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ABSTRACT
Event streaming is an increasingly critical infrastructure service
used in many industries and there is growing demand for cloud-
native solutions. Confluent Cloud provides a massive scale event
streaming platform built on top of Apache Kafka with tens of thou-
sands of clusters running in 70+ regions across AWS, Google Cloud,
and Azure. This paper introduces Kora, the cloud-native platform
for Apache Kafka at the core of Confluent Cloud.We describe Kora’s
design that enables it to meet its cloud-native goals, such as relia-
bility, elasticity, and cost efficiency. We discuss Kora’s abstractions
which allow users to think in terms of their workload requirements
and not the underlying infrastructure, and we discuss how Kora
is designed to provide consistent, predictable performance across
cloud environments with diverse capabilities.
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1 INTRODUCTION
Event streaming has become an immensely popular paradigm in
the past decade. It gives businesses the ability to respond in real-
time to changes in market conditions. Microservices generate huge
amounts of event data from numerous sources and these events
must be delivered to consumer applications as quickly and effi-
ciently as possible. Event streaming systems provide the glue to
connect event producers and consumers. Like most other critical
infrastructure these days, there is increasing demand for cloud-
native event streaming systems with ever higher expectations for
reliability, elasticity, and cost efficiency.

Apache Kafka [11] is the open-source leader in the event stream-
ing space. Kafka is a fault-tolerant, durable, scalable, high-throughput,
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distributed real-time event streaming system. It is used by 80% of
Fortune 500 businesses [7]. Kafka’s API has become the de facto
standard for event streaming as even competing systems [3, 10, 13]
provide compatibility with Kafka’s Produce and Consume APIs.
However, Kafka was built before cloud systems dominated and its
architecture reflects assumptions of a much more static environ-
ment. For example, a single-tiered storage layer made the system
slow to adapt to changes in workloads since it required massive
movement of data in order to rebalance load evenly in a cluster.

Confluent Cloud provides a fully-managed, cloud-native event
streaming platform based on Apache Kafka. Our platform, called
Kora, is highly available, scalable, elastic, secure, and globally inter-
connected. As a true cloud-native platform, it abstracts low-level
resources such as Kafka brokers and hides operational complexi-
ties such as system upgrades. It supports a pay-as-you-go model:
users can start small and scale their workloads to GBs/sec and back
when needed while only paying for resources they use. Users can
choose between a cost-effective multi-tenant configuration as well
as dedicated solutions if stronger isolation is required.

In this paper, we describe our experience building Kora as a true
cloud-native event streaming platform. The challenge we faced was
to provide a highly available service with consistent performance
at low cost across three clouds with heterogeneous infrastructure.
Consistent performance covers many dimensions, such as latency
and throughput, which depend on the requirements and scale of
user workloads that we do not control. Heterogeneous infrastruc-
ture implies different categories and frequencies of failures that
all must be handled robustly. We discuss how Kora rethinks Kafka
and supporting systems’ architecture for this dynamic multi-tenant
cloud environment and provide production data to illustrate the
effectiveness of our design choices.

Confluent Cloud has grown in the past six years to support tens
of thousands of clusters across three clouds (AWS, GCP, Azure) and
73 regions. It powers a wide range of industries from retail to finan-
cial services and healthcare, including mission-critical workloads.
Kora, the engine that fueled this growth, is the result of continu-
ous evolution through feedback from the field and our efforts to
improve operations while reducing costs. Rather than being based
on a single key idea, Kora builds on a number of well-established
ideas and principles from the literature and our experience and
learning from operating our infrastructure at scale. We believe
that this paper makes the following contributions for the research
community.

• We present the architecture of Kora, a cloud-native event
streaming platform that synthesizes well-known techniques
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from literature to deliver the promise of cloud: high avail-
ability, durability, scalability, elasticity, cost efficiency, per-
formance, multi-tenancy, and multi-cloud support. For ex-
ample, our architecture decouples its storage and compute
tiers to facilitate elasticity, performance, and cost efficiency.

• We describe Kora’s abstractions that have been in produc-
tion use for several years and enabled the service to grow
to massive scale. These abstractions have helped our cus-
tomers distance themselves from the underlying hardware
and think in terms of application requirements, while al-
lowing us to experiment with newer hardware types and
configurations in our quest for optimum price-performance
ratio.

• Finally, we give insights into key customer pain points
and the challenges we faced to address them. For example,
while the promise of newer, faster hardware is tempting
to meet increasing customer performance demands, the
reality is that evaluating new hardware for an optimum
price-performance ratio takes significant investment given
large and diverse workload requirements.

In the next section, we provide some background and terminol-
ogy about event streaming systems and Apache Kafka specifically.
We then introduce Kora’s architecture and dive into several specific
areas for deeper analysis.

2 BACKGROUND
Event streaming systems solve the problem of routing events from
applications producing them (producers) to the downstream appli-
cations processing them (consumers). Figure 1 shows a high-level
view of an event streaming application with Kafka in the middle.

Events in Kafka are organized into topics, each of which is par-
titioned for higher throughput. A topic partition is structured as a
persistent, replicated log of events: each copy of the log is known
as a replica. Events written to the log are interchangably referred
to as either records or messages. Each record in a partition is given
a unique offset, which is incremented sequentially after every write.
Producers write to the end of the log while consumers can read from
any offset. Kafka relies on file system caches for efficient access to
partitions. It is optimized for consumers reading at the end of the
log, which is the most common access pattern.

As consumers make progress, they record the offset of the last
processed record in a separate internal topic so that they can resume
processing from the same point after failures. Consumer groups
provide away to distribute the partitions of a topic in order to enable
parallel processing. This simple design allows Kafka to support
writing huge volumes of events with a high degree of read fan-out.

Application workloads are typically characterized by through-
put, either in terms of the rate of events or bytes. Ingress and
egress throughput are often distinguished because of the fan-out
to consumer applications. It is common to have multiple consumer
applications consuming the same event stream.

Latency is a critical measure of the performance of event stream-
ing systems since applications often operate with real-time expec-
tations. For example, a ride-sharing service must be able to respond
immediately to changes in demand or road conditions. We measure

Figure 1: Event streaming model.

end-to-end latency as shown in Figure 1 as the elapsed time between
event creation by a producer and delivery to the consumer.

3 OVERVIEW
This section covers Kora’s design goals and high-level architecture.
We identify the main components and their role in the overall
service. In subsequent sections, we will discuss specific features in
more detail. First, we review the goals behind the system.

3.1 Design goals
The design and architecture of Kora is motivated by the following
key objectives:

Availability and Durability. Our customers use our service for
business-critical services and for storing critical data. Lapses in
durability or availability lead to direct revenue loss and are com-
pletely unacceptable. We offer an uptime SLA [4] of 99.95% for
single zone clusters and 99.99% for multi-zone clusters

Scalability. Scalability is crucial for most customers as changing
infrastructure backends is very risky and expensive, especially in
terms of engineering resources. Therefore, customers want to use
a backend service that they know will continue to scale as their
business grows year-over-year.

Elasticity. Customers can expand and shrink their clusters as
their workloads scales. Additionally, Kora adapts to changes in
workload patterns to provide optimal performance for a given clus-
ter size.

Performance. Low latency at high throughput is the hallmark of
event streaming platforms. We have made the conscious choice of
directly passing all performance wins to the users. Therefore, over
time, users may see the performance of their applications improve.

Low cost. Our customers want all the benefits of the cloud but at
the cheapest possible net cost. Our design, therefore, puts a lot of
emphasis on optimizing the cost for our users and we often lean
towards choices that yield better price-performance ratio.

Multitenancy. Multitenancy is one of the key enablers of a low-
price and highly elastic cloud experience in the form of a pay-as-
you-gomodel. Our design features several keymechanisms required
by a truly multi-tenant Event Streaming platform work.
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Figure 2: Control plane and data planes in Confluent Cloud.
Data plane is built on Kora platform and comprises of net-
work, storage, compute, and management microservices.

Multi-cloud support. Kora runs on AWS, GCP, and Azure. Many
of our design choices are driven by our desire to provide a unified
experience to our users while minimizing the operational burden
due to differences between clouds.

3.2 Architecture
Confluent Cloud has two distinct decoupled pieces as shown in
Figure 2: a centralized control plane and a decentralized data plane.
The control plane is responsible for provisioning resources for the
data plane, which consists of independent physical Kafka clusters
(or PKCs) running on the Kora platform. Each Kora instance hosts
a single PKC in our deployment and comprises of network, storage,
compute, and management microservices.

The user-visible unit of provisioning, however, is a logical Kafka
cluster (or LKC). A PKC may host one or more LKCs depending on
the needs of the application. Applications with strict requirements
for isolation may use a dedicated PKC, while others may prefer the
cost savings of a multi-tenant cluster. The LKC provides namespace
isolation to abstract away the underlying cluster resource. For an
end user, the client APIs remain the same.

Users interact with the control plane through an HTTP API to
specify cluster requirements. The control plane handles the physical
allocation of resources (compute, storage, network, etc) and their
placement across availability zones using Kubernetes. Clusters will
typically be spread evenly across availability zones in order to
provide high availability, but Confluent Cloud also supports a less
expensive single-zone option for use cases with reduced availability
and durability requirements. The control plane is also responsible
for initializing cluster configurations, such as resource quotas and
user API keys. These are propagated to the PKC using the Kafka
protocol and are stored in internal Kafka topics.

Each PKC in the data plane looks much like a normal Kafka clus-
ter and users interact with it using standard Kafka clients. Within
the PKC are a set of brokers which are responsible for hosting topic

partition data and a set of controllers which are responsible for
managing cluster metadata, such as replica assignments.

The proxy layer in each PKC is responsible for routing to indi-
vidual brokers using SNI (Server Name Identification). The proxy
is stateless and scales separately from brokers. It can support large
clusters without experiencing bottlenecks like port exhaustion. Net-
work access rules and connection limits are enforced at the proxy
layer prior to authentication on the Kafka broker.

Every component in the system exposes telemetry for its key
performance indicators. We also deploy a health check monitor
which sits outside the internal network to track client-observed
performance. Health check monitors continuously probe the bro-
kers to detect any lapses in availability or performance. Probing
the brokers from outside our cluster is critical to catch any issues
in the network stack (e.g. DNS resolution, anything in the proxy
layer) which might not be caught by the controller.

Kora deploys two significant departures from Kafka architecture
as it has been known for the past ten years. First, metadata has
been pulled out of Zookeeper and into an internal topic. Second,
the storage layer now has two tiers: local volumes on the brokers
and an object store. We review below the motivation behind these
changes and how they contribute to the cloud-native architecture.

3.3 Metadata Management
Kafka’s architecture relies on a centralized controller to manage
cluster-wide metadata such as replica assignments and topic config-
urations. The controller is also responsible for tracking the liveness
of brokers and for electing topic partition leaders. Brokers regis-
ter with the controller on startup and maintain a session through
heartbeats. If no heartbeats are received before a session timeout
expires, the broker is considered offline and new leaders are elected
as needed.

The centralized perspective of the controller is ideal for ensuring
that the load in the cluster is balanced. However, traditionally, there
was little that it could do outside of balancing replicas and leaders
based on raw counts. It had no insight into the ingress/egress load
on each topic, which meant that the overall load could become
extremely skewed. In Kora architecture, we built an additional com-
ponent in the controller, which is able to leverage a more accurate
model of cluster load based on the telemetry reported by brokers.
This is discussed in more detail in subsection 4.3.

Traditionally, the controller was co-located with brokers. Any
broker was capable of becoming the controller through an election
process facilitated by Zookeeper. On larger clusters, the co-location
could be problematic since the controller’s work can be substan-
tial. For example, in the case of a broker failure, the controller
must elect new leaders for thousands of topic partitions. This could
cause a noticeable performance degradation for the broker. Further-
more, when rolling a cluster for an upgrade, the controller would
often have to change several times. Loading a new controller from
Zookeeper was not cheap, so these controller changes made the
cluster unstable during rolls.

These problems were one of the central motivations behind
the Kafka Raft (or KRaft) architecture [19]. Rather than using
Zookeeper, metadata in KRaft is stored in an internal topic par-
tition which uses a consensus protocol based on Raft [14]. The

3824



centralized controller is elected as the leader of this partition, and
replicas follow the log and build the metadata state so that they can
be ready to immediately take over leadership responsibilities after
a failure.

Additionally, the role of the controller was split from the broker
into a separate process. This means we can allocate resources to it
independently from the brokers and its workload can be isolated
more effectively. With Kubernetes, we can still pack the controller
process onto the same instances that the brokers are deployed on
in order to save costs on smaller clusters where the controller is
not so busy. But we also have the option in larger clusters to use
a dedicated instance. It also means we can roll all of the broker
processes in the cluster while retaining a stable controller.

3.4 Data Storage
Traditionally, Kafka leveraged only local volumes with broker affin-
ity in its storage layer. Each replica of a topic partition maintained
its own complete copy of the entire log of events. Replication of the
log was done through Kafka’s own custom protocol. For a cloud
service, this presents two major challenges.

First is the trade-off between cost and performance. For bet-
ter performance, we need to use more expensive disk types, but
since their cost is proportional to the size of the volume, it quickly
becomes prohibitively expensive as the amount of data increases.

The second challenge is ensuring predictable performance. It
is crucial to be able to balance replica assignments in the clus-
ter to adapt to changes in user workloads. For Kafka, changing
a replica assignment implies copying the full log of events in the
topic partition to the new replicas. The time it takes to copy that
data obviously increases as the size of the data increases. More data
makes the system slower to react, which also means a higher risk
that the workload will have changed again after the reassignment
finishes. Furthermore, copying data is not only expensive from a
cost perspective, but it also takes system resources away from the
user workload itself.

To address these issues, we built a tiered storage layer. New event
data from producers is first written to local disks and replicated
through Kafka’s own protocol as before. Most consumer applica-
tions continue to read event data from this tier as soon as it is
written. However, as the data in the system ages, it is moved to a
second tier, a much cheaper object store (such as AWS S3). After do-
ing so, the event data can be removed from each replica. This means
local volumes can be much smaller since they only need to retain
the active log data. This not only gives us much more flexibility to
choose disk types with better performance, but it also solves the
rebalancing problem. There is no need to move archived data: we
only need to move the smaller active set on the local volume. Even
further, there is no longer a practical limit on the amount of data
that a topic partition can retain. While the previous architecture
was limited by the maximum size of a single local disk volume, now
we are only limited by the object store.

The tiered storage layer is a big win for price and performance,
but it does come with complexity. The system must maintain addi-
tional metadata about the topic partition log data which has been
archived in the object store. We use an internal topic to maintain
this metadata. As new segments of log data are uploaded to the

object store, we publish the respective metadata to this internal
topic. Each replica in the cluster watches this topic for changes
so that they know when local data can be removed and to build
a reference table in order to serve reads. If a consumer requests
log data outside the local volume, the replica can load the correct
segment from the object store.

4 CLOUD-NATIVE BUILDING BLOCKS
In this section, we discuss how we designed Kora to support cloud-
native properties for dedicated Kafka clusters. The building blocks
described in this section also form the basis for our multi-tenant
service.

4.1 Abstractions for a cloud native cluster
Abstractions are important for delivering a true cloud-native ex-
perience, where users don’t have to reason about low-level details
of the cloud such as the amount of memory or CPU type, network
bandwidth, IOPS/throughput/storage bandwidth, etc. By expressing
our contract for performance, availability, and isolation in form of
high-level constructs such as ingress and egress bandwidth, we free
users from the burden of thinking about low-level details and ensur-
ing that these low-level resources are adequate for their high-level
tasks. Conversely, these high-level constructs also allow us to mod-
ify the low-level implementation details, such as the instance type
or storage class, when it benefits our customers in key dimensions
such as performance or cost as discussed in Section 4.2.

We abstract clusters by exposing a unit of capacity called a
Confluent Kafka Units (aka CKU). It represents the minimum cluster
size that can be provisioned and similarly the minimum unit for
expanding or shrinking the cluster. We ensure that clusters with
equivalent CKUs perform comparably for the same workload across
three clouds [16]. A CKU specification exposes several dimensions
to users such as maximum ingress and egress bandwidth, request
rate, and connection count and rate.

A CKU exposes maximum capacity on each of the dimensions
to avoid artificially limiting the types of workloads it can support.
However, to hit the maximum on one of the dimensions usually
requires using less of other resources. For example, fully utilizing
bandwidth requires good batching, fewer requests, and fewer con-
nections. As a result, because it is a fixed-size entity, a cluster can
run out of capacity before hitting any CKU limits.

We address this issue by exposing a cluster’s load that provides
visibility into the utilization of the backing physical Kafka cluster,
which we approximate as utilization of the most loaded broker.
This approach works well in approximating the performance that
the customers can expect because well-balanced clusters have sim-
ilar utilization per broker, whereas, for imbalanced clusters, the
workloads experience the impact of most loaded broker in their p99
latency. We model broker utilization using a traditional definition
of server utilization: the proportion of time a server is busy [8]. The
advantage of this approach is that workloads experience an increase
in server utilization with an increase in latency, and latency grows
exponentially when the system approaches saturation. This helps
users reason about their expected cluster performance based on the
utilization metric.
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Figure 3: Impact of an increasing load from a benchmark
on broker load, latency, and CPU. Each spike is a separate
benchmark run with more load.

The CKU abstraction enables users to get a reasonable first-order
approximation of the cluster size that they need to provision and
the associated performance expectation and costs without having to
run any benchmarks. Cluster load guides them when their cluster is
running hot and would benefit from expansion.We are also building
an auto-scaling framework that will enable them to automatically
shrink/expand their cluster based on their cluster’s load.

4.1.1 Broker Load (Utilization). The broker load (utilization) metric
is the basis for a cluster’s load. The key challenge is that the direct
use of CPU, IOPS/disk-throughput, or network bandwidth falls
short when the workload is stressing other dimensions. The direct
measure of server load is not straightforward because it requires
accurately measuring request service time and excluding any time
waiting in the internal disk queues or other underlying resources
we do not control.

Our solution was to use queuing theory laws on the relation-
ship between latency and server utilization [8, 9]: under heavy
load, latency grows exponentially with the utilization. Latency, or
queueing delay, has been shown [5] to be a more robust signal
that a workload needs more resources rather than utilization of
specific resources such as IOPS or CPU. However, exposing latency
to users as a measure of load is harder to reason about because of
the exponential relationship – it is much easier to reason about uti-
lization that grows linearly with load rather than latency growing
exponentially with the load.

To measure broker utilization, we modeled the broker as a single-
server queuing system with arbitrary inter-arrival and service time
distribution (G/G/1). In this model, a job is either a network request
or a connection creation request. The wait time𝑊 is the time a
request or connection waits in various queues in the broker or un-
derlying infrastructure, excluding waiting for replication or waiting
on clients to send the response.

Figure 4: Cost drivers of a sample deployment in AWS.

We used Kingman’s approximation of wait time under heavy
load [9] to calculate the broker utilization during high load. For
Kingman’s formula, we calculate 𝐸 [𝑊 ] as an exponential decaying
1-minute moving average of measured wait time𝑊 using the Unix
load averaging approach [20]. We empirically found the coefficients
for the formula via a set of benchmarks that covered a range of
workloads. For low utilization cases, we approximate broker uti-
lization by using utilization of network and request threads in the
broker.

We illustrate the effectiveness of our broker load metric using a
simple experiment with a CPU intensive workload as shown in Fig-
ure 3. We keep on increasing the load on the cluster by increasing
the number of partitions and we observe that in this CPU inten-
sive workload, broker load tracks CPU usage increase. In contrast,
latency increases much more dramatically when the cluster gets
overloaded showing why it is inappropriate to use latency directly
as a measure of load. We have observed similar predictable trends
with IO and network intensive workloads as well.

4.2 Cluster organization for cost efficiency
In this section, we describe how various services are laid out on
physical resources (instance type, storage class) and how we go
about choosing those physical resources with the intent of optimiz-
ing cost. Two notable design choices allow us the flexibility of ad-
justing our hardware and layout without impacting user-experience.
First, our service expectations are described in higher level con-
structs as discussed in Section 4.1. These constructs allow us to
change the hardware without violating the contracts for perfor-
mance. In contrast, many cloud services operate in Bring-Your-
Own-Account (BYOA) model, thereby punting the complexity of
hardware selection and its associated tradeoffs to the users. Second,
our design relies on a decoupled, persistent block storage layer
rather than ephemeral instance storage. This gives us the flexibility
to choose the optimum VM instance type and block storage volume
independently while retaining strong guarantees of durability.

Next, we discuss three key aspects that influence cost: core Kafka
compute and storage, networking, and supporting microservices.
Figure 4 shows the major interactions and components from an
AWS-hosted cluster for reference.
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4.2.1 Core Kafka costs. Costs incurred by our core Kafka cluster
are a significant part of our net cost. For low-throughput use cases
on dedicated clusters, it is the dominant factor. Our goal is to lever-
age right-sizing to keep this cost at the minimum possible level
needed to sustain our performance requirements.

The complexity of optimizing cost comes from the significant
heterogeneity in hardware offerings and the associated cost struc-
tures, both within a cloud provider and across multiple clouds.
Cloud providers offer many options that vary, even within a sin-
gle cloud, along critical dimensions such as performance (which
itself has multiple dimensions), fleet-wide availability, discounts,
and capacity considerations. For example, for provisioned block
storage, one cloud provider may support much higher base IOPS
than others, whereas another provider may lack the ability to scale
IOPS/throughput independently of the underlying storage capacity.
Even within the same cloud provider, one block storage option
comes with fixed throughput and IOPS but can burst to a higher
value to support transient spikes, whereas other block storage op-
tions provide configurable IOPS/throughput/storage. Even on the
machine types, availability varies. The same class of VMs may
sometime include different architecture generations that perform
variably [6, 18]. Lastly, newer architectures, such as ARM may not
be readily available in enough capacity for all regions across all
cloud providers. This heterogeneity makes it challenging to deliver
a consistent cost and performance to our customers. Moreover,
this challenge needs to be tackled on a continuous basis as pricing,
availability of newer architecture, and storage options evolve over
time.

Our goal is to optimize the performance per dollar for the guaran-
tees wewant to provide.We use the following process for evaluating
new instance types. We have a baseline of resources we need to
support our guarantees. For example, there is a lower bound on
storage bandwidth and network bandwidth that we need to support
our target ingress/egress throughput. This lower bound helps us
rule out many instances and volume types. Next, we have a set of
performance tests that help us assess the expected performance
from the new setup. If the results look promising, we will proceed
with the fleet-wide rollout in a staged manner.

Notably, this process might require further tuning to get the ideal
performance. For example, we recently migrated from AWS GP2
volumes, which come with 256 MB/s of provisioned throughput
and 750 IOPS (burstable to 3000) to AWS GP3 volumes, which start
with 125 MB/s of provisioned throughput and 3000 IOPS. The GP3
volumes were cheaper but to get better performance from GP3, we
had to change how we flushed data to disk so that we don’t have a
big backlog of page-cache changes built up. This change required
extensive probing and analysis using a diverse range of workloads
and low-level kernel knobs to extract both the cost and latency
wins.

Similarly, we recently switched from a memory-optimized in-
stance to a CPU-optimized instance with half the memory after
extensive analysis. Changes like these yield significant cost savings
while still improving fleet-wide performance but are very hard to
do right. This is the key value proposition of using a cloud-native
platform such as ours.

As a sample data point, by virtue of our continuous right-sizing
efforts, we have improved the fleet-wide P99 latency by a factor of
3 over the last few months.

4.2.2 Network costs. The most significant network cost in a Kafka
cluster is cross-AZ replication which is incurred by our Multi-
AZ clusters. This cost is especially pronounced for throughput-
dominated workloads. While these multi-AZ clusters offer superior
durability and availability guarantees in the face of a zonal outage,
some use cases are okay with weaker guarantees.We offer a cheaper
single-AZ deployment option for these use cases that eliminates
the overhead of cross-AZ replication by hosting all brokers in the
same AZ.

Customers also incur network costs for client-server traffic if it
leads to cross-AZ data transfer. We support a fetch-from-follower
model that allows client fetch requests to be served from a follower
replica in the same AZ, if there is one available and sufficiently
caught-up.

4.2.3 Microservice costs. Kafka clusters require various microser-
vices to enable observability, auditing, billing, etc. Rather than
provisioning dedicated resources for these services, we bin-pack
them alongside the Kafka brokers, while reserving about 80% of the
VM’s resources for use by the Kafka broker. Bin-packing works well
in practice as storage and network are typically the key bottlenecks
in an IO-intensive system such as Kafka. Though there are indeed
workloads where this limits broker performance, it provides an
attractive tradeoff as customers can scale up their clusters if they
desire more performance. An alternative approach—to provision
additional VMs for other non-Kafka services components— would
force the customers to pay the cost for these additional nodes all
the time whether or not their use cases benefit from it.

4.3 Elasticity
This section describes the infrastructure that supports elasticity—
viz expansion, shrink and balancing. The ability to control system
resources elastically is critical in the cloud as workloads are contin-
uously changing. Our abstractions give us a clear signal on when
an action should be taken—the presence of clear resource limits per
CKU (e.g., number of partitions, connections, network bandwidth)
and the aforementioned cluster load metric help both us and users
make straightforward decisions on whether to scale up or down.

A key challenge in ensuring elasticity is that Kafka is a stateful
system. A specific produce/consume request must be served by
a specific broker which has the state to satisfy it. While the use
of tiered storage (Section 3.4) helps immensely, we still need a
mechanism to move replicas around when clusters expand or shrink
or when the load pattern changes. We describe how we balance
load skews first. The same infrastructure facilitates re-balancing
during shrink and expand.

4.3.1 Load Balancing. In the same way that the platform on ag-
gregate can be overloaded and needs to be expanded, a single node
in the platform can be overloaded due to the current workload
disproportionately affecting it. Because customer workloads are
inherently unpredictable - a cloud-native system that is responsive
and accommodating to changing load needs to have continuous
monitoring and automatic mitigation for such scenarios.
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Two key questions arise: What metrics to balance on and how
reactive should the mitigation be? We chose to balance on a blend
of metrics such as ingress bytes, egress bytes, disk usage and broker
load metric described earlier in subsubsection 4.1.1. However, a
load-balancing reassignment can be disruptive to client workloads
as it changes metadata, forcing clients to refresh it and re-establish
connections to other nodes. Therefore, a delicate balance needs to
be struck between reactivity and stability. Too frequent balancing
can be disruptive to clients and induce wasted work whereas too
infrequent balancing can leave the brokers imbalanced leading to
degraded performance.

Balancing in our cloud is managed by a component called Self-
Balancing Clusters (SBC). SBC is an internal component built inside
the Kafka Controller that has the responsibility of collecting metrics
about every Kafka broker in the cluster, creating an internal model
of the cluster, and optimizing said model by reassigning replicas
based on simple heuristics. Recall that in Kafka’s data model, a
topic has a set of partitions and each partition has a set of replicas.
SBC is based on Cruise Control [12] and it is configured to act on a
prioritized list of goals. Each goal attempts to balance a particular
metric by generating a set of potential replica movements that need
to be blessed by all higher-priority goals; thus, higher-priority goals
have a higher chance of getting balanced. Furthermore, Cruise Con-
trol distinguishes between triggering goals, that trigger a rebalance
round vs balancing goals, that are just executed in a best-effort man-
ner. Thus, critical metrics, such as disk usage or network imbalance,
need to be classified as triggering goals.

One challenge that we experienced was that it was hard to at-
tribute some resources, e.g., broker load, to replicas, which is the
unit of work reassignment in our infrastructure. We leveraged a
heuristic to distribute a broker’s overall resource usage between
all the replicas hosted on that broker based on a weighted com-
bination of a set of other representative metrics such as ingress
bandwidth, egress bandwidth, request rate, etc. Another challenge
was that some large clusters could have hundreds of thousands of
replicas. To scale for such large clusters, we abstain from collecting
replica-level metrics; instead, we fall back to topic or broker-level
metric collections and use heuristics to attribute metrics to replicas.

The benefit of our elasticity infrastructure is best explained vi-
sually. Figure 5 is an example of a production system getting rebal-
anced using our infrastructure. The results show a previously-large
skew in latency very quickly converging to a well-rounded bal-
ance amidst the nodes. The impact of the consolidation of skew
can be seen in our health check’s latency, which sees immediate
improvements for its outliers.

4.3.2 Shrink and Expand. The flow of expanding a cluster, at a high
level, begins from the UI. The customer initiates a scale-up from
there aided by real-time information depicting the current usage of
the cluster. Once the request reaches the data plane, new VMs are
provisioned. SBC is notified about the presence of new brokers in
the cluster and automatically initiates a broker addition operation
that begins reassigning replicas to them. The addition operation is
deemed complete when every newly-added broker has a fair share
of load moved to it.

A key requirement of scaling up is speed. While scaling down is
usually done when there isn’t much pressure on the system, scaling

Figure 5: Latency improvements resulting from effective re-
balancing. Each line represents a different broker in a cluster.

up is in stark contrast. Cluster expansion needs to complete as fast
as possible before the system risks becoming overloaded, while also
taking minimal system resources away from the user workload.
Our tiered storage architecture is key in allowing us to achieve this
since it reduces the size of data that must be moved.

In order to complete expansions as quickly as possible, SBC
chooses replicas based on their contribution to the overall load,
which follows a power law distribution. A minority of all replicas
cause a majority of the load. From the user perspective, the expan-
sion is complete once the new replicas are handling a fair share of
the load.

4.4 Observability
Comprehensive observability is crucial to operating a large sys-
tem. We focus on two types of metrics: (a) operational metrics to
understand the health of a cluster and to drive the feedback loop
for automated and manual mitigations, and (b) characterize fleet-
wide trends that then enable us to prioritize investments for the
long-term health of the platform. We have extensive instrumenta-
tion and metrics throughout our various services. We discuss some
interesting challenges and insights below.

4.4.1 Client-centric end-to-end metrics. For cloud services like ours,
it is imperative that we focus on client-observed metrics, especially
for key performance metrics such as latency and availability. Server-
side metrics omit a bunch of hops (viz load-balancers and proxy)
that client requests experience. As a result, any overload in these
intermediate services or network connectivity issues will be com-
pletely ignored by a server-side measurement. To bridge this gap,
Kora includes a healthcheck agent (HC) in each cluster (Section 3.2).
The HC agent sits outside our internal network and continuously
probes the brokers, via produce and consume requests, to detect any
lapses in availability or performance. These periodic HC requests
traverse the same path—via the load-balancers and proxy servers—
as the client requests, and thus are more accurate in capturing a
client’s perspective. The latency and success rate of these probes
are recorded and fed into our dashboards and alerting system, au-
tomated mitigation systems (Section 4.5), and SLO computations
(Section 4.4.2). The HC embeds a producer and consumer so that it
can measure end-to-end latency exactly as a user would see it.

4.4.2 Fleet-wide SLO. While cluster-level metrics are useful for
understanding how a specific cluster is performing, we need met-
rics to evaluate how our overall fleet is performing over a longer
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Figure 6: Fleet-wide Performance SLO tracking week over
week.

period of time. Looking at a specific cluster is too noisy as work-
loads vary significantly across the clusters. For this reason, we
created fleet-wide metrics with the following objective: (a) abstract
the performance of the entire fleet in a small set of metrics (e.g.,
latency, availability), (b) allow us to observe trends and prioritize
improvements when necessary. We used the following methodol-
ogy to compute fleet-wide aggregate for a given metric (say e2e
latency):

• Our HC agent sends 100 produce and 100 consume probes
every 1 minute for each broker. We have special internal
partitions whose leadership and assignment are sticky with
each broker to ensure that we are accurately capturing the
latency for that broker.

• The P99 e2e latency for that minute for that broker is com-
puted over the set of successful probes. Similarly, for a met-
ric like availability, we compute the number of successful
requests for that minute.

• For the latency SLO computation, we take the worst e2e
latency across all the brokers as the metric for that minute.

• We compute the weekly-latency-SLO metric for that cluster
as P99 over all the data points for that week.

• We compute the fleet-wide-latency-SLO metrics as median,
P90, and P99 of the weekly-latency-SLO metrics for all
clusters.

Tracking thesemetrics and investigating the underlying trends in
a principled manner has allowed us to identify the most widespread
issues that impact our SLOs and improve our fleet-wide SLOs by
several multiples over the last year. Figure 6 shows our latency SLO
graph over the last 8months. We follow an analogous methodology
for tracking availability metrics as well.

4.5 Automated Mitigation
Confluent Cloud, backed by Kora, offers an uptime SLA of 99.99%
for multi-zone clusters. This can be challenging to uphold when
the underlying cloud providers do not all offer the same guaran-
tees. Indeed, a majority of our availability lapses have been caused
by malfunctioning cloud infrastructure. The issues we have seen

roughly fall into two categories - outright unavailability of the net-
work or storage infrastructure or severely degraded infrastructure
that can persist for days and contribute to high latency. To get a
sense of the problems, we will go over two examples that we have
aimed to mitigate with our solution:

4.5.1 Network Unavailability. As mentioned earlier, server-side
metrics can miss unavailability in any external components (Sec-
tion 4.4.1). For such cases, a feedback loop between an external
component and the internal cluster is necessary to convey infor-
mation about the incident.

4.5.2 Storage Degradation. In-sync-replicas (aka ISR) represent the
set of replicas that are actively replicating data for a single partition.
Produce requests are usually configured to wait for acknowledge-
ment from all replicas to be deemed successful. Latency is therefore
largely determined by the slowest broker in the ISR. Client requests
typically batch data for many partitions, which means just one slow
broker out of a large set can degrade latency significantly across
every partition in the batch. We have frequently seen cases where
the underlying cloud SSD volume begins to exhibit chronically high
latency for days unless a mitigating action to replace it is taken.

4.5.3 Mitigation. Given the widespread nature of the problem, we
chose to build a principled generic solution that handles all such
cases of infrastructure degradation. Specifically, we have built a
feedback loop consisting of a degradation detector component that
collects metrics from the cluster and uses them to decide if any
component is malfunctioning and if any action needs to be taken.

There are a number of mitigation loops that we have imple-
mented to address the varying problems. When a problem is de-
tected, it is marked with a distinct broker health state each of which
is treated with its respective mitigation strategy.

The health check agent probe and external client traffic are
monitored in each broker by a network health manager thread. The
thread monitors the requests received by both workloads—if it stops
receiving requests from both sources for an extended period of time,
the thread concludes that the broker has lost its external network
connectivity and marks it as such. The mitigation strategy we
employ during such unavailability is to migrate partition leadership
away from a troubled broker. In the Kafka protocol, traffic is usually
served from the leader replica of a partition. Switching leadership is
a fast and effective strategy because it requires no data movement.
We have abstracted the action of removing all leadership from a
broker into an operation called broker demotion, which is executed
by the controller. Upon being notified of an unhealthy broker, the
controller’s first step is to demote the faulty broker, resulting in the
partition leadership moving onto a healthy broker that continues
to serve traffic to the clients.

Similarly, each broker runs a storage health manager thread
that monitors the progress of storage operations on the broker.
When they do not show progress for a certain period, the thread
concludes that the broker is unhealthy and restarts it. The restart
has the natural effect of migrating leadership through the Kafka
protocol and fencing the broker, as it will not be able to start up
and join back the ISR until its storage issue is resolved.

Performance degradation of any particular node is detected based
on a comparison with the cluster’s global state. The mitigation
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Table 1: Durability incidents that we observed in our test and production environments.

Storage corruption Storage corruption at the leader can cause it to trim the prefix of its log. The trimming forces its followers to
also trim their log leading to data loss even though Kafka’s internal data replication is working correctly.

Metadata divergence In our test environment, we observed data loss caused by the divergence in tiered storage metadata between
leaders and followers. The divergence was triggered by failure to persist an update to storage.

Configuration update
bug

A bug in applying Kafka’s dynamic configuration settings caused spurious changes in the retention time for
some topics.

Race condition in up-
dating log-start-offset

log-start-offset tracks the starting point of non-garbage-collected log. We found a race condition in updating it
that was causing Kafka to prematurely delete records.

strategy for such cases is to move the broker out of the ISR for
its partitions but allow it to continue replicating data. This auto-
matically both migrates leadership away from the broker but also
ensures that it is not in the critical path of requests so that its high
latency does not impact clients.

As an additional fail-safe, in case the automatic mitigation does
not work, the system will notify a human operator to take manual
action. We have further implemented tooling to assist them in such
situations.

We have thoroughly analyzed a couple of zonal outages involv-
ing storage unavailability and observed that automated mitigation
worked as designed and minimized unavailability. Similarly, during
a 30 day interval, our degradation detection mechanism identified
and automatically handled 12 cases of transient hardware degrada-
tion across 3major cloud providers. Thanks to these improvements,
we were able to improve our uptime SLA from 99.95% to 99.99% for
multi-zone clusters and likewise, have a significant impact on our
internal performance SLA.

4.6 Ensuring data durability
Our customers trust us to keep their business-critical data safe.
While techniques such as replication, data scrubbing, and usage of
a high-durability object store go a long way in ensuring durability,
they fall short of fulfilling the guarantee users demand: that their
data will be safe despite regional outages, cloud-provider outages,
software bugs, disk corruption, memory corruption, misconfigu-
rations, and even operator errors. Indeed, at the scale at which
we operate, we observe these issues on a regular cadence. Table 1
shows a set of incidents that we observed in our test and produc-
tion environments over the last few years. Notably, this summary
doesn’t include operator errors where the customer accidentally
deleted their data.

Unsurprisingly, it is challenging to ensure durability in face
of this broad category of potential issues. Kora provides three key
protections to protect customer data. To safeguard against cloud and
regional failures, Kora offers Confluent’s customers the ability to set
up seamless replication between distinct Kafka clusters, allowing
them to failover to the backup cluster if the primary cluster suffers
an outage. To guard against operator errors, misconfigurations,
or bugs wiping out data, Kora implements backup and restoration
infrastructure leveraging highly durable object storage. Finally, to
protect against arbitrary bugs, Kora performs continual durability
audits to validate our data and metadata state against a suite of data
integrity invariants implemented by an audit engine.

4.6.1 Global replication using Cluster Linking. Kora’s cluster linking
allows replicating all data and all metadata state in a seamless
manner across two independent Kafka clusters. These source and
destination clusters can be in different regions for tolerance against
regional failures, in different continents for major disaster recovery
plans, or even in different cloud providers. Furthermore, because all
relevant metadata is replicated between the source and destination
clusters, the failover can be executed by simply pointing the clients
to the new cluster endpoint. All their API keys, offsets, and partition
states are preserved during the failover. For example, consumers
can continue reading from the last committed offset upon failing
over to the new cluster.

The key enabler for achieving this seamless experience is that
we have leveraged the native Kafka replication protocol to repli-
cate data between source and destination clusters. Because a lot
of metadata is already organized as internal topics, this naturally
facilitates the replication of metadata as well.

4.6.2 Backup and restore. Our backup and restore infrastructure
keeps a backup of all tiered data and associated metadata for a
configurable number of days. Thus, if a user discovers that they have
accidentally deleted their business-critical data, they can contact
us and we can recover a prefix of the log. Notably, since the only
knob we expose to the users is retention time, users can only delete
a prefix of the log. It is also noteworthy that we can only recover
a prefix of the log via this mechanism; if a suffix including a non-
tiered log is lost, we cannot recover it yet as the metadata state for
a non-tiered log is more complex to recover.

4.6.3 Audit infrastructure. The goal of our audit infrastructure
is to (a) catch bugs before they hit production and (b) discover
data loss incidents in a timely manner so that their impact can
be mitigated. It works as shown in Figure 7. All operations that
change the consistency-related metadata state (e.g., log-start-offset,
which tracks the starting offset of a log) will be logged as an audit
event in a durability audit database. Periodically, typically at a daily
cadence, a batch job goes through all collected audit events and
validates them for consistency. For example, the validation might
ensure that log-start-offset increments are aligned with the user’s
retention policy of 𝑋 days. If the increment is larger, an alert is
issued that prompts our engineers to take mitigating actions and
escalate to customers. Because Kafka replicates data, in many cases,
a timely alert can actually help us save data by either demoting
a corrupt leader, letting the follower take over, or through other
manual operations that reset the state of the corrupted broker.
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Figure 7: Durability Audit Infrastructure.

The intuition behind our auditing approach is simple: the Kafka
broker is fairly complex and is constantly being evolved to add
more features and improvements. In contrast, the audit engine is a
very simple state machine that runs through a set of relatively static
rules and policies. We use the static and robust audit state machine
to catch invariant and policy violations in the Kafka code. Auditing
has helped us identify critical bugs in our staging infrastructure,
saving customers critical data. Additionally, the use of our audit
infrastructure in production has enabled us to catch durability
lapses before they could cause damage.

4.7 Upgrades
Upgrading software is critical for continuous improvement and
innovation in our core service. The key challenge is how to do it
safely. Indeed, prior to our investment in this area, upgrades were a
major source of customer escalations due to associated high latency
and transient unavailability. Notably, though we have improved the
situation significantly, work is still ongoing to make the underlying
Kafka protocol more robust to software upgrades.

For the production deployment, we follow the industry’s best
practices such as rolling upgrades, limiting the number of active
versions in the fleet, and staging the upgrades. Specifically, we
group brokers based on their availability zone (AZ). Our roll process,
which restarts the brokers with an upgraded software, is facilitated
by a platform manager and works as follows. We roll brokers in a
zonal order; thus, brokers from two different zones are never rolled
together as that can cause the unavailability of partitions whose
replicas are hosted on those brokers. Within a zone, we can roll
multiple brokers together as our placement logic guarantees that
no partition will have multiple replicas in the same AZ. However,
for capacity reasons, we still limit the number of brokers that are
rolled simultaneously. For smaller clusters, we typically roll just
one broker at a time. For larger clusters, we roll a few brokers in
parallel to ensure that the end-to-end roll time for a cluster, when
the cluster is in elevated load mode, stays bounded.

We have added a lot of instrumentation and monitoring to en-
sure that each rolled broker is fully online and functional (from a
replication perspective) before we proceed to roll the next set of
brokers. This ensures that our desired number of offline brokers is
not compromised. Given that the risk of unavailability increases
with the time taken to upgrade a cluster, we have also invested a
lot of effort in the optimization of bottlenecks (e.g. log recovery) in
the critical path of restarting a broker.

The use of a semi-automated platform manager encoding the
above approach has enabled frequent fleet upgrades, allowing for
faster innovation and rapid patching of security vulnerabilities and
performance regressions. In contrast, upgrading a core service such
as Kafka is so challenging and disruptive that many large users
of self-hosted Kafka clusters operate the same version of code for
several months to a few years before upgrading.

5 MULTI-TENANCY
The economies of scale that multi-tenancy offers also enables a true
cloud-native experience: higher levels of abstraction, elasticity, and
a pay-as-you-go model. It is cost-efficient to keep extra capacity
to accommodate spikes in demand because the cost is amortized
among many tenants sharing the same physical cluster. This elas-
ticity enables event streaming workloads to scale their ingress and
egress bandwidth without provisioning additional capacity and pay
only for what they use.

When a user creates a cluster with a multi-tenant configuration,
it shares the same physical resources with other tenants. As de-
scribed in section 3.2, we use a logical unit of provisioning known
as Logical Kafka Clusters (or LKCs). Each LKC is restricted by limits
on the number of partitions, ingress/egress bandwidth, CPU usage,
and connection rate. The underlying Physical Kafka (or PKCs) are
also protected by aggregate limits to prevent resource exhaustion.
Tenant workloads can scale to the maximum bandwidth as long as
they stay within other limits, and capacity can be added to the PKC
as needed.

5.1 Logical Cluster as a Unit of Isolation
The LKC is both an abstraction and a unit of data and performance
isolation. This design unifies both dedicated and multi-tenant ser-
vices in a consistent user experience. A dedicated cluster is a multi-
tenant cluster with just one tenant. It also brings the benefit of
isolation to internal services. We use a separate LKC for our health
check agent to limit its resource usage and to isolate its state. Simi-
larly, internal state used within Kafka itself, such as consumer offset
storage, is protected through LKC isolation.

Data isolation for an LKC is achieved with authentication (via
API keys), authorization, and encryption. Namespace isolation is
not natively supported in Kafka. Kora supports namespacing by
annotating each cluster resource (topics, consumer groups, ACLs,
etc.) with the respective logical cluster ID, a unique identifier for each
LKC. To make this namespacing transparent to the clients accessing
a logical cluster, we implemented an interceptor in the broker to
annotate requests dynamically using the logical cluster ID, which
gets associated with a client connection during authentication.

Figure 8 illustrates this with an example of two logical clusters,
lkc-bee71e and lkc-c0ffee, with clients connected to a Kafka broker
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Figure 8: Logical cluster namespace isolation.

in Kora. From the client’s perspective, resources such as topics are
named just as in any other Kafka cluster. The interceptor attaches
a logical cluster ID to the request and ensures that each request can
only access the resources owned by that tenant.

5.2 Performance Isolation
Even though a logical cluster (tenant) can share the physical cluster
with other tenants, a cloud-native service must provide the experi-
ence of a dedicated cluster in terms of availability and performance.
This is especially challenging in cloud-native systems with a pay-as-
you-go model and a high density of tenants, needed to achieve good
hardware utilization. Kora’s multi-tenant clusters host thousands of
tenants and any tenant’s workload can experience transient spikes
or permanent scale-up at any time.

We achieve performance isolation by enforcing tenant-level quo-
tas on various resources: ingress and egress bandwidth, CPU usage,
number of connections and connection attempt rates, quotas on
workload behaviors impacting memory usage, and quota on parti-
tion creations/deletions to avoid overloading the Kafka controller.
CPU usage by a tenant is approximated as the time the broker
spends processing requests from that tenant.

The tenant-level quota is distributed among the brokers hosting
the tenant. Each broker enforces their portion of the tenant quota
independently. For example, tenant A in Figure 9 has a total quota
of 100MB/sec which is distributed among brokers 1, 2, and 3. In
practice, for a quota enforcement mechanism to effectively isolate
tenants, we need to address two issues: 1) oversubscribed tenants
may cause brokers to be overloaded; and 2) the workloads may shift
usage over time between different brokers.

5.2.1 Back Pressure and Auto-Tuning. With the pay-as-you-gomodel,
multi-tenant physical clusters are oversubscribed as most of the
tenants use much less than the maximum bandwidth capacity of
their logical cluster. However, any tenant’s usage may spike at any
time. Each broker is shared among multiple tenants, and if the de-
mand spikes, it is possible that tenants in aggregate would need
more capacity than is available on the broker. Overloaded brokers
may cause high latency, timeouts, or unavailability for all tenants.

We address this issue by setting safe broker-wide limits on spe-
cific resources such as ingress and egress bandwidth, CPU, and
connection rate. Once a specific limit is reached, the broker starts
backpressuring requests or connections, depending on the limit
reached, for all the tenants. This state is temporary: the high re-
source usage on a broker normally triggers a rebalance operation

Figure 9: Quota system using bandwidth as an example.

to even out load, or, in rare occasions, when the whole cluster is
close to capacity, the multi-tenant cluster gets expanded to support
the higher overall demand.

Backpressure is achieved via auto-tuning tenant quotas on the
broker such that the combined tenant usage remains below the
broker-wide limit [17]. The tenant quotas are auto-tuned propor-
tionally to their total quota allocation on the broker. This mecha-
nism ensures fair sharing of resources among tenants during tem-
porary overload and re-uses the quota enforcement mechanism for
backpressure.

The broker-wide limits are generally defined by benchmarking
brokers across clouds. The CPU-related limit is unique because
there is no easy way to measure and attribute CPU usage to a
tenant. Instead, the quota is defined as the clock time the broker
spends processing requests and connections, and the safe limit is
variable. So to protect CPU, request backpressure is triggered when
request queues reache a certain threshold.

5.2.2 Dynamic Quota Management. A straightforward method for
distributing tenant-level quotas among the brokers hosting the ten-
ant is to statically divide the quota evenly across the brokers. This
static approach, which was deployed initially, worked reasonably
well on lower subscribed clusters. Naturally, as clusters scaled, the
static approach proved increasingly ineffective. This was especially
true for imbalanced workloads with hot partitions which some-
times shift over time. Each broker’s quota share may end up being
relatively small, so imbalanced workloads may cause some brokers
to throttle excessively, even when overall cluster usage is below
the tenant-wide quota.

Kora addresses this issue by using a dynamic quota mechanism
that adjusts bandwidth distribution based on a tenant’s bandwidth
consumption. This is achieved through the use of a shared quota
service to manage quota distribution, a design similar to that used
by other storage systems [15]. As shown in Figure 9, this is ac-
complished by periodically publishing per-tenant and per-broker
bandwidth consumption data and associated throttling information
to the quota coordinator. The quota coordinator then aggregates
this data, recalculates the quota for each broker-tenant pair, and dis-
tributes it to the relevant brokers at configurable intervals. The cal-
culated bandwidth is subject to the existing auto-tuning mechanism
at the broker level, which may adjust the bandwidth downward to
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Figure 10: Cell Architecture.

avoid overloading the broker. To accommodate large multi-tenant
environments, multiple quota coordinators are deployed, and each
quota entity is mapped to a coordinator via deterministic hashing.

A potential drawback of the feedback loop described above is
its sensitivity to workload fluctuations. If the throughput on a
partition varies significantly and unpredictably within a short time
span, the dynamic quota algorithm may cause frequent and brief
throttling events, which can degrade the tail latency of the system.
To mitigate this issue, we implemented lazy throttling, a technique
that postpones the throttling decision for a tenant until its cluster-
wide usage exceeds a certain threshold relative to its tenant quota.

When we switched from a static to a dynamic quota distribution,
the percentage of tenants that could achieve the 99.95% bandwidth
service level objective (i.e., 5 minutes of total throttled time per
week) increased from 99% to over 99.9%.

5.3 Isolation at scale
Kafka distributes the replicas of a topic across all brokers in a cluster
to maximize topic throughput. In a cloud-native system, thousands
of tenants share the same multi-tenant cluster and each tenant can
be relatively small in comparison to the total cluster capacity. Hence,
this basic topic distribution approach results in an unnecessary
collocation of most of the tenants on every broker leading to several
issues: (a) huge blast radius during failures, (b) manageability issues
as failures are more common during cluster upgrades, and (c) less
efficient use of cluster resources since spreading tenants thinly
across the cluster results in more connections and requests.

Our solution is to restrict each tenant to a subset of brokers
known as a cell. The brokers in each cell are evenly distributed
across availability zones for high availability as shown in Figure 10.
Each tenant is assigned to a particular cell, though this assignment
can change over time. When a tenant creates a topic, its partitions
are distributed across all the brokers within the cell. The cell size
is selected to ensure that it can at least support the maximum
bandwidth and other requirements of a single logical cluster.

When the demand from the tenants in a cell grows, causing
the cell to reach its capacity, some tenants are moved to a less
loaded cell. If no such cell is available, the cluster is expanded to
create a new cell. We track the load of a cell using a cell load metric
computed as the maximum of the average broker load, replica count
utilization, and bandwidth utilization across the brokers in the cell.

When a new tenant is placed on the cluster, our tenant placement
mechanism chooses two available cells at random and assigns the

tenant to the cell with the lower load. The advantages of this algo-
rithm have been extensively studied[1, 2]. Given that we have no
knowledge of tenant load during tenant creation, this mechanism
allows us to favor cells with a low load but avoid placing all tenants
in a single least loaded cell which might create hotspots.

With our cellular design, we are able to scale Kafka clusters
modularly, starting with a small cluster and adding more capacity
as customers need it. Clusters with thousands of tenants are more
costly to provision and benchmark; in contrast, cells are smaller,
thus cheaper to provision and benchmark on a continuous basis.
Because inter-broker replication traffic is limited to brokers within
the same cell, we are able to scale almost linearly as we add more
cells and tenants.

In addition to reducing the blast radius during failures and im-
proving manageability, cells help workloads use cluster resources
more efficiently. Cells help reduce the number of connections and
help improve batching on the client side because partitions are
distributed among a smaller number of brokers. To illustrate this
point, we set up an experimental 24 broker cluster with 6-broker
cells. We deployed 4 tenants, each with 2 topics of 24 partitions
and 2 topics of 240 partitions. Each topic had one producer, gener-
ating 50k messages per second, and one consumer. Without cells,
typically, each broker would have at least one partition from every
tenant and clients would have to connect to every broker. With
cells, clients connect only to brokers in the cell hosting that tenant’s
partitions. When we ran the benchmark, the cluster load with cells
was 53% compared to 73% without cells.

6 CONCLUSION
Event streaming systems are an increasingly critical infrastructure
and are undergoing a shift to cloud-based services which offer
more elasticity, scalability, manageability, and cost efficiency. In
this paper, we presented Kora, the cloud-native event streaming
system platform based on Kafka that powers Confluent Cloud. Kora
is built on the following foundations: a tiered storage layer to im-
prove cost and performance, elasticity and consistent performance
through incremental load balancing, cost effective multi-tenancy
with dynamic quota management and cell-based isolation, con-
tinuous monitoring of both system health and data integrity, and
clean abstraction with standard Kafka protocols and CKUs to hide
underlying resources.
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