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ABSTRACT
Predictive autoscaling is a key enabler for optimizing cloud resource
allocation in Alibaba Cloud’s computing platforms, which dynami-
cally adjust the Elastic Compute Service (ECS) instances based on
predicted user demands to ensure Quality of Service (QoS). How-
ever, user demands in the cloud are often highly complex, with
high uncertainty and scale-sensitive temporal dependencies, thus
posing great challenges for accurate prediction of future demands.
These in turn make autoscaling challenging—autoscaling needs
to properly account for demand uncertainty while maintaining a
reasonable trade-off between two contradictory factors, i.e., low
instance running costs vs. low QoS violation risks.

To address the above challenges, we propose a novel predic-
tive autoscaling frameworkMagicScaler, consisting of a Multi-scale
attentive Gaussian process based predictor and an uncertainty-
aware scaler. First, the predictor carefully bridges the best of two
successful prediction methodologies—multi-scale attention mecha-
nisms, which are good at capturing complex, multi-scale features,
and stochastic process regression, which can quantify prediction
uncertainty, thus achieving accurate demand prediction with quan-
tified uncertainty. Second, the scaler takes the quantified future
demand uncertainty into a judiciously designed loss function with
stochastic constraints, enabling flexible trade-off between running
costs and QoS violation risks. Extensive experiments on three clus-
ters of Alibaba Cloud in different Chinese cities demonstrate the ef-
fectiveness and efficiency of MagicScaler, which outperforms other
commonly adopted scalers, thus justifying our design choices.
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1 INTRODUCTION
Cloud computing [26, 28, 34, 37] is an emerging computing para-
digm that provides a plethora of resources, including CPUs, GPUs,
storage, databases, and analytics, etc., over the “cloud.” Cloud com-
puting providers manage the hardware and software, creating a
flexible and scalable environment that can be customized to meet
specific user demands. A vital component of cloud computing is In-
frastructure as a Service (IaaS) [6, 15, 23, 31], which offers on-demand
access to virtualized computing resources on a pay-as-you-go basis,
enabling users to run applications independently on the cloud.

As a basic unit falling under the IaaS umbrella, Alibaba Cloud’s
Elastic Compute Service1 (ECS) accommodates instances with spe-
cific hardware configurations, providing an easy-to-operate scaling
interface. One of the key operations in ECS is autoscaling, which
elastically adds or deletes ECS instances to meet constantly chang-
ing user demands [25, 45]. As illustrated in Figure 1, the white bars
represent the user demands for ECS instances at different times-
tamps, and the red line represents the amount of ECS instances
provided by the cloud. Traditional autoscaling strategies fall into
two extremes. The conservative strategy in Figure 1(a) provides a
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Figure 1: Three easy-to-understand autoscaling strategies: a)
conservative strategy: high costs, low QoS violation; b) pas-
sive strategy: low costs, high QoS violation; c) ideal strategy:
low costs, low QoS violation.

safely high enough number of ECS instances based on historical
demand statistics to ensure users’ demands are always met, but this
results in a significant waste of resources, incurring high running
costs. On the other extreme, a passive strategy shown in Figure 1(b)
adjusts the number of ECS instances in a timely manner based
on instantaneous user demands, resulting in a decrease in Qual-
ity of Service (QoS). This is mainly due to the cold launching of
instances—it takes some time to launch new instances to increase
the capacity of the cloud.

Predictive autoscaling is closer to the ideal strategy shown in
Figure 1(c), which offers an alternative solution by using a fore-
casting model to predict future demands, thus enabling launching
ECS instances in advance to avoid cold launching. Although such
researches are being studied [1, 2, 17, 30, 45], they cannot be directly
applied to our scenario due to the following three limitations.

L1: Lack Support to Uncertain Demands. Existing meth-
ods [1, 30, 45] tend to focus on deterministic predictive autoscaling,
and their forecasting module may not successfully predict the un-
certain demands, which are common in Alibaba Cloud. For exam-
ple, Figure 2 describes the 25-day demand fluctuation of a specific
Cluster-HZ, and it is highly uncertain. The reason for these highly
uncertain fluctuations is that the cluster-level demand is the sum
of all user-level demands (a public cloud cluster provides multi-
tenant mode), and these heterogeneous users may have completely
inconsistent behavior patterns. This brings great challenges to the
implementation of predictive autoscaling. That is, if the high uncer-
tainties are not properly accounted for, the incorrect deterministic
demand prediction may lead to wrong decisions of ECS autoscaling,
ultimately impacting the QoS. To address this issue, a predictive
autoscaling framework that considers uncertainties in both the
demand prediction and autoscaling phases would be sensible.

L2: Ignore Scale-sensitive Dependencies. Consider the exam-
ple presented in Figure 2, which examines the minute, hour, and
day-level demand variations of the Cluster-HZ in Alibaba Cloud.
Obviously, none of them has explicit periodicity, which makes tra-
ditional forecasting algorithms based on periodic detection fail
to obtain valid periodic information on series of any single scale.
Therefore, the predictive autoscaling framework based on a single
scale cannot achieve accurate autoscaling. According to this insight,

it is meaningful to consider two kinds of temporal dependencies—
one is the dependence between scales (inter-scale) and the other
is the dependence within a single scale (intra-scale). We call the
combination of these two scale-sensitive dependencies, which has a
great potential to capture the complex fluctuations of uncertainty,
thereby improving the accuracy of predictive autoscaling.

L3: Fail to Adapt to Specific Business Scenario. Although
existing scalers such as [25, 45] have demonstrated significant per-
formance improvements for instance scaling, they do not take into
account more specific and complex business scenarios. For example,
in Alibaba cloud, each instance may be in the launching, running,
and draining phases, each of which takes time and incurs a differ-
ent cost. Additionally, when an instance is in the draining stage, it
can be re-launched immediately. However, most scalers simplify
these real-world scenarios when building their formal modeling. In
particular business contexts, the occurrence of novel conflicts may
arise, particularly in cases where a sudden decline in customer de-
mand is promptly succeeded by an abrupt surge. Should instances
be drained or launched in real-time, contingent upon customer
demand, the consequential expenses of replacing resources may
prove substantial. Conversely, upholding the current number of
instances can engender augmented costs associated with resource
utilization. Regrettably, the inadequacies of simplified modeling fre-
quently overlook the intricacies inherent to the particular business
scenario at hand. To this end, our MagicScaler aims to incorporate
demand forecasting uncertainties to balance instance cost and QoS
by considering these complexity factors in real business scenarios.

Contributions. To address the above limitations, we propose
a novel predictive autoscaling framework MagicScaler, consisting
of a Multi-scale attentive gaussian process based predictor and
an uncertainty-aware Scaler. First, the predictor carefully bridges
the best of two successful prediction methodologies—multi-scale
attention mechanisms, which are good at capturing complex, multi-
scale features, and stochastic process regression, which is able to
quantify prediction uncertainty, thus achieving accurate demand
prediction with quantified uncertainty levels. Second, the scaler
takes into account the quantified future demand uncertainty into
a judiciously designed loss function with stochastic constraints
considering the flexible trade-off between running costs and QoS
violations. In the end, we list our contributions as follows:

(1) We design a novel multi-scale attentive Gaussian process
based predictor to accurately predict future demands with
quantified uncertainty. The predictor leverages a two-stage
(i.e., internal vs. external) multi-scale feature extraction to
capture scale-sensitive temporal dependencies and a Gauss-
ian process on top of the extracted multi-scale features to
enable accurate future uncertain demand prediction.

(2) We develop an uncertainty-aware scaler, which internalizes
predicted uncertainty via stochastic constraints on different
tolerance levels of QoS violations, achieving flexible trade-
offs between running costs and QoS violations.

(3) Extensive experiments are reported for both demand pre-
diction and autoscaling, demonstrating our proposal’s ef-
fectiveness and efficiency.
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Figure 2: ECS demand time series of Alibaba Cloud’s cluster-HZ at different scales. *Magnitude is eliminated for privacy

2 RELATED WORK
2.1 Time Series Forecasting
Various methods for time series analytics, including forecasting, ex-
ist, such as statistical methods, deep learning methods, etc. [7, 8, 11–
14, 19, 20, 32, 39, 43, 44, 46, 50]. For the sake of brevity, we start with
the most advanced Transformer-based methods. Transformer [35]
models are well suited for time series forecasting since they can
capture long-term dependencies in the data, as well as short-term
correlations. By using transformer models, predictive scheduling
algorithms can make accurate and efficient predictions about future
workloads and enable better decisions with resource allocation.

More recently, time-series Transformers [40, 42, 47] were intro-
duced for the forecasting task by leveraging self-attention mecha-
nisms to learn complex patterns and dynamics from time series data.
Binh and Matteson [33] propose a probabilistic, nonautoregressive
transformer-based model with the integration of state space mod-
els. The original quadratic complexity was reduced to 𝑂 (𝐿𝑙𝑜𝑔𝐿)
by introducing sparsity into the attention mechanism with the
ProbSparse attention of the Informer model [48], and the logSparse
attention mechanism. While such attention mechanisms operate
on a point-wise basis, Autoformer [22] used a cross-correlation-
based attention mechanism to operate at the level of subsequences.
Triformer [10] introduces a novel patch attention with linear com-
plexity. When stacking multiple layers of the patch attentions, a
triangular structure is proposed such that the layer sizes shrink
exponentially, thus maintaining linear complexity. FEDformer [49]
employs frequency transform to decompose the sequence into mul-
tiple frequency domain modes to extract the feature, further im-
proving the performance of Autoformer. However, there are often
certain patterns in public data sets that are easy to mine (such as the
laws of weather and the spatiotemporal characteristics of electric-
ity), whichmakes these state-of-the-art models achieve near-perfect
results on them. However, these methods may not achieve satisfac-
tory results when faced with rarely regular and highly uncertain
demand sequences.

2.2 Predictive Autoscaling
Predictive autoscaling is used to dynamically add or delete com-
puting resources, such as instances, CPU, and memory, in order
to closely match the ever-changing computing demand. This tech-
nique is essential for efficient resource utilization with satisfactory
QoS in cloud computing. Predictive autoscaling algorithms use fore-
casting models to predict the future workload and make decisions
regarding resource allocation and scheduling.

Existing autoscalers generate scaling decisions based on con-
trol theory, reinforcement learning, queuing theory, and rule-based

methods [4, 5, 9, 24, 27, 41]. Most of these methods either make scal-
ing decisions based on a mean demand estimation without consider-
ing uncertainty or handle uncertainty in a heuristic way. For exam-
ple, model predictive control is adopted for predictive autoscaling
in [30] which utilizes ARMA model for workload forecasting and
look-ahead controller for resource allocation without considering
uncertainty. The autoscaling scheme RobustT2Scale [18] integrates
a fuzzy controller with an online learning mechanism that can cope
with uncertainties but is not general enough to handle variable pe-
riodic patterns [16, 38]. Instead, we directly incorporate workload
uncertainty into scaling decisions via stochastic constraints that are
expressive of QoS requirements to derive robust scaling decisions.

Recently, Qian et al. proposed a new autoscaling framework
called RobustScaler [25] that uses non-homogeneous Poisson pro-
cesses (NHPP) modeling and stochastically constrained optimiza-
tion to achieve a superior trade-off between instance cost and
quality of service (QoS). However, it is important to note that Ro-
bustScaler is designed for scaling-per-query scenarios, which is
different from the scaling-per-cluster scenario in this study. In the
context of scaling-per-query scenarios, instances are typically ter-
minated after the completion of a single query, and their utilization
is not extended to accommodate subsequent queries. However, our
scenario diverges as our instances possess the inherent capacity
for reuse across multiple queries. In a similar vein, Xue et al. [45]
proposed an end-to-end predictive meta-model-based reinforce-
ment learning (RL) algorithm to maintain stable CPU utilization
in the cloud. Their method uses a deep attentive periodic model
to predict workload and compute CPU utilization through the At-
tentive Neural Process. Finally, the model-based RL is used to find
the best scaling decider. However, this approach does not account
for uncertainties in CPU utilization prediction and the impact of
service-level agreements (SLAs), making it unsuitable for deploy-
ment in real-world cloud services. Remarkably, both RobustScaler
and RL-based scalers overlook the complexities of various business
scenarios where each instance may be in launching, running, or
draining phases with different costs. If an instance is in the drain-
ing phase, it can be immediately relaunched. As a result, neither
RobustScaler nor RL-based scalers are suitable for this scenario, and
thus, we did not use them as baseline methods.

3 PRELIMINARIES
3.1 Problem Definition
We first introduce key concepts in autoscaling.

• Instance: An instance is the basic unit of resource sched-
uling in an ECS. An instance contains a specific hardware
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configuration (e.g., 2-core CPU, 4GB memory). Both supply
and demand are specified by the number of instances.

• Demand series: A time series consists of the number of
instances that users demand at each timestamp.

• Supply series: A time series consists of the number of
instances provided by an ECS at each timestamp.

Based on the above concepts, our problem is defined as follows.
At a specific timestamp 𝑡 , given a historical demand time series
D𝑡−𝐻+1:𝑡 covering the previous 𝐻 timestamps, we aim to recom-
mend an optimal supply series S𝑡+1:𝑡+𝐹 over the future 𝐹 times-
tamps such that both the resource cost and QoS loss are minimized.

(1) Resource Cost: The life cycle of an instance is divided
into three phases—launching, running, and draining. The
instance can only be used during the running phase and
is unavailable during the scaling phases, i.e., launching
and draining. However, the scaling phases also have costs.
Thus, the resource cost of an instance consists of two main
components, namely the running cost and the scaling cost.

(2) QoS Loss: When using cloud services, customers often
have different QoS requirements specified through Service
Level Agreements (SLAs) with the service providers. In this
paper, we define QoS Loss as the number of instances that
do not meet customer SLA requirements per timestamp.

Based on the above key concepts, we present a comprehensive
two-stage problem delineation.

Probabilistic Demand Forecasting. Given a historical demand time
series at timestamp 𝑡 with a look-back window size 𝐻 , denoted as
D𝑡 = ⟨𝑑𝑡−𝐻+1, 𝑑𝑡−𝐻+2, · · · , 𝑑𝑡 ⟩, probabilistic demand forecast aims
at predicting the demand distribution of the future 𝐹 timestamps, i.e.,
Ŵ𝑡 = ⟨�̂�𝑡+1, �̂�𝑡+2, · · · , �̂�𝑡+𝐹 ⟩, where �̂�𝑡+𝑖 represents the demand
distribution at timestamp 𝑡 + 𝑖 , i.e., the probability distribution of
the number of instances requested by users at future timestamp 𝑡 +𝑖 .
Based on the predicted demand distributions Ŵ𝑡 , we derive D̂𝑡 =〈
𝑑𝑡+1, 𝑑𝑡+2, · · · , 𝑑𝑡+𝐹

〉
, where 𝑑𝑡+𝑖 is the mean value of distribution

�̂�𝑡+𝑖 . D̂𝑡 is used as predicted deterministic demand.

Autoscaling. At timestamp 𝑡 , given the predicted user de-
mand distributions in the future 𝐹 timestamps, i.e., Ŵ𝑡 =

⟨�̂�𝑡+1, �̂�𝑡+2, · · · , �̂�𝑡+𝐹 ⟩, and the current cloud state 𝑆𝑡 , e.g., current
running instances, etc. (ref. to Section 5 for details), MagicScaler
aims to find an optimal scaling action 𝐴∗𝑡 , i.e., launching new in-
stances or closing running instances, such that both the instance
costs and QoS loss risks are minimized.

AutoScale(Ŵ𝑡 , 𝑆𝑡 ) → 𝐴𝑡 , (1)

𝐴∗𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡 (𝐴𝑡 ), 𝑄𝑜𝑆𝐿𝑜𝑠𝑠 (𝐴𝑡 )), (2)

3.2 Gaussian Process Regression
A Gaussian process [29] is a collection of random variables which
follow a joint Gaussian distribution. Gaussian process regression
is a probabilistic regression model based on Gaussian processes.
It learns a mapping function 𝑓 (·) from a multidimensional point
x𝑖 , e.g., the user demands in historical timestamps, to a real value,
e.g., the user demand of the future timestamp, along its probability

Scaler

Predictor

Historical Demand Series

Scaling Decisions

Predicted Future Demand Distribution Series

Markov Decision Process Optimizer

Multi-scale Attentive Feature Extractor

Gaussian Procss Regression Model

Figure 3: Framework overview of the proposed MagicScaler.

distribution. Here, the probability distribution follows Gaussian
distributions. Formally, we have 𝑓 (x𝑖 ) ∼ N (𝜇𝑖 , 𝜎2𝑖 ).

Assume that we have 𝑃 training data (x1:𝑃 , y1:𝑃 ), where (x𝑝 , y𝑝 )
represents a specific training data at timestamp 𝑝 and 1 ≤ 𝑝 ≤ 𝑃 .
More specifically, x𝑝 is the user demands in a historical timewindow
from timestamp 𝑝 back to timestamp 𝑝 −𝐻 + 1, and y𝑝 is the user
demand at 𝑝 + 1, i.e., the demand of the next timestamp. Based on
the Gaussian process modeling, we derive the joint distribution of
the 𝑃 training data as:

f (x1:𝑃 ) ∼ N (𝑚(x1:𝑃 ),K(x1:𝑃 , x1:𝑃 )), (3)

where𝑚(·) is the mean function, and K is the covariance matrix
derived from the kernel function𝜅 (x𝑖 , x𝑗 ). A generally used kernel𝜅

is the squared exponential kernel: 𝜅 (x𝑖 , x𝑗 ) = 𝜃 𝑓 exp
(
−

��� (x𝑖−x𝑗 )22Θ2

���)
with variance Θ2, scaled by the parameter 𝜃 𝑓 of the observations.

In the inference phase, we take the above Gaussian joint distri-
bution as a prior. Given user demands in a new window x∗, the
predicted demand distribution at the next timestamp is modeled as
a posterior distribution:

𝑓 (x∗) ∼ 𝑵 (𝜇 (x∗), 𝜎2 (x∗)), (4)

where
𝜇 (x∗) = 𝜅 (x∗, x1:𝑃 )K(x1:𝑃 , x1:𝑃 )−1f (x1:𝑃 )

𝜎2 (x∗) = 𝜅 (x∗, x∗) − 𝜅 (x∗, x1:𝑃 )K(x1:𝑃 , x1:𝑃 )−1𝜅 (x∗, x1:𝑃 )𝑇

More specifically, the Gaussian process predicts the demand
in the next timestamp by following a Gaussian distribution
𝑵 (𝜇 (x∗), 𝜎2 (x∗)). When we need to make predictions for the next
𝐹 timestamps, we iteratively call the Gaussian process predictor 𝐹
times in an auto-regressive manner.

3.3 Overview of Framework
Figure 3 illustrates the overview of the proposal. Specifically, Mag-
icScaler consists of two main components—a predictor (described
in Section 4) and a scaler (described in Section 5).

(1) Predictor: The predictor first employs a multi-scale at-
tentive feature extractor (MAFE) to capture multi-scale
features from historical demand series. The extracted fea-
tures, instead of the raw demand time series, are fed into a
Gaussian process regressionmodel to predict future demand
distribution series.
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Figure 4: The overall workflow of the Predictor module.

(2) Scaler: The scaler takes as input the predicted future de-
mand distributions and models the scaling decisions into
a Markov decision process. Finally, by considering the in-
stance costs and QoS violation risks, the scaler returns the
final scaling decisions, i.e., launching new instances or delet-
ing existing instances.

4 THE PREDICTOR
Figure 4 describes the overall workflow of the predictor. The input
of the predictor is the historical demand series D𝑡 . Multi-scale
features 𝜉𝑡+1 are extracted through both internal and external multi-
scale attentive feature extractors (MAFE). Then, 𝜉𝑡+1 is fed into
the Gaussian process regression (GPR) model, which derives the
predicted Gaussian distributions of the next timestamp 𝑡 + 1. In the
following, we elaborate on the MAFE and GPR modules in details.

4.1 Multi-scale Attentive Feature Extractor
Integrating information at different time scales is essential to model
and forecast time series accurately. Consider the example presented
in Figure 2, which examines the minute, hour, and day-level demand
variations of specific Cluster-HZ in Alibaba Cloud. None of them
have explicit periodicity, which makes traditional forecasting algo-
rithms based on periodic detection unable to obtain valid periodic
information on series of any single scale series. In the context of
Section 1, we have showcased the critical characteristic of predic-
tive autoscaling in the cloud computing service, motivating us to
improve forecasting accuracy. Therefore, we propose a two-phase
Multi-scale Attentive Feature Extractor (MAFE) to capture scale-
sensitive dependencies, which is mainly divided into an external
phase External-MAFE and an internal phase Internal-MAFE.

4.1.1 External-MAFE. We first propose the External-MAFE to cap-
ture inter-scale dependencies, which improves the stability of the
prediction effect via correlations between scales. For example, if
the time series at several scales all reflect a traffic peak at a certain
time period, a real traffic peak would happen with high likelihood.
As shown in Figure 5, External-MAFE takes a raw time series as
input and generates its sub-series at different scales, where the raw
time series is regarded as the input with the finest scale (marked
as white circles) while the other sub-series are down-sampled by
the average pooling technique (marked as circles with different
colors). By refining the extracted features from coarse to fine, the
correlation between different scales will be captured.

The External-MAFE starts from the bottom, i.e., the input time se-
ries with the coarsest-scale time series (marked as blue). We directly
obtain the features extracted by Internal-MAFE (to be detailed in

Internal-MAFE (1) 

Internal-MAFE (2) 

Internal-MAFE (3) 

Internal-MAFE (4) 

Fusion

Fusion

Fusion

Po
ol

in
g

ℏout,1

ℏout,2

ℏout,3

�

Figure 5: Design of the External-MAFE module.

Section 4.1.2, which can be regarded as a black-box function for
now). Then, we perform iterative coarse-to-fine steps. At each step,
the input time series needs to be fused with the features from the
previous step, and then fed into a new Internal-MAFE. Algorithm 1
describes the process of External-MAFE. First, we sort the scale list
𝐿𝑠𝑐𝑎𝑙𝑒 in descending order (line 1), taking Figure 5 as an example
where the sorting result is {12, 4, 2, 1}. Thus, the first step we pro-
cess is the sub-series of 𝑠𝑐𝑎𝑙𝑒 = 12. Then, the iterative coarse-to-fine
step (lines 2 ∼ 9) is the same as we described before. The fusion
operation leverages a fully connected neural network to adjust the
dimensionality of the features output from the previous step, and
then concatenates with the input of the current step. Note that
there is no fusion operation in the first step because there is no
output from the previous step. Finally, we get the External-MAFE
feature 𝜉 of the raw time series.

Algorithm 1: External-MAFE
Input: Sequence D = ⟨𝑑1, 𝑑2, · · · , 𝑑𝑛⟩, Scale list 𝐿𝑠𝑐𝑎𝑙𝑒
Output: Feature 𝜉

1 DescendingSort(𝐿𝑠𝑐𝑎𝑙𝑒 );
2 for 𝑖 ← 1 to 𝐿𝑠𝑐𝑎𝑙𝑒 .𝑙𝑒𝑛𝑔𝑡ℎ do
3 D𝑖 = Pooling(D, 𝐿𝑠𝑐𝑎𝑙𝑒 [𝑖]);
4 if 𝑖 = 1 then
5 ℏ𝑜𝑢𝑡,𝑖 = Internal-MAFE (D𝑖 );
6 else
7 D𝑖 =Fusion (D𝑖 , ℏ𝑜𝑢𝑡,𝑖−1);
8 ℏ𝑜𝑢𝑡,𝑖 = Internal-MAFE (D𝑖 );
9 𝜉 = ℏ𝑜𝑢𝑡,𝑖 ;

10 Return 𝜉 ;

4.1.2 Internal-MAFE. We propose the Internal-MAFE to capture
attentive dependencies in a scale (intra-scale dependencies). Un-
like External-MAFE, Internal-MAFE internalizes all hidden features
of different granularity in one shot. Internal-MAFE takes as input
D of a specific scale determined by External-MAFE and returns
the comprehensive coarse-and-fine-grained attentive feature ℏ𝑜𝑢𝑡 .
The intuition behind this is that in highly uncertain time series,
the underlying pattern can only be reflected by the dependence
between data of different granularity. In particular, our Internal-
MAFE includes Fine-grained Augmentationmodule and Hierarchical
Stacking module, as shown in Figure 6(b).
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Figure 6: Design of the Internal-MAFE module.

Hidden Feature Extractor. Before organizing the logic of data
flow within the Internal-MAFE, we first elaborate a basic operator,
namely hidden feature extractor, denoted by 𝐻 (·). As shown in
Figure 6(a), given the input series 𝐷 = ⟨𝑑1, 𝑑2, · · · , 𝑑𝑛⟩, we employ
the attention mechanism [35] to extract the features of 𝐷 . First,
we randomly initialize a learnable feature placeholder ℎ to act as
𝑄 , then 𝐷 = ⟨𝑑1, 𝑑2, · · · , 𝑑𝑛⟩ in the receptive field act as 𝐾 and
𝑉 . Second, we update ℎ iteratively as each 𝐾 attends to 𝑄 using
Equation (5) as follows

ℎ = 𝐻 (ℎ,𝑑) =
{
𝜑

(
ℎ · (𝑑𝑖 ·W𝐾 )𝑇√

𝑑𝑖𝑚

)
(𝑑𝑖 ·W𝑉 )

}𝑛
𝑖=1

, (5)

where 𝜑 (·) means softmax operator. Such a feature extraction ap-
proach differs from pooling-based self-attention, which uses self-
attention that requires 𝑑𝑖 to be treated as 𝑄 , so its complexity
reaches 𝑂 (𝑛2). However, in our solution, only 𝑑𝑖 attends to ℎ is re-
quired in 𝐻 (·), thus 𝐻 (·) just having𝑂 (𝑛) complexity. Also, it does
not need to add an extra pooling layer to reduce the dimensionality
as a feature.

After the basic operator 𝐻 (·) is introduced, we further intro-
duce the sequence-level operator H(·). Its main idea is to split
the sequence into many patches, and then execute 𝐻 (·) for each
patch. Formally, given a patch size 𝑝𝑠 , an input sequence D =

⟨𝑑1, 𝑑2, · · · , 𝑑𝑁 ⟩ can be split into 𝑁 /𝑝𝑠 equal-size patches, each of
which performs an𝐻 (·) operation. However, there is no interaction
between the split patches for a sequence. To compensate for the
reduced temporal receptive field and maintain the temporal infor-
mation flow, we introduce a gating recurrent connection (the blue
arrows in Figure 6(b)) to connect the outputs of the patches as

ℎ𝑖+1 = 𝑡𝑎𝑛ℎ (𝛼1ℎ𝑖 + 𝛽1) ⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝛼2ℎ𝑖 + 𝛽2) + ℎ𝑖+1, (6)

where 𝛼1, 𝛼2, 𝛽1 and 𝛽2 are learned parameters for the recurrent
gates, and ⊙ is an element-wise product. Finally, the hidden feature
sequence of D is generated as

ℏ = H(D, 𝑝𝑠) = (ℎ1, ℎ2, · · · , ℎ𝑁 /𝑝𝑠 ). (7)

Algorithm 2: Internal-MAFE
Input: Sequence D = ⟨𝑑1, 𝑑2, · · · , 𝑑𝑁 ⟩, patch sizes 𝐿𝑝𝑠
Output: Embedding ℏ𝑜𝑢𝑡

1 DescendingSort(𝐿𝑝𝑠 );
2 ℏ0 = H(D, 𝐿𝑝𝑠 [−1]);
3 ℏ0 = CrossScaleEmbedding(D, ℏ0);
4

∑
𝑠𝑘𝑖𝑝 = 0;

5 for 𝑖 ← 1 to 𝐿𝑝𝑠 .𝑙𝑒𝑛𝑔𝑡ℎ do
6 𝑝𝑠 = 𝐿𝑝𝑠 [𝑖];
7 ℏ𝑖 = H(ℏ𝑖−1, 𝑝𝑠);
8 ℏ̂𝑖 = Aggregate (ℏ𝑖 );
9 𝑠𝑘𝑖𝑝 = Linear (ℏ̂𝑖 , 𝑝𝑠);

10
∑
𝑠𝑘𝑖𝑝 =

∑
𝑠𝑘𝑖𝑝 +𝑠𝑘𝑖𝑝 ;

11 ℏ∗ = ReLu(
∑
𝑠𝑘𝑖𝑝 );

12 ℏ𝑜𝑢𝑡 = DNN (ℏ∗);

In the following, we describe the two crucial modules in the
Internal-MAFE.

Hierarchical Stacking. First, we determine the overall hierarchical
structure of Internal-MAFE by specifying a list of patch sizes 𝐿𝑝𝑠 .
For example, in the right half of Figure 6(b), we specify 𝐿𝑝𝑠 = {6, 2}
and the input sequence’s size |D| = 12. This means that we will
stack a two-stage Internal-MAFE, and the stage 1 uses the largest
patch size 𝑝𝑠 = 6 (refer to line 1 of algorithm 2). Then, we obtain
the feature sequence ℏ1 of this stage according to the operation
H(ℏ0, 6), where ℏ0 is derived from D via fine-grained augmentation
(lines 2 ∼ 3). Next, in stage 2, we repeat the same operation on the
feature sequence output by the previous stage, i.e., ℏ2 = H(ℏ1, 2)
(lines 5 ∼ 8). ℏ1, ℏ2 imply the attentive feature semantics of D at
different scales, respectively . In order to capture these multi-scale
semantics, our intuition is to concatenate all the feature sequences
of each stage, and then map to the final representation through
a DNN (fully connected neural network) layer (line 12). In the
implementation of Internal-MAFE, we first aggregate the feature
sequence of this stage into a single one at each stage, and then
obtain the shortest path to the final representation through skip
connections (lines 9 ∼ 11).

Fine-grained Augmentation. Continuing with the previous ex-
ample, when the patch size of the first stage is 6, the fine-grained
information will be lost because only one feature extraction opera-
tion is done for each patch. However, we cannot directly transform
it to 𝐿𝑝𝑠 = {2, 6} either, since this would cause each patch of the
first stage to have only a limited receptive field and not be able to
extract enough information for the next stage. Therefore, it is intu-
itive to make up for the aforementioned information loss without
influencing the next stage. The specific method is shown in the left
half of the Figure 6(b). That is, we select the smallest patch size from
the patch size list 𝐿𝑝𝑠 (It is 2 in this case) and obtain ℏ0 = H(D, 2).
Then, ℏ0 will perform a cross-scale embedding (CSE) with the raw
input data, similar to the fusion operator in External-MAFE.
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4.2 MAFE based Gaussian Process Regression
Gaussian process regression (GPR) can model uncertainty well, and
its Gaussian distribution representation can be obtained for each
timestamp of time series forecasting, as described in Section 3.2.

Given the whole demand time series data for training 𝐷 =

⟨𝑑1, 𝑑2, · · ·𝑑𝐾 ⟩, we use sliding window of size 𝐻 to generate 𝑁
subsequences S = ⟨𝑆1, 𝑆2, · · · , 𝑆𝑁 ⟩ with , where

𝑆𝑖 = ⟨𝑑𝑖 , 𝑑𝑖+1, · · · , 𝑑𝑖+𝐻−1⟩ .

For a subsequence 𝑆𝑖 , we define its future demand 𝑑𝑖+𝐻 as its label,
and build a temporal correlation between a historical subsequence
𝑆𝑖 and a predicted observation 𝑑𝑖+𝐻 for time series forecasting. In
other words, we have 𝑁 training data {𝑆𝑖 , 𝑑𝑖+𝐻 }𝑁𝑖=1 with 𝑑𝑖+𝐻 as
labels. This way, we can use Equation 3 to model the joint distribu-
tions.

In our approach, we leverage the learned multi-scale features
in a Gaussian process regression. Specifically, instead of using the
subsequences 𝑆𝑖 derived from demand time series, we let the sub-
sequences go through the MAFE first to obtain the correspond-
ing multi-scale features 𝑀𝐴𝐹𝐸 (𝑆𝑖 ). Then, we obtain training data
{𝑀𝐴𝐹𝐸 (𝑆𝑖 ), 𝑑𝑖+𝐻 }𝑁𝑖=1, which is used in Equation 3 to build the joint
distributions. GPR achieves the error between the predicted value
𝑑𝑖+𝐻 and the predicted observation 𝑑𝑖+𝐻 through the loss function,
thereby optimizing the parameters in multi-scale attentive feature
extractor and kernel functions.

Given a new subsequence 𝑆∗, inference aims to predict its future
demand distribution using Equation 4. Similarly, we use𝑀𝐴𝐹𝐸 (𝑆∗)
as the input in Equation 4, to derive the future demand distribution.

5 THE SCALER
An effective and efficient autoscaling strategy is crucial for the
elastic scaling of cloud resources, as it helps to control resource
costs and to prevent QoS loss. Figure 7 illustrates the overview of
our framework, including probabilistic demand forecasting, MDP
(Markov decision process), Optimizer, and Scaling Decision Ex-
ecutor. In particular, our framework takes a probabilistic demand
forecasting Ŵ𝑡 as input, which enables uncertain awareness. Subse-
quently, we formulate the user demand scaling problem as Markov
decision process to further capture the uncertainties existing in the
environment. Next, considering MDP optimization is an infinite
Bellman equation optimization problem, we introduce a Receding
Horizon optimal framework, which converts the solution of the
Bellman equation in an infinite time domain to a stochastic pro-
gramming solution in a finite horizons, enabling us to find the
optimal policy to approximate best solution of the Bellman equa-
tion. Finally, based on the policy, our framework conduct scaling
planning to balance the instance cost and QoS by taking launching,
running, and draining into account for each instance.

5.1 Markov Decision Process
Generally, the Markov Decision Process (MDP) can be defined as a
5-tuple (S,A, 𝑟 , 𝑝,𝛾), where S denotes the state space, A denotes
the action space, 𝑝 denotes the transition probability, 𝑟 represents
the reward, and 𝛾 ∈ [0, 1) is the discount factor [45]. To this end,
when given 𝑠 ∈ S and 𝑎 ∈ A, 𝑟 (𝑠, 𝑎) represents the expected
reward, 𝑝 (𝑠′ | 𝑠, 𝑎) is the probability to reach the state 𝑠′ from state

𝑠 by taking action 𝑎. A policy is utilized to select actions in the MDP,
which is represented by 𝜋 . Based on the intuition behind MDP, we
formulate our scaling problem as an MDP. Given the probabilistic
demand forecasting (ref. as to Section 4), we aim at learning optimal
Scaler (i.e., policy 𝜋 ) to continually balance the instance cost (i.e.,
launching, running, and draining cost) and QoS. The goal is to keep
low instance cost with low QoS loss.

5.1.1 MDP for Autoscaling. Considering the real-world business
scenario, we formulate the MDP of scaling strategy as:

State Space S: Sate 𝑆𝑡 = (𝑥𝑡 , 𝑙𝑡 , 𝑠𝑑1𝑡 , 𝑠𝑑2𝑡 , 𝑠𝑑3𝑡 ) ∈ S represents
the state of the Cloud at timestamp 𝑡 , where 𝑥𝑡 ∈ 𝑁 + is the num-
ber of running instances at timestamp 𝑡 , 𝑙𝑡 denotes the number
of instances that cannot be provided due to insufficient resource
provisioning before time 𝑡 . To clarify, the ECS cloud computing
platform has a unique feature where instances can be relaunched
during the “draining period” without incurring any additional scal-
ing costs. Therefore, it is important to keep track of these instances
and determine the number of instances in the draining phase at
timestamp 𝑡 . Typically, the draining phase of an instance lasts for
three timestamps. Thus, we use 𝑠𝑑1𝑡 , 𝑠𝑑2𝑡 , 𝑠𝑑3𝑡 to denote the num-
ber of instances that are in the 1st, 2nd, and 3rd timestamps of their
draining phases, respectively.

Action Space A: Given state 𝑆𝑡 , we define action space A𝑡 (𝑆𝑡 )
as 𝐴𝑡 := {𝜆𝑡 , 𝜂𝑡 , 𝛽𝑡 } ∈ A𝑡 (𝑆𝑡 ). In particular, at each timestamp
𝑡 , the decision maker should perform the following two actions:
(1) to implement our scaling strategy, we make decisions at every
timestamp using a binary variable called 𝜆𝑡 . This variable will take
on either a value of 0 or 1 to represent the launching or draining
of instances. We also introduce a positive integer variable called
𝜂𝑡 , which will represent the number of instances to be launched or
drained at time 𝑡 . To this end, we formulate 𝜆𝑡𝜂𝑡 as launching deci-
sion, i.e., launching 𝜆𝑡𝜂𝑡 new instances, and (1 − 𝜆𝑡 )𝜂𝑡 as capacity
reduction decision, i.e., putting (1 − 𝜆𝑡 )𝜂𝑡 running instances into
the draining phase, at time 𝑡 . (2) we perform a re-scaling decision
to recover instances from the draining phase to the running phase,
in order to avoid the resource cost of having to repeatedly relaunch.
To this end, we define the variable 𝛽𝑡 ∈ 𝑁 + to represent the number
of re-launching decisions, with a constraint 𝛽𝑡 ≤ 𝑠𝑑1𝑡 + 𝑠𝑑2𝑡 since
the re-scaling decision 𝜆𝑡 is to be used at timestamp 𝑡 +1. Therefore,
the number of re-scaling instances at time 𝑡 should be lower than
the number of draining instances of 𝑠𝑑1𝑡 and 𝑠𝑑2𝑡 at time 𝑡 .

Cost: Instance cost involves two key components, i.e., running
cost and scaling cost. In contrast, in classic MDP we maximize
Reward, but here we minimize cost. To optimize the overall cost, it
is important to reduce the running cost, which can be negatively
impacted by oversupply and result in additional idle running cost.
Therefore, we formulate a cost function at each time 𝑡 as

𝐶𝑜𝑠𝑡 (𝑆𝑡 , 𝐴𝑡 ) =𝑊1E[(𝑥𝑡 − (𝑙𝑡 +𝑤𝑡 − 𝜌)+)+]︸                                ︷︷                                ︸
𝐶1

+𝑊2𝜆𝑡𝜂𝑡︸  ︷︷  ︸
𝐶2

+𝑊3𝑠𝑑1𝑡 +𝑊4𝑠𝑑2𝑡 +𝑊5𝑠𝑑3𝑡︸                            ︷︷                            ︸
𝐶3

(8)

where part 𝐶1 denotes the idle resource cost. In particular, the
unprocessed user demand 𝑙𝑡 and the new user demand 𝑤𝑡 made
the total resource demand at timestamp 𝑡 . When the total instance
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Figure 7: The overall workflow of the Scaler module.

demand is less than 𝜌 which denotes the physical resouce, no ECS
instance is required.When the total instance demand is greater than
𝜌 , the difference between total demand and the amount of physical
machine instances is defined as the number of ECS instances that
are required at timestamp 𝑡 , which is denoted as (𝑙𝑡 + 𝑤𝑡 − 𝜌)+.
Similarly, at timestamp 𝑡 , when the instance supply 𝑥𝑡 is less than or
equal to (𝑙𝑡 +𝑤𝑡−𝜌)+, no idle cost is incurred, and when 𝑥𝑡 is greater
than (𝑙𝑡 +𝑤𝑡 − 𝜌)+, the difference between 𝑥𝑡 and (𝑙𝑡 +𝑤𝑡 − 𝜌)+
is defined as the amount of over-provisioned resources, i.e., the
resource idle cost, which is denoted as (𝑥𝑡 − (𝑙𝑡 +𝑤𝑡 − 𝜌)+)+. Since
𝑤𝑡 is a probability distribution, the instance idle cost is described as
the expectation of E[(𝑥𝑡 −(𝑙𝑡 +𝑤𝑡 −𝜌)+)+]. In addition, parts𝐶2 and
𝐶3 denote the scaling costs. In particular, part 𝐶1 use expectation
E[(𝑥𝑡 − (𝑙𝑡 +𝑤𝑡 − 𝜌)+)+], since the predicted user demand 𝑤𝑡 is
uncertainty, part𝐶2 represents the scaling out cost, and𝐶3 denotes
the draining costs at different draining stage.𝑊1,𝑊2,𝑊3,𝑊4, and
𝑊5 are the coefficient parameter for each cost.

In addition, we introduce tolerance factor 𝑑 for a more flexible
strategy that balances instance cost and QoS, where 𝑑 ∈ [0, 1].

5.1.2 State transition equation. When given 𝐴𝑡 := {𝜆𝑡 , 𝜂𝑡 , 𝛽𝑡 } ∈
A𝑡 (𝑆𝑡 ) at timestamp 𝑡 , the state 𝑆𝑡 = (𝑥𝑡 , 𝑙𝑡 , 𝑠𝑑1𝑡 , 𝑠𝑑2𝑡 , 𝑠𝑑3𝑡 ) will be
updated to 𝑆𝑡+1 = (𝑥𝑡+1, 𝑙𝑡+1, 𝑠𝑑1,𝑡+1, 𝑠𝑑2,𝑡+1, 𝑠𝑑3,𝑡+1) at the times-
tamp 𝑡 + 1. We formulate the update process as follows

𝑥𝑡+1 = 𝑥𝑡 + 𝜆𝑡𝜂𝑡 + (𝜆𝑡 − 1)𝜂𝑡 + 𝜆𝑡 𝛽𝑡 (9a)
𝑠𝑑1,𝑡+1 = (1 − 𝜆𝑡 )𝜂𝑡 (9b)
𝑠𝑑2,𝑡+1 = (𝑠𝑑1𝑡 − 𝜆𝑡 𝛽𝑡 )+ (9c)
𝑠𝑑3,𝑡+1 = 𝑠𝑑2𝑡 − (𝜆𝑡 𝛽𝑡 − 𝑠𝑑1𝑡 )+ (9d)
𝑙𝑡+1 = E[((𝑙𝑡 +𝑤𝑡 − 𝜌)+ − 𝑥𝑡 )+] (9e)

where Eq. (9a) describes the update process for available autoscaling
resources, Eqs. (9b) to (9d) depict the update process for draining
resources at different stages, and Eq. (9e) represents the update
process for unmet instance demands.

5.2 Optimizer
After formulating the scaling asMDP, the next step is to find the best
scaling strategy through the optimizer, including policy learning,
value function estimation, and sampling and search.

5.2.1 Policy learning. To the best of our knowledge, the policy
learning aims to project the state 𝑆𝑡 to a set of optimal policies,
which is given as 𝜋∗ = {𝐴∗1, 𝐴

∗
2, ..., 𝐴

∗
𝑖
} ∈ Π with availability of

Markovian and deterministic policy Π. To this end, we minimize
the total expectation cost in the infinite domain, which is formulated

as

𝐶𝑜𝑠𝑡∗ (𝑆1) = min
𝜋∈Π
E[
∞∑︁
𝑡=1

𝐶𝑜𝑠𝑡 (𝑆𝑡 , 𝐴𝜋𝑡 (𝑆𝑡 ) |𝑆1)] (10)

where 𝑆1 is the initial state of the system. And the corresponding
value function of Bellman equation is formulated as

𝑉𝑡 (𝑆𝑡 ) = min
𝐴𝑡 ∈A≈ (𝑆𝑡 )

{𝐶𝑜𝑠𝑡 (𝑆𝑡 , 𝐴𝑡 ) + E[𝑉𝑡+1 (𝑆𝑡+1 |𝑆𝑡 , 𝐴𝑡 ]} (11)

where 𝑉𝑡 (𝑆𝑡 ) = E[
∑∞
𝑡=𝑡 ′ 𝐶𝑜𝑠𝑡 (𝑆𝑡 ′𝐴𝑡 ′ |𝑆𝑡 )] is the best expected cost

of the system starting from time 𝑡 , and the optimal expected cost
satisfies𝑉1 (𝑆1) = 𝐶𝑜𝑠𝑡∗ (𝑆1). However, to the best of our knowledge,
it is very difficult to directly solve the value function in an infinite
field [21] to obtain the best policy. To circumvent this, we borrow
the intuition behind the forward-looking optimization from Model
Predictive Control (MPC) [3] to provide approximated solutions.

5.2.2 Value Function Estimation. As mentioned in Section 5.2.1, it
is challenging to directly solve the Eq. (11) in the infinite domain.
To this end, we use forward-looking optimization (i.e., receding-
horizon optimal) to approximate the value function, where we first
truncate the infinite domain into finite 𝐹 horizons and then conduct
receding-horizon operation to estimate each value of horizons in
finite domain that can be treated as best scaling strategy for the
future 𝐹 steps. Generally, we solve the stochastic planning model in
the future finite horizons (i.e., 𝐹 steps) to approximate the optimal
policy at timestamp 𝑡 . Finally, we sum over the value for all horizons,
denoted as ˆ𝑉𝑡 (𝑆𝑡 ), as the value for 𝑉𝑡 (𝑆𝑡 ). However, we just take
the first step as our current scaling strategy. Specifically, we have
developed a corresponding model as follows

min
𝐹−1∑︁
𝑖=0

𝐶𝑜𝑠𝑡 (𝑡 + 𝑖)

𝑠 .𝑡 . 𝑥𝑡+1 = 𝑥𝑡 + 𝜆𝑡𝜂𝑡 + (𝜆𝑡 − 1)𝜂𝑡 + 𝜆𝑡 𝛽𝑡 (12a)
𝑠𝑑1,𝑡+1 = (1 − 𝜆𝑡 )𝜂𝑡 (12b)
𝑠𝑑2,𝑡+1 = (𝑠𝑑1𝑡 − 𝜆𝑡 𝛽𝑡 )+ (12c)
𝑠𝑑3,𝑡+1 = 𝑠𝑑2𝑡 − (𝜆𝑡 𝛽𝑡 − 𝑠𝑑1𝑡 )+ (12d)
𝑙𝑡+1 = 𝐸 [((𝑙𝑡 +𝑤𝑡+1 − 𝜌)+ − 𝑥𝑡+1)+] (12e)
𝛽𝑡 ≤ 𝑠𝑑1𝑡 + 𝑠𝑑2𝑡 (12f)
𝑙𝑡 ≤ 𝐸 [𝑤𝑡𝑑] (12g)

𝑥𝑡 , 𝑠𝑑1𝑡 , 𝑠𝑑2𝑡 , 𝑠𝑑3𝑡 , 𝛽𝑡 , 𝜂𝑡 𝑤𝑡 ∈ 𝑁 + (12h)
𝜆𝑡 ∈ {0, 1} (12i)
𝑑 ∈ [0, 1] (12j)
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where Eqs. (12a) to (12e) represent state transition equations for
each state variable. Eq. (12f) ensures that each re-launching decision
is smaller than the sum of instances currently in the first and second
stages of draining. Next, Eq. (12g) limits the unmet ECS demand at
each timestamp 𝑡 to a fixed value that is adjusted by tolerance 𝑑 ,
which results in at least 100 · (1 − 𝑑)% satisfactory of ECS demand.
In case we want to give priority to QoS loss over instance cost,
we can set 𝑑 to 0, meaning that 𝑙𝑡 , the number of unmet instances,
cannot be greater than 0. By varying the tolerance factor 𝑑 , it is
possible to flexibly allow different levels of QoS loss. Finally, Eqs.
(12h) to (12j) define the nature of each variable.

5.2.3 Sampling and Searching. To approximate optimal policy
through solving the stochastic planning model in the future fi-
nite horizons (i.e., 𝐹 steps) at timestamp 𝑡 , we typically use Monte
Carlo sampling to convert the random constraint into a linear con-
straint. However, this can result in many additional variables in
the final model, making optimization more complex. Fortunately,
the left-hand side of the random constraint (Eq. (12g)) is monotoni-
cally decreasing. As 𝑥𝑡 increases, the expectation on the left-hand
side decreases, so it is possible to convert the stochastic constraint
to a linear constraint on 𝑥𝑡 . We propose an algorithm (see Algo-
rithm 3) that uses sampling and search to approximately solve
E[((𝑙𝑡−1 +𝑤𝑡 − 𝜌)+ − 𝑥𝑡 )+] = E[𝑤𝑡𝑑], leading to 𝑥𝑡 > 𝑥∗𝑡 .

Algorithm 3: Sampling and Searching
Input: Sample𝑤𝑚𝑡 ,𝑚 = 1, 2...𝑀, 𝑙𝑡−1, 𝑑, 𝜌
Output: Minimum amount of resource provisioning 𝑥∗𝑡

1 Sort {𝑙𝑡−1 +𝑤𝑚𝑡 − 𝜌}𝑀𝑚=1 in descending order as
{(𝑙𝑡−1 +𝑤𝑡 − 𝜌) (1) , ..., (𝑙𝑡−1 +𝑤𝑡 − 𝜌) (𝑀 ) };

2 Let 𝐸 = 0, 𝐾 = 1
𝑀
, 𝑥𝐿 = 0, 𝑥𝑅 = 0 ;

3 for𝑚 ∈ 𝑀 do
4 𝑥𝐿 = (𝑙𝑡−1 +𝑤𝑡 − 𝜌) (𝑚) , 𝑥𝑅 = (𝑙𝑡−1 +𝑤𝑡 − 𝜌) (𝑚+1) ;
5 E = E + (𝑥𝐿 − 𝑥𝑅)𝐾 ;
6 if E ≥ E[𝑤𝑡𝑑] then
7 E = E − (𝑥𝐿 − 𝑥𝑅)𝐾 ;
8 𝑥∗𝑡 = 𝑥𝐿 + (𝑑 − E)/𝐾 and break;
9 else
10 𝑥∗𝑡 = 𝑥𝑅 ;

11 𝐾 = 𝐾 + 1
𝑀
;

As shown in algorithm 3, we sample 𝑀 samples 𝑤𝑚𝑡 ,𝑚 =

1, 2, 3...𝑀 using Monte Carlo method. Especially, we use∑𝑀
𝑚=1 ((𝑙𝑡−1 +𝑤𝑚𝑡 − 𝜌)+ − 𝑥𝑡 )+/𝑀 to approximate E[((𝑙𝑡−1 +𝑤𝑡 −

𝜌)+ − 𝑥𝑡 )+]. Considering E[((𝑙𝑡−1 +𝑤𝑡 − 𝜌)+ − 𝑥𝑡 )+] is piecewise
linear and monotonically decreasing, its slope fall into the range
of {𝑙𝑡−1 + 𝑤𝑚𝑡 − 𝜌}𝑀𝑚=1. In this case, we can find the optimal 𝑥∗𝑡
when E[𝑤𝑡𝑑] appears in the corresponding segment. Due to the
time complexity of 𝑂 (𝑀𝑙𝑜𝑔𝑀) in the sampling and sorting stage
and linear time complexity in the search stage, the overall time
complexity of algorithm 3 is 𝑂 (𝑀𝑙𝑜𝑔𝑀). This allows our method
to have highly scalability. Finally, we utilize the mature solvers like
SciPy[36] as well as other similar solvers, to obtain the optimal
action 𝐴∗𝑡 .

6 EXPERIMENTAL EVALUATION
6.1 Evaluation of Forecasting
6.1.1 Experimental Setup.

Datasets. We consider 3 public datasets and 3 private business
dataset with different characteristics: (1) ETTℎ1 , ETT𝑚1 (Electricity
Transformer Temperature)2: ETTℎ1 has observations of every 1
hour and ETT𝑚1 has observations of every 15 minutes. Each ob-
servation consists of 6 power load features, making them 6 variate
time series. The train/validation/test data cover 12/4/4 months.
(2) Weather3: This dataset contains local climatological data for
nearly 1,600 U.S. locations from 2010 to 2013, where data points are
collected every 1 hour. Each data point consists of the target value
“wet bulb” and 11 climate features. The train/validation/test data
cover 28/10/10 months. (3) Alibaba Cloud: The private business
data includes the resource demand time series of 3 Alibaba cloud
clusters from 3 Chinese cities, Hangzhou (Cluster-HZ), Shanghai
(Cluster-SH), and Beijing (Cluster-BJ). All private business data
are collected from November 1, 2022 to November 30, 2022, with a
sampling frequency of 1 minute. Compared to the aforementioned
dataset, this dataset has a much smaller sampling granularity. The
train/validation data cover Nov. 1st - Nov. 25th, and the test data
cover Nov. 26th - Nov. 30th.

Baselines. Since classic models like ARIMA and basic RNN /CNN
models perform relatively inferior as shown in [48], we mainly
include three state-of-the-art transformer-based models and one
probabilistic forecasting model for comparison, i.e., FEDformer [49],
Triformer [10], Informer [48] and GP as baseline models.

Metric. We consider 3 random training and validation setups.
The results are averaged over 3 runs. For all datasets, we perform
standardization such that the mean of variable is 0 and the standard
deviation is 1. We use the following evaluation metrics, i.e., the
MAE and MSE value for forecasting to measure the forecast error.
Besides, weighted quantile loss, also known as 𝜌-risk, is widely
used as a metric for probabilistic time series forecasting. For a given
quantile 𝜌 ∈ (0, 1), 𝑞 (𝜌 )𝑡 indicates the predicted 𝜌-quantile for 𝑦𝑡 .

𝜌−𝑟𝑖𝑠𝑘 = 2

∑
𝑖

[
I
𝑞
(𝜌 )
𝑡 ≤𝑦𝑡

(1 − 𝜌) |𝑞 (𝜌 )𝑡 − 𝑦𝑡 | + I
𝑞
(𝜌 )
𝑡 <𝑦𝑡

𝜌 |𝑞 (𝜌 )𝑡 − 𝑦𝑡 |
]

∑
𝑖 |𝑦𝑖 |

(13)

Experimental settings. In our experiments, the parameters of
MagicScaler’s MAFE are set to 𝐿𝑝𝑠 = {8, 3, 2} , 𝐿𝑠𝑐𝑎𝑙𝑒 = {4, 2, 1}
by default. For the prediction task in the experiment, MagicScaler
defaults to 𝐻 = 288. However, we do not specify the length of 𝐻 for
other methods during the experiment, which is the same setting
as the related works [22, 48, 49]. In the end, due to the business
requirements of the real scene, we uniformly set the forecast step
size 𝐹 to meet one hour (e.g., if the sampling frequency of the data
is 1 minute, then 𝐹 is 60).

2https:// github.com/zhouhaoyi/ETDataset
3https://www.bgc-jena.mpg.de/wetter/
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Table 1: Comparison of the MSE and MAE results for our proposed MagicScaler with respective baselines.

Methods MagicScaler FEDformer Triformer Informer GP
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTℎ1 0.0110 0.0807 0.0264 0.1259 0.0273 0.1251 0.0297 0.1346 0.0566 0.1391
ETT𝑚1 0.0057 0.0535 0.0061 0.0539 0.0064 0.0551 0.0072 0.0634 0.0102 0.0945
weather 0.0725 0.1611 0.0855 0.2120 0.0683 0.1639 0.0762 0.1913 0.1040 0.2247

Cluster-HZ 0.0471 0.1663 0.0958 0.1773 0.0873 0.1699 0.0807 0.1701 0.2554 0.3450
Cluster-SH 0.0363 0.1272 0.1023 0.1628 0.1117 0.1893 0.1616 0.2852 0.6220 0.5305
Cluster-BJ 0.0539 0.1705 0.1216 0.2162 0.1321 0.2258 0.2875 0.3822 1.0074 0.7510

Table 2: Comparsion of uncertainty quantification results
for MagicScaler and GP methods.

Methods MagicScaler GP
Metric 0.5-risk 0.9-risk 0.5-risk 0.9-risk
ETTℎ1 0.0527 0.0245 0.0832 0.0628
ETT𝑚1 0.0304 0.0154 0.0412 0.0902
weather 0.1482 0.1011 0.1666 0.2433

Cluster-HZ 0.1317 0.0964 0.7685 0.4875
Cluster-SH 0.1568 0.1115 0.4009 0.2911
Cluster-BJ 0.1984 0.1561 0.2333 0.1960

6.1.2 Experimental Results and Analysis. Table 1 and Table 2 sum-
marize the time series evaluation results of all the methods on
multiple datasets. The best results are highlighted in boldface.

As shown in Table 1, we can observe that : (i) the forecasting
accuracy of MagicScaler almost outperforms all the existing state-
of-the-art algorithms; (ii) MagicScaler outperforms Triformer, FED-
former, and Informer significantly due to its multi-scale feature
extractor that can comprehensively capture patterns at different
scales, resulting in improved prediction accuracy; (iii) MagicScaler
outperforms GP on MAE by decreasing 64.3% in average, which is
attributed to the powerful feature extraction ability of deep neural
network; (iv) the outstanding performance of MagicScaler on the
Alibaba Cloud dataset indicates that our model is better suitable
for real-world scenarios compared to other baseline models.

The quantification results of forecasting uncertainty are pre-
sented in Table 2 and Figure 8. We can get: (i) MagicScaler outper-
forms GP in terms of 0.5-risk and 0.9-risk metrics; (ii) from the
visualization in Figure 8, the confidence intervals (marked with
blue shades) predicted by MagicScaler are capable of covering the
real value to a significant extent, and even spike-like points are
well covered within the confidence interval.

6.1.3 Ablation Study. To validate the effectiveness of the key com-
ponents of the MagicScaler, we conduct an ablation study on the
Cluster-HZ dataset for External-MAFE, Internal-MAFE and MAFE,
respectively. We could draw a conclusion that all components con-
tribute to the final state-of-the-art results to a certain extent. As
shown in Table 3, MagicScaler surpasses the model with MAFE
removed, demonstrating the effectiveness of MAFE in extract-
ing multi-scale feature information and enhancing model predic-
tion performance. The comparison between External-MAFE and
Internal-MAFE shows that External-MAFE is more adept at captur-
ing feature information of diverse scales. It is worth noting that w/o
Internal does not mean that this component is completely removed,

Figure 8: Visualization of prediction results with uncertainty
quantification of MagicScaler. *Magnitude is eliminated

Table 3: Ablation study of the proposed MagicScaler on
Cluster-HZ datasets.

MSE MAE 0.5-risk 0.9-risk
MagicScaler 0.0471 0.1663 0.1317 0.0964
w/o External 0.0961 0.2188 0.1984 0.1561
w/o Internal 0.0679 0.1795 0.1473 0.1225
w/o MAFE 0.2554 0.3450 0.7685 0.4875

but turns its hierarchical structure into a single stage without per-
forming fine-grained augmentation operations. This approach is
equivalent to converting Internal-MAFE into an attention-based
feature extractor, which serves to remove the component.

6.1.4 Efficiency. Figure 9 shows the training time (seconds/epoch)
of MagicScaler against FEDformer and Informer, where we compare
the average practical efficiencies with 5 runs. When varying 𝐻 : (i)
MagicScaler is faster than FEDformer and Informer due to its linear
time complexity feature extractor; (ii) MagicScaler and FEDformer
are more stable than Informer. When varying 𝐹 : (i) MagicScaler is
the fastest in all settings; (ii) the training time of Informer is much
longer than of MagicScaler and FEDformer.
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Figure 9: Comparison of training runtime for MagicScaler
with other methods.

6.2 Evaluation of Autoscaling
Baselines. In this section, due to the unique nature of the Alibaba

Cloud environment, it is difficult to fairly migrate existing autoscal-
ing methods to our scenario, therefore we compare the following
scaling methods on real cluster workload data.

• Passive: The passive method of scaling is a passive approach
that involves making resource launching and draining deci-
sions based on customer demand at each timestamp. While
this method may have a lower resource cost, it is also asso-
ciated with a higher level of QoS loss.

• Statistics: This is an autoscaling strategy which utilizes data
from the past week at time 𝑡 to generate statistics, which
are then used to forecast future values and perform auto-
matic scaling with a buffer value (similar to the conservative
strategy described in Section 1).

• MagicScaler-D: MagicScaler-D is a deterministic version
of MagicScaler, which takes as input the mean value of
the probabilistic ECS demand forecasting and returns an
optimal scaling decision. In particular, we set 𝐹 = 12 and𝑑 =

0 for MagicScler-D, which is meaningful for cloud service
providers who prioritize over-provisioning instances to
prevent QoS loss.

• MagicScaler: MagicScaler takes as input a probabilistic de-
mand forecasting, while keeping the same parameter set-
ting with MagicScaler-D.

6.2.1 Overall Performance Evaluation for Autoscaling. We compare
the performance of Statistics, reactive scaling method (Passive),
MagicScaler and its variants on three datasets from Alibaba Cloud
(Cluster HZ, SH, and BJ). Figure 10 illustrates the results of our
evaluation. The first observation is that, MagicScaler-D and Mag-
icScaler outperform others in terms of resource cost and QoS loss
on Cluster HZ and Cluster SH. Specifically, the QoS loss of Mag-
icScaler is significantly reduced with only 11.7% and 4.9% of the
QoS loss of Passive and Statistics, by increasing 1.2% and 43.9%
resource cost compared to Passive and Statistics. It is worth noting
that although the Statistics has a significant advantage in resource
cost metrics on the cluster-SH, this has resulted in a significant QoS
loss, which is unacceptable for cloud service providers. It can be
seen that MagicScaler can balance resource cost and QoS loss well.
We also observe that MagicScaler-D performs poorly on Cluster BJ,
where the resource cost is almost zero on all four days, and the
QoS loss is significantly higher than Passive and Statistics. This is
because physical resources in Cluster BJ cover almost all ECS de-
mands and MagicScaler-D cannot capture the sudden ECS demand,
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Figure 10: Comparison of autoscaling performance for Mag-
icScaler with other methods. * The values on the y-axis have
been desensitized to protect sensitive information.

resulting in significant QoS loss. In contrast, MagicScaler performs
well on Cluster BJ since it can capture sudden ECS demand (i.e.,
high uncertainties), thus ensuring low QoS loss. Finally, we find
that Statistics displays poor robustness for different datasets. Al-
though Statistics performs comparably well on Cluster-HZ (Figures
11(a) and 11(b)) compared with Passive, it shows considerably lower
resource cost and significant higher QoS loss in Figures 11(c) and
11(d). This indicates that Statistics does not exhibit good robustness
for different ECS demand datasets. In contrast, our MagicScaler has
good robustness across different ECS demand datasets.

6.2.2 Parameter Sensitivity Analysis. We further provide experi-
mental insights into the sensitivity analysis of the key parameters
(tolerance 𝑑 and horizons 𝐹 ) in the proposed MagicScaler.

Effects of Tolerance 𝑑 . To investigate the impact of the tolerance
factor 𝑑 (ref. as to Eq. (12g)), we start 𝑑 at 0 and increase 𝑑 by 0.05
each time until 1. In this way, we are able to evaluate the perfor-
mance of different methods on Cluster-HZ over several days using
a Pareto curve, where the left bottom corner is the best scenario
to achieve in the Pareto curve, i.e., both low costs and low QoS
loss. In particular, we introduce relative QoS and cost as metrics
to assess the performance of each approach. Relative QoS is de-
fined as QoS𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙/QoS𝑃𝑎𝑠𝑠𝑖𝑣𝑒 , while relative cost is defined as
Cost𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙/Cost𝑃𝑎𝑠𝑠𝑖𝑣𝑒 . The lower these values, the better the
performance. Based on the results reported in Figure 11, we can
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Figure 11: Tolerance sensitivity experiments of MagicScaler on Cluster-HZ dataset.

Figure 12: Horizon sensitivity experiments of MagicScaler on Cluster-HZ dataset.

obtain: (1) MagicScaler performs better than MagicScler-D because
its Pareto curve is lower and closer to the bottom left corner; (2)
both MagicScaler and MagicScaler-D outperform Passive and Statis-
tics because they allow for a suitable decision strategy to be found
by adjusting 𝑑 ; (3) although MagicScaler and MagicScaler-D have
higher instance costs than Passive, they are able to achieve the
best QoS loss, which indicates their effectiveness in improving the
performance of cloud autoscaling.

Effects of Horizons 𝐹 . To study the effect of varying the value of
horizons 𝐹 , we study the performance of MagicScaler on Cluster-
HZ over several days based on Pareto curve, with values of 𝐹 in
{4, 6, 8, 10, 12}. The results depicted in Figure 12 indicate that the
best performance is achieved when 𝐹 is set to 12, which is used as
the default value of our MagicScaler. Moreover, we observed that
as the value of 𝐹 increases, MagicScaler performs even better. This
is because larger 𝐹 allows MagicScaler to gather more information
about future trends, enabling it to make more informed scaling
decisions. Furthermore, we find that even when 𝐹 is altered, there
exists a range (e.g., [0.6, 0.8] on Cluster-HZ(11-27)) in whichMagic-
Scaler delivers almost consistent performance across different days.
This finding can guideMagicScaler to make better scaling decisions
while consuming less computation.

6.2.3 Scalability Analysis of Scaler. Finally, we evaluated the scala-
bility performance of MagicScaler by varying the horizons and the
number of samples to measure its running time. Figure 13 presents
the experimental results. Our first observation is that the running
time of MagicScaler increases as the horizon and the number of
samples increase. This is because, with a larger horizon,MagicScaler
needs more time to make decisions on longer sequences. Addition-
ally, with more samples, Monte Carlo simulation takes longer. Our
default implementation uses 𝐹 = 12 and number of samples = 100,
which only takes 0.26s to run and meets the QoS requirement of
Alibaba cloud service. Furthermore, even when we set 𝐹 = 12 and
number of samples = 500,MagicScaler only takes 1.26s to run, which
is much less than the decision-making time required by Alibaba

Figure 13: Running time of MagicScaler for scaling decisions
vs. the number of samples.

cloud service. These results demonstrate the potential for real-time
decision-making using our proposed MagicScaler.

7 CONCLUSION
In this paper, we propose a novel predictive autoscaling framework
called MagicScaler, which consists of a predictor and a scaler. On
one hand, the predictor leverages the strengths of two successful
predictionmethodologies: multi-scale attentionmechanisms, which
are effective at capturing complex, multi-scale features, and gauss-
ian process regression, which can accurately quantify prediction
uncertainty. On the other hand, the scaler takes into account the
quantified future demand uncertainty by using a sophisticated loss
function with stochastic constraints, which allows for a flexible
trade-off between running costs and QoS violations. Extensive ex-
periments for both demand prediction and autoscaling demonstrate
the superior performance of our proposed framework compared
to other widely used baseline methods. In particular, the effective-
ness ofMagicScaler has been demonstrated through real-world data
from Alibaba Cloud. This suggests that our framework has the great
potential to significantly improve the efficiency and effectiveness
of autoscaling in cloud computing systems.
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