successfully compiles the query. The driver performs the following.

• Identifies a workaround: It uses two strategies in the follow-
ing order i) fine-grained candidate hints generated based
on context ii) optimizer version umbrella hints to compile
the query with different optimizer versions.

• Creates a SQL Patch for the workaround: It creates and
persists a SQL Patch object for the statement that contains
the error-mitigating hint (fine-grained hint or optimizer
version hint).

4.4.1 Identify a Workaround. The driver first retrieves the can-
didate fine-grained hints for the SQL statement and allocates a
global time budget for identification of a workaround (Section 4.5).
It prioritizes the fine-grained hints and considers them in a specific
order - from the least disruptive hint to the most disruptive hint and
iteratively compiles the SQL statement using one hint at a time. A
hint that disables a single state of a transformation is less disruptive
than a hint that disables a sub-space of the transformation and so
on. Each iteration is also assigned a dynamic time limit computed
based on the cumulative time already consumed and the remaining
global time budget. If the error persists after all the fine-grained
hints are attempted, the driver uses optimizer version hints be-
ginning from the latest version and proceeding to older versions.
This is because an optimizer version hint that specifies a version
number modifies the capability of the optimizer to match that of
the identified version; so, the older the version number, the less
capable the optimizer may relatively be, of generating good query
plans. After a workaround is identified the AEM driver creates a
SQL Patch for the query in persistent store of the database.

Like in the case of alternate plan exploration (Section 3.1), the
driver stops compiling the query as soon as it identifies a working
hint. Hence, the order in which the hints are considered is impor-
tant. Alternatively, the driver can proceed further and consider all
working hints and choose the one that generates the best(cheapest)
plan. This comes at the expense of query latency; we defer the
details of this exploration to our future work.

The AEM driver process is interruptible and can perform the
above activity incrementally across multiple iterations. It maintains
the required state information that allows it to determine its prior
progress and restart from that point. It also logs information about
the number of iterations, the hints attempted during these itera-
tions and their outcome, etc. in the system tables in XML format.
DBA views are provided that allow users to query these tables and
analyze the information.

Optimizer version hints are not based on the context in which an
error occurred; rather they are control knobs that affect the entire
statement. Besides optimizer version, there are other context-free
hints that can be used (e.g., parallelism of the query can be altered
using a hint). We plan to explore their usage in future.

4.5 Time Limit and Repetitive Mitigation
If the error mitigation process takes a long time, it leads to an un-
desirable user experience and must be avoided. AEM driver uses
an automatically derived configurable time limit and aborts the
process once the allotted time expires. In our experience this helps
deal with extreme cases that present long compilation times but
doesn’t impact most of the real-world queries. If the query has
been executed before, the time limit is derived by considering its
historical compilation and execution statistics. The average compi-
lation time indicates the expected time the query takes to compile
that needs to be considered when finalizing a budget. The average
execution time is used to identify the overhead of compilation in
the total elapsed time for the query. For a long running query, it
is reasonable to allocate more budget in the expectation that the
increase in compilation time has minimal effect on the total elapsed
time. Also, as queries are compiled once and executed many times,
the additional compilation overhead is amortized.

Similarly, it is not useful to attempt to mitigate errors in quick
succession for the same SQL statement. If the driver was unsuc-
cessful in identifying a workaround for a SQL, it is less likely that
a second attempt in a short span of time will lead to a different
outcome, and resources are better spent elsewhere in the database.
The system tables track information (e.g., timestamp) about prior
mitigations that were attempted for each SQL statement, and the
system lets a specific interval of time to pass before re-attempting
mitigation on the same statement.

5 OBSERVABILITY
AEM telemetry resides in multiple locations, including query exe-
cution plans, trace files and system tables. Logging AEM telemetry
serves both informative and functional purposes. They provide user
transparency, facilitate troubleshooting, and can be mined for a
global solution to a prevalent issue.

Query Execution Plan Display: Oracle stores query execution
plans in shared memory accessible from all processes. Users with
the right privileges can use an API to display the plan information.
When a user displays the plan of a query that was mitigated by
AEM, the plan shows either the name of the alternate plan or the
name of the SQL patch depending on the type of mitigation.

Dictionary Tables and Views: The AEM module logs detailed
information about error mitigation actions and persists the infor-
mation in system tables and trace files irrespective of whether
mitigation succeeds or not. DBA views are created over these tables
to provide user-friendly access to the relevant information like the
erring SQL, whether AEM was attempted, each strategy attempted,
and time spent in it as well as the total time etc.

Trace Files: AEM module logs information about errors into
trace files. The trace files also containing other diagnostics gen-
erated for an incident and are automatically shipped to Oracle
development teams for further investigation.

3841

Database users, Cloud Operations and database developers ben-
efit from the detailed telemetry. Database users can query the DBA
views to get more information about mitigation results. Cloud Op-
erations teams can also mine this information potentially across
multiple tenants to monitor the health of SQL statements and take
corrective actions if necessary. For example, if it is evident that
a particular transformation causes a lot of SQL statements to fail,
it can be disabled for the database. AEM metadata information
serves as valuable feedback to Oracle even when AEM fails to find
a workaround. For example, it helps rule out that a newly installed
fix is the culprit if AEM has proven that an old optimizer version
bypassing that fix still does not solve the problem. If AEM times
out, the information about search strategies attempted and the time
taken helps development teams design better mitigation strategies.

Functional Use of Metadata: AEM also relies on the metadata
logged in system tables for some of its functionality. For example,
it uses the timestamp information on the last mitigation attempt
for a SQL statement to decide if another mitigation can proceed.

6 EXPERIMENTAL ANALYSIS
6.1 In-house Testing Approach
To test the functionality of AEM,we design an artificial error-raising
mechanism that simulates real-world failures and covers a wide
scope of code paths of the optimizer. During testing, artificial errors
are raised in a controlled manner at designated locations, so that
it is known a priori whether a workaround exists and what the
workaround ought to be.

Three Dimensions of Search Space

To achieve broad coverage of query compilation code in tests, it
is important to design external controls for error locations along
the same dimensions as the search space of the query optimizer.
The entire set of reachable error locations through these controls
should form a space similar in shape and size to the search space
of the optimizer.

The main dimensions to the search space of an Oracle optimizer
are:

• Transformations: The optimizer searches through a series
of cost-based and heuristic-based transformations. E.g., Sub-
query Unnesting, Group-by Placement, Star Transforma-
tion etc.

• Query Blocks: The optimizer applies transformations to all
eligible query blocks.

• States of a Transformation: For each combination of a query
block and a transformation, the optimizer visits a set of
states that denote combinations of relevant objects in the
query block and picks the best (cheapest) state.

We introduce new control parameters for errors that follow these
dimensions.

• A parameter whose value is set to a specific transformation
forces an assertion within that transformation code to fail.

• A parameter whose value is set to a specific query block
forces assertion failure for that query block.

• A third parameter that can be set to a state number forces
an error within that state.

To further randomize the code locations within a state of a trans-
formation where error needs to be raised, we use a fourth parameter
that specifies a number between 0 and N (a fixed number). As code
executes, it applies a hash function on the error message of ev-
ery assertion generating a number between 0 and N and fires the
assertion if it matches the parameter input.

Different combinations of the above parameters allow us to pre-
cisely control the locations where errors can be force-raised for
testing AEM.

Testing AEM using SQL Patches

Using the parameters described, it is possible to raise a vast range
of errors including i) errors that can be mitigated by fine-grained
hints, ii) errors that cannot be mitigated by fine-grained hints but
can be mitigated by global controls like optimizer version and iii)
errors that cannot be mitigated at all.

For example, if the parameters are set to force an error in a
specific state of a transformation, there exists a context-aware
strategy that skips the state and avoids the error. If they are set to
force an error in a transformation irrespective of state and query
block, the circumvention uses an optimizer version that predates
the erring transformation. If the parameters are set to raise errors
at a point that is reached even by the oldest version of the optimizer,
no workaround exists.

Testing AEM using Alternate Plans

During exploration of multiple alternate plans, the parameters
are used to filter a subset of alternate plans. For example, if a subset
of alternate plans contains Group-by Placement transformation,
we set the parameters to raise error during Group-by Placement so
that those alternate plans cannot be used.

We also have a parameter that controls the type of mitigation
that is attempted – alternate plan only, SQL Patch only, or both.

6.2 Benefit of Fine-Grained Hints
In this sectionwe demonstrate howusing context-based fine-grained
hints can lead to better query plans when compared to context-free
hints like optimizer version. For illustrative purpose, we conducted
an experiment using TPCDS query 4 (Q4) on 1GB testbed on Intel
X86 machine. In the experiment, we forced an error in multiple
states of GBP transformation and observed the effect on the query
plans. We GBP as a representative transaction to discuss as its
concepts have been described earlier and it applies to Q4 (among
others). Q4 has two branches of a union-all set query block, both
of which are potential candidates for GBP. The text of the query
is not shown for lack of space; readers can refer to the TPCDS
specification. The benefit of using fine-grained hints for errors can
be seen in Figure 8 that shows how the cost of the final plan varies
according to the hint used.

The unit of cost is an abstract quantity derived from a combi-
nation of CPU cycles, IO operations and memory overhead. The
original query plan (when there is no error) has a cost of 1872K.
If an error occurs when the best state of GBP transformation is
being explored in query block SEL$1, the state must be disabled.
This increases the cost slightly to 1875K when the transformation

3842

Figure 8: TPCDS Q4: Comparison of the costs of the original
plan ("Original") and three mitigated plans. Three mitigated
plans are generated by a fine-grained strategy that disables
the erring state ("FGOneS"1), a fine-grained strategy that dis-
ables all states ("FGAllS"2) and a global strategy that reverts
to an older version of the optimizer ("OptVer"3).

chooses the second-best state. If, however, we disable the transfor-
mation completely on SEL$1, the cost would be 8178K. Finally, if
an older optimizer version is used as the mitigation strategy, the
cost increases further to 32M.

We show the relevant portion of the query plans that are gener-
ated using each mitigation strategy and discuss their impact. The
original plan of Q4 is shown in Figure 9 (some plan lines that are
not related to the GBP transformation are omitted for brevity). The
query blocks SEL$1 and SEL$2 are annotated in blue. Both have
GBP with their respective best states as shown in the plan. In SEL$1,
a grouped view (VW_GBC_11) is created over the result of the join
between tables DATE_DIM and STORE_SALES and this view is
joined with the table CUSTOMER. Similarly, in SEL$2 a grouped
view (VW_GBC_22) is created over the result of the join between
tables DATE_DIM and CATALOG_SALES and this view is joined
with the table CUSTOMER.

Let’s assume that an error occurs when optimizer attempts GBP
transformation in query block SEL$1.

Strategy-1: Fine-Grained Hint - Disable best state

As shown in Table 2, the worst-case situation is an error occurs
during exploration of the best state in a query block and the state
must be disabled. In SEL$1 of Q4, the negative hint generated to dis-
able the best state (of the plan in Figure 10) is NO_PLACE_GROUP
_BY(@SEL$1 (STORE_SALES DATE_DIM)). The new plan is shown
in Figure 11. It can be observed that there is no impact on the GBP
transformation in SEL$2. However, in SEL$1, GBP was chosen using
the second-best state in which two grouped views (VW_GBF_12
and VW_GBC_11) are created - one on table CUSTOMER and the
other on the result of the join between tables DATE_DIM and

1Strategy hint: NO_PLACE_GROUP_BY(@SEL$1 (STORE_SALES DATE_DIM))
2Strategy hint: NO_PLACE_GROUP_BY(@SEL$1)
3Strategy hint: OPTIMIZER_FEATURES_ENABLE(’19.1.0’)

Figure 9: TPCDS Q4: GBP (best state) in SEL$1 and SEL$2.
Cost = 1872K.

Figure 10: TPCDS Q4: GBP in SEL$1(2nd best state), SEL$2
when best state of SEL$1 is disabled by hint. Cost = 1875K.

STORE_SALES. Finally, both these views are joined. This increases
the cost of the entire plan to 1875K (top line in the plan).

Strategy-2: Fine-Grained Hint - Disable all states

Next, we present the impact on the query plan when all the GBP
states are disabled in query block SEL$1. The hint that achieves
this effect is NO_PLACE_GROUP_BY(@SEL$1). The corresponding
plan is shown in Figure 11. The plan shows that there is no GBP in
SEL$1 but is present in SEL$2 as intended. This plan has a cost of
8178K.

Strategy-3: Old Optimizer Version Hint

The impact on the query plan when a global hint that modifies
the optimizer version is used, can be observed in Figure 12.

GBP is absent in both the query blocks SEL$1 and SEL$2. Instead,
the tables are joined directly. The cost of this plan increases to 32M.
When an older optimizer version is used, all the enhancements and
bug fixes made after that version are absent, potentially affecting
the quality of plans.

The idea behind trying to use fine-grained hints before moving
to global hints like optimizer version is to ensure that the quality
of plans is least impacted. However, it is possible although less

3843

Figure 11: TPCDSQ4:GBP in SEL$2whendisabled completely
in SEL$1 by hint. Cost = 8178K.

Figure 12: TPCDS Q4: No GBP in SEL$1, SEL$2 when opti-
mizer version 19.1 hint is used. Cost = 32M.

likely, that the reverse is true in certain situations depending on the
error and the relationship between different transformations. For
example, if the best and the second best states of a transformation
in the latest version have errors and the older optimizer version
has a best state that is neither of the above, using the older version
may be better than disabling the transformation completely on the
query block. In our future work we plan to present techniques to
deal with such issues by costing plans from different strategies and
choosing the best among them.

6.3 A Real-World Survey
We attempt to answer the following questions in order to evaluate
the effectiveness of AEM in real-world workloads.

Q1:How common is it for real-world faults to haveworkarounds?
Q2: How effective is AEM in generating those workarounds?

This question leads to three sub-questions that measure the effec-
tiveness of AEM from different aspects.

Q2-1 Success Rate: If a workaround exists, can AEM find it
automatically?

Q2-2 Search Time: Is AEM efficient in its searching process?
Q2-3 Quality of Result: If multiple workarounds are available,

does AEM choose the best one?
We surveyed Oracle’s bug repository for all the compile-time

bugs that were reported from customer workloads over a period of
one year and could be reproduced in-house.

Figure 13: Distribution of compilation-time bugs by the types
of workarounds. Four classes are shown i) errors with no
feasible workaround ("NoWorkaround") ii) errors that can be
mitigated with fine-grained strategies or optimizer versions
("FG or OptVer") iii) errors that can only be mitigated with
optimizer versions ("OptVer Only") and iv) errors that can
only be mitigated with fine-grained strategies ("FG Only").

Figure 13 shows among a total of 104 faults, 65.4% (68/104) have
some workaround and 34.6% (36/104) have no workaround at all.
Among the 68 bugs that have workarounds, 26 can use fine-grained
strategies or older optimizer versions. These errors happen during
query transformations and can be mitigated by either disabling the
transformation or reverting to a version that predates the trans-
formation. Among the rest, 36 bugs do not have fine-grained hint
solutions but can be mitigated using optimizer-version strategy.
These errors take place in code modules outside the query transfor-
mation framework (e.g., physical optimization and code generation).
Finally, 6 bugs can only be mitigated by fine-grained strategies be-
cause these errors occur in old query transformations that existed
prior to the introduction of optimizer versions and hence the trans-
formations cannot be disabled even in the oldest version. However,
they can be controlled by fine-grained hints.

To answer Q1 and Q2-1 (discussed above), along the lines of our
survey findings, AEM’s success rate is close to 65%. From Figure 13,
the first category, “no workaround”, indicates bugs that do not
have workarounds in the form of transformation hints or optimizer
versions. As we expand the scope of AEM in future, some of these
bugs may benefit from new strategies.

To answer Q2-2, we gathered bugs that could be mitigated by al-
tering optimizer versions and categorized them by version numbers
as shown in Figure 14. To create a concise representation, minor
versions are lumped together under major version numbers. For
example, 5 minor versions are merged into the bar of version 11.
When looking for an optimizer version workaround, AEM begins
from the most recent version and proceeds to older versions using
every minor version in between. For example, if the current version
is 20, AEM starts from version 19 and proceeds to older versions.

Figure 14 shows that 61.3% (38/62) of bugs can bemitigated by the
10 most recent optimizer versions, corresponding to the first 28.6%
(10/35) of versions, and 87.1% (54/62) of the bugs can be mitigated

3844

Figure 14: Distribution of compile-time bugs that can be mit-
igated by changing optimizer versions. Inside parentheses is
the number of minor versions of a major version. For exam-
ple, version 11 has 5 minor versions and is displayed as 11(5).

by exploring the first 54.3% (19/35) of versions. We observed a
disproportionate concentration of bugs on newer releases, which is
expected as new features are introduced in them that stabilize over
time. In response to Q2-2, this finding confirms that it is efficient
to search from newer optimizer versions to older ones.

To answer Q2-3, we need to compare the true performance of
plans generated by different workarounds in real-world customer
workloads. Currently we have limited data in this regard as AEM
hasn’t been released in the market. In addition, many historical
bugs reported by customers are difficult to reproduce in-house.
Nevertheless, we plan to collect extensive feedback on AEM and
its impact on real-world query performance in the next release of
Oracle database.

We can cite empirical evidence from our experience that most
customers have been satisfied with manual workarounds provided
to them. AEM uses more sophisticated strategies leading us to
believe the quality of workarounds can meet the needs of most
users.

7 RELATEDWORK
The growing scale and complexity of modern software have made
it an increasingly challenging task for developers to deliver timely
fixes andworkarounds to software bugs. Naturally, many researchers
and practitioners turned towards automatic software repair. Over
the past few decades, the field garnered a lot of research on self-
healing and self-repairing techniques for myriad scenarios of soft-
ware applications [15, 19, 23].

Automatic repairing techniques can be categorized into two
families by their domain of use. General solutions tackle program-
ming errors that are common in software applications; examples
are buffer overflow [27], infinite loops [7] and inconsistent data
structures [13], etc. Domain-specific solutions exploit the charac-
teristics of an application to devise efficient solutions. For example,
Gopinath et al. [16] proposed a technique to fixing bugs in a SQL-
like proprietary language called ABAP. Carzaniga et al. [9] focused

on web applications and presented a solution to component failures
caused by faults in popular access libraries. The AEM framework
proposed in this paper is also a domain solution - specific to the
context of SQL compilation. To our knowledge, our work is the first
to apply automatic healing techniques to SQL engines and devise
SQL-tailored mitigation solutions.

AEM mitigates errors by applying strategies that lead query
compilation through alternative code paths that may bypass faulty
conditions. This idea exploits a classical concept in fault-tolerant
software engineering, known as the multi-version programming
[3]. Error recovery through the multi-version approach can only
be achieved in software applications with in-built design diversity
[4]. In such systems, the same functions are implemented with dif-
ferent designs and multiple instantiations. On encountering failure,
execution restores to a common starting point and switches to an
alternative implementation [26]. The multi-version approach has
proved its efficacy in many real-world scenarios, with the switching
of implementations taking place at various levels of granularity,
such as replacement of buggy API calls, re-arrangement of opera-
tion sequences [8, 9, 17], or switching between multiple versions
of the same application run in parallel [18].

Unlike the models of the above research work, AEM has a unique
ability to exert fine control on the granularity of alternative imple-
mentations. It is possible to switch to a different implementation of
SQL compilation at the plan level, query block level, or the state-
ment level (a statement has multiple plans). This fine control is
achieved by tracking the query compilation context and using se-
mantically flexible SQL hints. Plan-level failover is favored over
query-block-level hints as historical plans usually have a proven
record of successful execution and acceptable performance. Query-
block-level hints are in turn favored over statement-level hints
because the former lead to localized workarounds that minimize
divergence from the error-free query plans.

Learned query optimizers [20, 21] have been proposed to predict
and correct performance of queries in databases. They work on
top of existing query optimizers and generate corrective actions to
fix performance issues in query plans. Bao [20] engine uses hints
to learn how plans respond to certain actions and converges on
promising actions specific to each query. In the context of error
mitigation, we observe that learning techniques can be used to i)
predict when queries may encounter errors or ii) predict promising
corrective actions. Applying the techniques discussed in [20, 21]
to the former is tricky as the rate of errors is typically low and
the overhead to compilation time may be unacceptable. Also, due
to the unpredictable nature of errors, it may be hard to identify
the relevant features and attributes. Our model takes a reactive ap-
proach of mitigating errors when they occur. Identifying promising
corrective actions based on historical error-mitigation data, on the
other hand, can benefit from learning techniques and we plan to
utilize such them as we expand the scope of AEM and improve
its turnaround time. In this context, techniques proposed by Bao
may potentially be used to achieve similar effect, although using a
reactive approach.

Most SQL autonomous features focus on performance tuning
[11], addressing performance regressions through automating the
creation of physical structures like indexes [12, 24], materialized
views [1] and partitioning schemes [10], maintaining plan stability

3845

as in the Automatic Plan Correction of SQL Server [22] and the Au-
tomatic SQL Plan Management of Oracle [5, 29], and searching for
an optimized set of system configuration knobs [28]. Unlike those
works, AEM handles crashing SQLs instead of slow-running SQLs.
But the methods of AEM share some overlap with the common prac-
tices used in performance tuning, like switching to alternate plans
and modifying system configurations. The experimental results
of AEM show that these approaches traditionally used in perfor-
mance tuning can also find application in error recovery and fault
tolerance.

8 CONCLUSION AND FUTUREWORK
In this paper, we explored automatic error mitigation in the context
of a database’ online user process (foreground) and presented vari-
ous strategies to transparently mitigate errors encountered during
SQL query compilation. We showed how the strategies can be less
disruptive to the quality of query plans when mitigating errors thus
creating a better user experience.

Currently AEM stops as soon as it identifies a workaround –
this can be seen as a “First Fit” model. In the future, we plan
to enhance AEM to consider plan quality while mitigating errors.
While this can be performed online, it is best done offline by a back-
ground process of the database that periodically checks whether
new compilation-errors incidents occurred and explores effective
mitigation strategies. A background process has a relatively larger
time budget to find a workaround and can explore more candidate
strategies, cost them and compare the quality of plans before final-
izing a mitigation strategy forming what can be termed as a “Best
Fit” model. It can also complete the work of online foreground
processes that time out before identifying a workaround.

We also plan to extend AEM to i) cover a wider range of compi-
lation errors (e.g., physical optimizer errors) ii) use a wider range of
candidate hints for mitigation (e.g., more parameter controls, trans-
formations that were applied prior to the active one at the time of
error etc.) iii) recover from query execution errors. As the query
compilation context has information on the sequence of operations
until the time of error, candidate generation can be improved to
consider prior transformations in addition to the active transforma-
tion. And as mentioned earlier, error mitigation at execution time
is more challenging as cleanup and restart of query execution is
required.

ACKNOWLEDGMENTS
We would like to thank Sunil Chakkappen and Palash Sharma for
their contribution and valuable feedback in designing this feature.

REFERENCES
[1] Rafi Ahmed, Randall Bello, Andrew Witkowski, and Praveen Kumar. 2020. Au-

tomated Generation of Materialized Views in Oracle. Proc. VLDB Endow. 13, 12
(Aug. 2020), 3046–3058. https://doi.org/10.14778/3415478.3415533

[2] Rafi Ahmed, Allison Lee, Andrew Witkowski, Dinesh Das, Hong Su, Mohamed
Zait, and Thierry Cruanes. 2006. Cost-Based Query Transformation in Oracle. In
Proceedings of the 32nd International Conference on Very Large Data Bases (Seoul,
Korea) (VLDB ’06). VLDB Endowment, 1026–1036.

[3] A. Avizienis. 1985. The N-Version Approach to Fault-Tolerant Software. IEEE
Transactions on Software Engineering SE-11, 12 (1985), 1491–1501. https://doi.
org/10.1109/TSE.1985.231893

[4] Benoit Baudry and Martin Monperrus. 2015. The Multiple Facets of Software
Diversity: Recent Developments in Year 2000 and Beyond. ACM Comput. Surv.
48, 1, Article 16 (Sept. 2015), 26 pages. https://doi.org/10.1145/2807593

[5] Nigel Bayliss. 2019. Automatic tuning. Oracle. Retrieved July 7, 2023
from https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-
sql-plan-mgmt-19c-5324207.pdf

[6] Nigel Bayliss. 2020. What is the Automatic SQL Tuning Set? Oracle. Retrieved July
7, 2023 from https://blogs.oracle.com/optimizer/post/what-is-the-automatic-sql-
tuning-set

[7] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Rinard. 2011.
Detecting and Escaping Infinite Loops with Jolt. In ECOOP 2011 – Object-Oriented
Programming, Mira Mezini (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
609–633.

[8] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolò Perino, and
Mauro Pezzè. 2013. Automatic recovery from runtime failures. In 2013 35th
International Conference on Software Engineering (ICSE). 782–791. https://doi.
org/10.1109/ICSE.2013.6606624

[9] Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè. 2010.
Automatic Workarounds for Web Applications. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Santa Fe, New Mexico, USA) (FSE ’10). Association for Computing Machinery,
New York, NY, USA, 237–246. https://doi.org/10.1145/1882291.1882327

[10] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-Driven Approach to Database Replication and Partitioning. Proc. VLDB
Endow. 3, 1–2 (Sept. 2010), 48–57. https://doi.org/10.14778/1920841.1920853

[11] Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed Zait, and
Mohamed Ziauddin. 2004. Automatic SQL Tuning in Oracle 10g. In Proceedings
of the Thirtieth International Conference on Very Large Data Bases - Volume 30
(Toronto, Canada) (VLDB ’04). VLDB Endowment, 1098–1109.

[12] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic,
Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Sura-
jit Chaudhuri. 2019. Automatically Indexing Millions of Databases in Mi-
crosoft Azure SQL Database. In Proceedings of the 2019 International Confer-
ence on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). As-
sociation for Computing Machinery, New York, NY, USA, 666–679. https:
//doi.org/10.1145/3299869.3314035

[13] Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid. 2007.
Assertion-Based Repair of Complex Data Structures. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering (Atlanta,
Georgia, USA) (ASE ’07). Association for Computing Machinery, New York, NY,
USA, 64–73. https://doi.org/10.1145/1321631.1321643

[14] Kurt Engeleiter. 2009. Using Automatic Workload Repository for Database Tuning:
Tips for Expert DBAs. Oracle. Retrieved July 7, 2023 from https://www.oracle.
com/technetwork/database/manageability/diag-pack-ow09-133950.pdf

[15] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.
https://doi.org/10.1109/TSE.2017.2755013

[16] Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha, and Satish Chandra. 2014.
Data-Guided Repair of Selection Statements. In Proceedings of the 36th Inter-
national Conference on Software Engineering (Hyderabad, India) (ICSE 2014).
Association for Computing Machinery, New York, NY, USA, 243–253. https:
//doi.org/10.1145/2568225.2568303

[17] Alessandra Gorla, Mauro Pezzè, Jochen Wuttke, Leonardo Mariani, and Fab-
rizio Pastore. 2012. Achieving Cost-Effective Software Reliability Through
Self-Healing. COMPUTING AND INFORMATICS 29, 1 (Jan. 2012), 93–115.
https://www.cai.sk/ojs/index.php/cai/article/view/75

[18] Petr Hosek and Cristian Cadar. 2013. Safe software updates via multi-version
execution. In 2013 35th International Conference on Software Engineering (ICSE).
612–621. https://doi.org/10.1109/ICSE.2013.6606607

[19] Angelos D. Keromytis. 2007. Characterizing Software Self-healing Systems. In
Computer Network Security, Vladimir Gorodetsky, Igor Kotenko, and Victor A.
Skormin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 22–33.

[20] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2022. Bao:Making LearnedQuery Optimization Practical.
SIGMOD Rec. 51, 1 (June 2022), 6–13. https://doi.org/10.1145/3542700.3542703

[21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (July 2019), 1705–1718. https:
//doi.org/10.14778/3342263.3342644

[22] Microsoft. 2023. Automatic tuning. Microsoft. Retrieved July 7,
2023 from https://learn.microsoft.com/en-us/sql/relational-databases/automatic-
tuning/automatic-tuning?view=sql-server-ver16

[23] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM
Comput. Surv. 51, 1, Article 17 (Jan. 2018), 24 pages. https://doi.org/10.1145/
3105906

[24] Arup Nanda. 2021. Automatic indexing with Oracle Database. Oracle. Re-
trieved July 7, 2023 from https://www.oracle.com/news/connect/oracle-database-
automatic-indexing.html

[25] Krishna Kantikiran Pasupuleti, Dinesh Das, Satyanarayana R Valluri, and Mo-
hamed Zait. 2022. Observability of SQL Hints in Oracle. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management (Atlanta,

3846

https://doi.org/10.14778/3415478.3415533
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1145/2807593
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-sql-plan-mgmt-19c-5324207.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-sql-plan-mgmt-19c-5324207.pdf
https://blogs.oracle.com/optimizer/post/what-is-the-automatic-sql-tuning-set
https://blogs.oracle.com/optimizer/post/what-is-the-automatic-sql-tuning-set
https://doi.org/10.1109/ICSE.2013.6606624
https://doi.org/10.1109/ICSE.2013.6606624
https://doi.org/10.1145/1882291.1882327
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/3299869.3314035
https://doi.org/10.1145/3299869.3314035
https://doi.org/10.1145/1321631.1321643
https://www.oracle.com/technetwork/database/manageability/diag-pack-ow09-133950.pdf
https://www.oracle.com/technetwork/database/manageability/diag-pack-ow09-133950.pdf
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1145/2568225.2568303
https://doi.org/10.1145/2568225.2568303
https://www.cai.sk/ojs/index.php/cai/article/view/75
https://doi.org/10.1109/ICSE.2013.6606607
https://doi.org/10.1145/3542700.3542703
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://www.oracle.com/news/connect/oracle-database-automatic-indexing.html
https://www.oracle.com/news/connect/oracle-database-automatic-indexing.html

GA, USA) (CIKM ’22). Association for Computing Machinery, New York, NY,
USA, 3441–3450. https://doi.org/10.1145/3511808.3557124

[26] Brian Randell. 1975. System structure for software fault tolerance. IEEE Transac-
tions on Software Engineering SE-1, 2 (1975), 220–232. https://doi.org/10.1109/
TSE.1975.6312842

[27] Alex Shaw, Dusten Doggett, and Munawar Hafiz. 2014. Automatically Fixing C
Buffer Overflows Using Program Transformations. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. 124–135. https:
//doi.org/10.1109/DSN.2014.25

[28] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-Scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for ComputingMachin-
ery, New York, NY, USA, 1009–1024. https://doi.org/10.1145/3035918.3064029

[29] Mohamed Ziauddin, Dinesh Das, Hong Su, Yali Zhu, and Khaled Yagoub. 2008.
Optimizer Plan Change Management: Improved Stability and Performance in
Oracle 11g. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1346–1355. https://doi.org/10.
14778/1454159.1454175

3847

https://doi.org/10.1145/3511808.3557124
https://doi.org/10.1109/TSE.1975.6312842
https://doi.org/10.1109/TSE.1975.6312842
https://doi.org/10.1109/DSN.2014.25
https://doi.org/10.1109/DSN.2014.25
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.14778/1454159.1454175
https://doi.org/10.14778/1454159.1454175

	Abstract
	1 Introduction
	1.1 Automatic Error Mitigation Framework

	2 overview
	2.1 SQL Hints
	2.2 Optimizer Version Control
	2.3 Automatic Error Mitigation (AEM)

	3 AEM USING ALTERNATE PLAN
	3.1 Switch to Alternate Plan
	3.2 Benefit

	4 AEM USING SQL PATCH
	4.1 Transformations
	4.2 Candidate Hint Generation
	4.3 Impact of Fine-Grained Hints on Query Plan
	4.4 AEM Driver
	4.5 Time Limit and Repetitive Mitigation

	5 OBSERVABILITY
	6 EXPERIMENTAL ANALYSIS
	6.1 In-house Testing Approach
	6.2 Benefit of Fine-Grained Hints
	6.3 A Real-World Survey

	7 RELATED WORK
	8 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

