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ABSTRACT
Increasingly, cloud database vendors host large-scale geographi-

cally distributed clusters to provide cloud database services. When

managing the clusters, we observe that it is challenging to simul-

taneously maximizing the resource allocation ratio and resource

availability. This problem becomes more severe in modern cloud

database clusters, where resource allocations occur more frequently

and on a greater scale. To improve the resource allocation ratio with-

out hurting resource availability, we introduce Eigen, a large-scale

cloud-native cluster management system for large-scale databases

on the cloud. Based on a resource flow model, we propose a hierar-

chical resource management system and three resource optimiza-

tion algorithms that enable end-to-end resource optimization. Fur-
thermore, we demonstrate the system optimization that promotes

user experience by reducing scheduling latencies and improving

scheduling throughput. Eigen has been launched in a large-scale

public-cloud production environment for 30+ months and served

more than 30+ regions (100+ available zones) globally. Based on

the evaluation of real-world clusters and simulated experiments,

Eigen can improve the allocation ratio by over 27% (from 60% to

87.0%) on average, while the ratio of delayed resource provisions is

under 0.1%.
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1 INTRODUCTION
In the past decade, we have witnessed the rapid emergence of cloud-

native databases, where users can purchase computing and storage

resources, as well as data management services on demand, without

having to manage the infrastructures themselves. To host these
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cloud-native databases, cloud vendors deploy cluster management

systems (e.g., Mesos [11], YARN [29], Kubernetes [13], Fuxi [32],

Borg [30], Twine [28]) on clusters of machines (nodes) to run jobs

or tasks (e.g., database instances). At the center of a cluster manage-

ment system is a resource scheduler which decides when and how

cloud resources are allocated to different jobs. Typically, cloud ven-

dors use two critical metrics to assess whether a resource scheduler

is running “well”: 1) resource allocation ratio refers to the proportion
of allocated resources (out of the total cluster resources) that has

been allocated by the scheduler to a job; 2) resource availability
refers to the proportion of resource requests (from a job) that can

be fulfilled within a given period of time. Naturally, cloud vendors

aim for a high resource allocation ratio (directly leading to lower

operation costs) and high resource availability (directly leading to

better customer experience).

However, it is intuitively difficult to simultaneously maximize

these two metrics. For example, a classic cluster of algorithms (e.g.,

best-fit, first-fit and their variants) aims to fill each machine in

the cluster as tightly as possible, to maximize resource allocation

ratio. However, a high resource allocation ratio indicates limited

idle resources that are readily available for allocation; therefore,

incoming resource requests, especially requests with large resource

needs (e.g., 256GB memory), inevitably have an increased probabil-

ity of failing. Furthermore, heterogeneous resource requirements

observed in practical scenarios can cause resource stranding
1
along

different resource dimensions (e.g., CPU, memory, disk), and further

exacerbate the problem. Another cluster of algorithms chooses to

spread tasks across all machines (e.g., worst-fit, E-PVM [1]). Its

effectiveness, in terms of resource allocation ratio and resource

availability relies on whether the cluster size is set correctly. In

fact, there does not exist a “best" resource scheduling algorithm,

rather, it depends on the application scenario and requires balanc-

ing the optimization of the resource allocation ratio and resource

availability.

Resource schedulers face more challenging scenarios in modern

database clusters, especially with recent advances in serverless

databases [3, 4, 8] which supports auto-scaling based on the real-

time workloads. More specifically, resource schedulers face the

following two challenges:

1
Stranded resources refer to the idle resources (e.g., memory) that cannot be effectively

utilized due to the exhaustion of other types of resources (e.g., disks).
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Figure 1: Three-stage resource flow.

1. Frequent and variant resource requests. The database work-
load varies in response to changes in the user’s data size, data

distribution, query types, or more generally, application-layer char-

acteristics. Unlike traditional database services, where the users

choose the configuration of their database instances, and revisit it

on a weekly or even monthly basis, decisions on scaling up/down

are made every several seconds or minutes.

2. Low tolerance for delayed resource allocation. Resource
requests often reflect the necessary resources to retain SLAs (e.g.,

query throughput and latency), and therefore, are highly time-

sensitive. Resource allocation decisions and the actual allocation

need to be made within strong latency (e.g., sub-second) guarantees.

The first challenge means that the problem of resource stranding (in

the best-fit scheduling algorithm) becomes more prominent, which

further triggers a decrease in the allocation availability. On the

other hand, an even resource distribution (in the worst-fit schedul-

ing algorithm) will have a penalty on large resource requests: their

accommodation requires a large portion of resources in a single ma-

chine, which is not readily available and requires time-consuming

migration or adding new machines to the cluster. Meanwhile, al-

location availability also depends on the cluster size (i.e., the total

amount of resources we can provide), and it is impractical to add

new machines from the supply chain instantaneously. This drives

service providers to deliberately overestimate cluster size, resulting

in wasted power consumption of underutilized machines, and an

increased carbon emission footprint.

Addressing these challenges, we adopt a cascading resource flow

model that divides nodes into three types (shown in Figure 1): non-

empty nodes, empty nodes, and offline nodes. To simultaneously

maximize the resource allocation ratio and resource availability,

we believe resources in the resource flow should be simultaneously

optimized (i.e., end-to-end resource optimization):
• Resource optimization of non-emptymachines.We discover

twomajor challenges when adopting classic heuristic bin packing

algorithms for resource scheduling of non-empty machines. First,

cloud database instances require multi-dimensional and hetero-

geneous resources, which makes resource scheduling complex.

Suboptimal allocations can cause skewness of resource dimen-

sions and consequential stranded resources. Second, migration

cost is not negligible when clusters are consolidated. We discuss

optimal consolidation solutions under migration cost constraints.

• Resource optimization of empty machines. To guarantee

high resource availability, especially with the strict latency con-

straint (see Challenge 2), it is reasonable to maintain a pool of

empty machines as a safety net to handle requests that cannot

be accommodated in the non-empty machines. However, it is

a waste, in terms of power consumption, to maintain a large

pool of online machines while a significant portion of it is empty

machines. We, therefore, want to maintain just enough empty

machines online to avoid degradation in resource availability.

• Resource optimization of offlinemachines.Offlinemachines

are a shared resource pool for all database products. From a cloud

vendor’s perspective, the maintenance and optimization of offline

machines are also important (from the perspective of operational

cost), but rarely discussed. In practice, cloud vendors purchase

machines from suppliers, and the whole process, from placing

an order to having the machines delivered, typically takes weeks

to months. It is challenging to evaluate the optimal size of offline

machines over a long-term period.

Based on our experiences in resource management for Alibaba’s

database services, we build Eigen, a large-scale, cloud-native cluster

management a system that features end-to-end resource optimiza-

tion. We summarize the contributions of this paper are as follows:

• Based on the resource flow model, we propose a hierarchical
resource management system which enables three novel resource

optimization algorithms: 1. Vectorized Resource Optimization,

a heuristic bin packing algorithm that consolidates non-empty

machines in the course of resources allocation; 2. Exponential
Smoothing with Smoothed Adaptive Margins which proactively

scales up/down empty machines in a short-term period; 3. Tem-

poral CNN (TCN) with Minimum-stock Policy which optimizes

the number of offline machines in the long-term period.

• We introduce optimizations for fast scheduling, which include

master-agent collaborative scheduling and cold instance eviction.

• We evaluate the proposed algorithms, and the overall perfor-

mance of Eigen on large-scale production clusters with real-

world workloads. The evaluation results show that the proposed

algorithms significantly increase resource allocation ratios of

cloud databases with a negligible rise in the fail/delayed ratio of

allocation requests.

2 BACKGROUND AND MOTIVATION
2.1 Resource Scheduling and Optimization
Resource scheduler is a fundamental component in cluster manage-

ment systems, responsible for allocating resources (such as CPUs,

Memory, Disks) to jobs. Notable examples include Kubernetes’

Kube-scheduler [14], Twine [28]’s allocator, Borg [30]’s scheduler.

Take the Kube-scheduler for instance, it is responsible for assigning

a newly created pod to a machine according to some predetermined

scheduling policy. Kube-scheduler consists of two steps: filtering
and scoring. The filtering step searches all feasible machines to

schedule a pod, and the scoring step chooses the machine deemed

most suitable for the pod (based on the scores calculated using a

scoring strategy). It allows users to customize scoring strategies for

different resource scheduling algorithms.

Resource optimization usually aims to maximize resource alloca-

tion ratios (or utilization ratios). Among the previous works, there

are roughly two types of resource optimization approaches. The

first reduces the resource optimization to the classic bin packing

problem. For example, the Kube-scheduler provides two scoring

strategies (both are variants of best-fit) to support bin packing

of resources [15]. Another approach utilizes statistical and ma-

chine learning techniques, notably time series forecasting, to im-

prove utilization ratios by predicting future workloads and reclaim-

ing underutilized resources. For example, Autopilot [24] uses an
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exponentially-smoothed sliding window to predict future work-

loads. In the following sections, we discuss the limitations of previ-

ous bin packing and time series forecasting techniques.

2.2 Bin Packing
Resource allocation is typically discussed as a d-dimensional vector
bin packing (d-VBP) problem, i.e., allocating a set I of database

instances 𝐼1, 𝐼2, ..., 𝐼𝑛 ∈ [0, 1]𝑑 , where each dimension represents

requested resources among a pool of machines. The goal is to mini-

mize the number of machines 𝑀1, 𝑀2, ..., 𝑀𝑚 , where each machine

𝑀𝑗 has a capacity constraint ∥∑𝐼 ∈𝑀𝑗
𝐼 ∥∞ ≤ 1. d-VBP problem has

an online version and an offline version. The online version as-

sumes that resource requests arrive sequentially, and the scheduler

decides for each incoming request instantaneously. On the contrary,

the offline version decides after all the requests are received.

The d-VPB problem is known to be NP-hard, therefore, it is

normally solved by approximation algorithms [7]. Roughly speak-

ing, there are two types of approximation algorithms. The first is

based on Integer Linear Programming (ILP). A prominent exam-

ple, known as Configuration LP [23] [5] [12], casts the bin packing

problem to a set covering problem, and solves the problem through

relaxation and rounding. So far, they have been proven to have

the best approximation guarantees. However, based on our and

others’ experience [26], they do not scale well under large-scale,

heterogeneous workloads.

The second uses greedy heuristics, such as first-fit, best-fit, and

first-fit decreasing (FFD) and their variants. The greedy heuristic

algorithms compute efficiently, therefore, they are more popular

in the industrial field. However, their performance has two limi-

tations: Firstly, online heuristic algorithms are highly susceptible

to resource skewness. Well-adopted online heuristic algorithms

(e.g., Borg [30] and Kubernetes [15]) cause stranded resources un-

der multi-dimensional heterogeneous workloads. Secondly, offline

heuristic algorithms hardly consider migration costs. In practice,

we want to improve the resource allocation ratio with as little

migration cost as possible.

2.3 Time Series Forecasting
Time series forecasting is a technique, which estimates future val-

ues for one or more points (termed forecasting horizon) based on

current and past values of a time series. There are two types of

forecasting techniques: statistical models and deep neural network

models. Traditional statistical models, such as Exponential Smooth-

ing (ES), Moving Average (MA), Auto-Regressor (AR) and Sparse

Periodic Auto-Regressor (SPAR) [27], takes advantage of statistical

features/patterns of historical time series data, such as mean, vari-

ance, trend, and seasonality, to forecast future values. The statistical

models compute efficiently and perform decently when the forecast-

ing horizon is short (i.e., short-term forecasting). Therefore, they

have been widely adopted by some well-known systems in the in-

dustrial field (e.g., Autopilot [24]., P-Store [27] and MoneyBall [20]).

Nevertheless, the statistical models have two limitations: Firstly,

the accuracy of long-term forecasting is not satisfying. Secondly,

forecasting sharp spikes is challenging.

Deep Neural Networks (DNN) are known for the ability to ex-

tract hidden features/patterns of multi-dimensional input data and

Figure 2: Eigen’s architecture.

simulate extremely complex input-output mappings. Recently, there

have been works that use DNNs for time series forecasting. Some

models, such as DeepAR [25], TCN [6], TFT [18], DSSM [22], have

been proven to outperform statistical models when forecasting

long-term time series. Some models, such as DILATE [16], aim to

forecast sharp rise/drop accurately. Nevertheless, compared to sta-

tistical models, DNN-based forecasting is more time-consuming

and might lead to delayed resource optimization. Therefore, in this

paper, we adopt statistical models for short-term forecasting and

DNNs for long-term forecasting.

3 SYSTEM OVERVIEW
3.1 Architecture of Eigen
A large-scale public cloud service provider (e.g., Alibaba Cloud)

hosts worldwide database services across geo-distributed regions,
where each region consists of multiple data centers. In a data center,

each machine belongs to a node pool, a logical cluster designated
to host a specific database product (e.g., RDS MySQL, Redis, Po-

larDB). In each region, we build multiple Kubernetes (K8s) clusters

to manage containerized database instances and Eigen oversees the

operation of these K8s clusters and interacts with K8s components.

Figure 2 depicts the architecture of Eigen.

We highlight the key components of Eigen as follows:

API Controller is a cross-region platform that processes requests

from all users. Particularly, resource requests include creating (to
build new database instances), scaling (to scale up/down existing

database instances), and evaluating requests (to evaluate whether
there are enough resources, but never request to allocate). Resource

requests originate from an end-user interface, Database Operation
(CRUD) Controllers. API Controller also acts as a resource manage-

ment gateway: it dispatches requests to the Eigen Masters of their
corresponding regions, and aggregates the responses.

Eigen Master handles requests from API controller, and manages

states of nodes and database instances across K8s clusters. Eigen

Master has a collection of replicas that use etcd [9] to elect a single

leader and to persist the states. The single elected leader is the only
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Figure 3: Eigen’s hierarchical resource management system.

state mutator, and the non-leader replicas only serve read-only

requests. Eachmachine deploys a Eigen Agent, which communicates

with Eigen Master, handles local auto-scaling requests and manages

states of local resources & database instances. The Eigen Agent
is important for optimizations such as master-agent collaborative

scheduling and cold instance eviction (details in Section 5).

Scheduler is the key component for resource scheduling and op-

timization. It works closely with the Rebalancer to improve the

resource allocation ratio. Specifically, the Scheduler decides the

online placement of database instances; and the Rebalancer periodi-
cally consolidates clusters through an offline bin packing algorithm

which suggests pod migrations (details in Section 3.2). To improve

scheduling throughput, the Scheduler runs many instances in paral-

lel and uses optimistic concurrent control to resolve conflicts. Eigen

adopts techniques, such as scheduling isolation between node pools

(similar to Twine’s sharding [28]) and an in-memory snapshot of

etcd, to further accelerate the scheduling process. They have to be

scalable, i.e., Eigen Master and Scheduler need to support scheduling
on up to 100K nodes per region in a typical public cloud setting.

Resource Broker creates, and manages all resources from re-

source suppliers (e.g., ECS/EC2, Cloud Disk, and Physical Machines).
Through Resource Broker, the Asset Inventory Manager provisions
and manages the lifecycles of different types of resources for sub-

systems, such as K8s clusters, node pools, etc. Node Pool Auto-scaler
supports node pool auto-scaling which elastically tunes the online

and offline machines of each node pool (details in Section 3.2), based

on the machine statistics collected from the Monitor.

3.2 Hierarchical Resource Management
Based on the resource flow in Figure 1, we propose a hierarchical

resource management system for end-to-end resource optimiza-

tion. Take a data center demonstrated in Figure 3 for instance, we

divide machines of each node pool into three layers: online layer

(green box), warm layer (orange box), and cold layer (blue box). We

describe different optimization problems in each layer as follows:

Online layer consists of non-emptymachines (onlinemachines). In

this layer, the optimization problem is to allocate database instances

with heterogeneous resource requests on as few as possible online

machines. We design Vectorized Resource Optimization (VRO),

which consists of an online version and an offline version. The

online version of VRO is implemented in Scheduler to schedule

resource allocations for online requests. The offline version of VRO

is implemented in Rebalancer, which periodically rebalances the

cluster through pod moves (i.e., migrations of database instances).

In addition to consolidating clusters, the offline version of VRO

focuses on reducing the number of migrations for lower rebalance

costs. We discuss details in Section 4.1.

Warm layer consists of empty machines (warm machines) which

work as “buffers” to support high resource availability. The op-

timization problem in this layer is to evaluate the minimum of

resources which will not cause delayed requests in short-term time

periods (e.g., ten seconds, oneminute, tenminutes).We design Expo-

nential Smoothing with Smoothed Adaptive Margins, a short-term

time series forecasting algorithm for resource usage. It is imple-

mented in Node Pool Auto-scaler, and is able to automatically scale

up/down warm machines. We discuss the details of this algorithm

in Section 4.2.

Cold layer consists of offline machines (cold machines). In this

layer, the optimization problem is to evaluate the minimum of cold

machines which will not cause failed requests in a long-term time

period (e.g., one week, three weeks, one month). We train and

deploy probabilistic time-series forecasting models on Node Pool
Auto-scaler to predict long-term daily resource consumption (i.e., a

daily difference of allocated resources). Based on the predictions, we

design a Minimum-stock Policy that suggests adding or removing

cold machines. We discuss details in Section 4.3.

In Figure 3, resource flows depict how machines move between

layers and node pools. Schedulers uses VRO to allocate resources

of online machines to users (User← Online). Users may migrate

their data and release allocated resources (User→ Online). Warm

machines will be promoted to online machines once Scheduler fails
to allocate resources due to a lack of resources for online machines

(Online←Warm). Online machines can be emptied by Rebalancer
(Online→Warm). Based on short-term resource usage prediction,

Node Pool Auto-scaler proactively tunes warm buffers by configur-

ing/deconfiguring cold machines (Warm← Cold & Warm→ Cold).

According to long-term resource consumption prediction and stock

management suggestions, the cold machines are either purchased

from suppliers (Cold← Supplier) or exchanged to other node pools

(Cold↔ Cold). All resource flows work simultaneously.

4 RESOURCE OPTIMIZATION ALGORITHMS
In this section, we present the intuitions and technical details of

three resource optimization algorithms designed for Eigen’s hier-

archical resource management system: Section 4.1 describes Vec-

torized Resource Optimization, online and offline scheduling al-

gorithms in the online layer. Section 4.2 describes Exponential

Smoothing with Smoothed Adaptive Margins, a short-term time

series forecasting algorithm in the warm layer. Section 4.3 describes

TCN with Minimum-stock Policy, long-term time series forecasting

and stock management algorithm in the cold layer.

4.1 Vectorized Resource Optimization
4.1.1 Online Allocation. In order to mitigate resource skewness of

traditional online heuristic d-VBP algorithms (e.g., first-fit, best-fit),

we propose VRO online allocation, a 2-step best-fit variant which
combines a loss-first heuristic and a skewness-first heuristic:
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Step 1: The first step uses a loss-first heuristic based on a novel

loss function (i.e., scoring strategy) which evaluates machines:

𝑙 (𝑟 ) = 𝛼 ∥𝑟 ∥ + 𝛽
∑︁

1≤𝑖≤𝑑
𝑟 (𝑖) mod 𝑓𝑖 (1)

where 𝑟 ∈ [0, 1]𝑑 represents the scaled residual capacity (i.e., allo-

catable resources) vector of a machine, 𝑟 (𝑖) denotes the 𝑖th resource

dimension of 𝑟 (e.g., CPU, memory, disk), 𝛼 and 𝛽 are user-specified

weights of two terms. In Equation 1, the first term is a Norm (e.g.,

L1 and L2) of 𝑟 which evaluates the sizes of residual capacities.

The second term evaluates the fragmentation of 𝑟 , and 𝑓𝑖 denotes

a fragmentation parameter, which is tuned based on historical re-

source requests. For example, if we observe the majority of memory

requests are 4GBs, the fragmentation parameter of memory will

be the scaled number of 4. In practice, we improve bin packing

performance through tuning the Norm and weights in Equation 1

Given a database instance 𝐼 ∈ [0, 1]𝑑 , we select a set M′ of
machineswhich 𝐼 fits in. IfM′ is empty, open a new bin (i.e., allocate

𝐼 to an empty machine). Otherwise, we select candidate machines

with the smallest losses (Equation 1). Formally, the residual capacity

vector of each candidate machine 𝑟𝑐 satisfies:

𝑙 (𝑟𝑐 − 𝐼 ) − min

1≤𝑖≤ |M′ |
𝑙 (𝑟𝑖 − 𝐼 ) < 𝛿 (2)

where 𝛿 is a user-specified small number.

Step 2: The second step uses a skewness-first heuristic. Among

the candidate machines, we select the best machine using any of

the following policies which differ in measurements of resource

skewness:

• Diagonal Direction Policy. This policy measures resource

skewness by the angle 𝜃 between 𝑟 − 𝐼 and 𝑃 (we want 𝜃 to

be as small as possible). Since 𝜃 ∈ [0, 𝜋
2
), we directly compute

and select the machine with the minimum 𝜃 :

𝑟𝑠 = argmin

𝑟
𝜃 (𝑟 − 𝐼 ) (3)

• Bottleneck Resource Policy. This policy measures resource

skewness by bottleneck resources. We define the bottleneck re-

source as the minimum component of 𝑟 − 𝐼 . Since the bottleneck
resource is more likely to be run out, this heuristic selects the

machine with the maximum bottleneck resource:

𝑟𝑠 = argmax

𝑟
min

1≤𝑖≤𝑑
(𝑟 − 𝐼 ) (𝑖) (4)

• Dot Product Policy. This policy measures resource skewness

by the dot product of 𝑟 and 𝐼 . Inspired from [19], this heuristic

selects the machine with the maximum dot product:

𝑟𝑠 = argmax

𝑟
𝐼 · 𝑟 (5)

Case StudyWe use a case study to demonstrate the intuition be-

hind VRO online allocation. Figure 4 (a) is a contour line graph of

Equation 1 in a 2-dimension space (memory and disk). The dot-

ted curves are the contour lines whereas the darker curves rep-

resent larger losses. The blue vector 𝑃 is the diagonal direction

vector. Green circles represent three machines𝑀1, 𝑀2 and𝑀3 after

loading a database instance 𝐼 . We use 𝑟1, 𝑟2 and 𝑟3 to denote their

residual capacities, respectively. Although 𝑟1, 𝑟2 and 𝑟3 vary a lot

in different dimensions, their losses reside within a small range

(a) (b)

Disk

P

Memory

M

M'

 θ

I-I'

  Δθ

(c)

Disk

M3

M2

P

M1

Memory

δ

Figure 4: Examples of online allocation (a), instance exchange
(b), and binary search of 𝜃𝑡 (c).

𝛿 (Formula 2). In this case, loss-first heuristics lead to a subopti-

mal solution. Specifically,𝑀1 has the smallest loss, even though its

residual capacity becomes too skewed. To solve this problem, we

introduce the second step which uses the skewness-first heuristic

to mitigate resource skewness.

To summarize, VRO’s online allocation algorithm proposes a

novel loss function and inherits the loss-first heuristic from best-

fit. However, when multiple machines have close losses, skewness

becomes the critical criterion. Therefore, in step 2, we switch to

the skewness-first heuristic and design three policies that measure

skewness differently. In this way, the bad case presented in Figure 4

can be solved. For example, when we use the diagonal direction

policy,𝑀2 will be selected since the angle between 𝑟2 and 𝑃 is the

smallest.

4.1.2 Offline optimization. We propose VRO offline optimization, a

heuristic offline d-VBP algorithm, which consolidates clusters under

migration cost constraints. We formally define the problem of d-
VBP with migration cost constraint as follows. Given a clusterM
of𝑚 non-empty machines where each residual capacity 𝑟 ∈ [0, 1]𝑑 ,
a set of 𝑛 database instances I where each 𝐼 ∈ [0, 1]𝑑 , and the

original instance-machine assignment 𝐴0 : I →M, we search the

optimal assignment 𝐴opt which leads to the minimum non-empty

machines under a migration cost constraint

∑
𝐼 ∈I′ cost(𝐼 ) < 𝑄 .

In this constraint, the cost is a user-defined metric (e.g., database

instance size), I′ represents a set of migrated database instances.

Apparently, it is impractical to directly search for the global

optimal solution. The most straightforward heuristic is sorting all

machines by the sum of migration costs of the database instances

on the machines, then trying to empty one machine by another

using d-VBP algorithms. However, this approach does not address

migration costs. In this section, we propose VRO offline optimiza-

tion. Compared to previous works, our method has two advantages.

Firstly, instead of traditional d-VBP algorithms, we use VRO online

allocation when migrating database instances to reduce resource

skewness. Secondly, we introduce instance exchange to further

improve bin packing performance, and use binary search to maxi-

mize emptied machines under migration cost constraints. Before

explaining this algorithm, we introduce two techniques: instance

migration and instance exchange.

Instance migration uses a cost-first heuristic to empty machines

as many as possible. Algorithm 1 describes this algorithm. Given

a clusterM and migration cost constraint 𝑄 , we first select the

machine𝑀 with the lowest migration cost. Next, we try to migrate

each instance 𝐼 ∈ 𝑀 and re-allocate it to other non-empty machines
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Algorithm 1 Migration phase of VRO offline optimization

1: function Migration(M,𝑄)

2: while ∃ 𝑀 ∈ M is not visited do
3: 𝑀 ← unvisited machine with the lowest cost inM
4: for instance 𝐼 ∈ 𝑀 do
5: Migrate and re-allocate 𝐼 using VRO online

6: if current cost surpasses𝑄 then ⊲ early terminate

7: Rollback𝑀

8: returnM
9: if𝑀 is empty then Remove𝑀 fromM
10: returnM

Algorithm 2 Exchange phase of VRO offline optimization

1: function Exchange(M, 𝜃𝑡 )

2: while ∃ 𝑀 ∈ M is not visited do
3: 𝑀 ← unvisited machine with the largest 𝜃 inM
4: while 𝜃 > 𝜃𝑡 do
5: 𝐼 , 𝐼 ′ ← argmax𝐼 ∈𝑀,𝐼 ′∈𝑀 ′ Δ𝜃 𝑠.𝑡 . Δ𝜃 > 0,Δ𝜃 ′ > 0

6: if � 𝐼 , 𝐼 ′ then break

7: Exchange instances 𝐼 (in𝑀) and 𝐼 ′ (in𝑀 ′)

8: returnM

inM using VRO online allocation algorithm (Line 4-5). If we find

the current migration cost surpasses 𝑄 , we roll back𝑀 , then termi-

nate (Line 6-8). If𝑀 is emptied after instance migration, we remove

it fromM, then continue to empty the next machine (Line 9).

Instance exchange uses a skewness-first heuristic to reduce re-

source skewness. Algorithm 2 describes this algorithm. Given a

clusterM and an angle threshold 𝜃𝑡 , we first select an unvisited

machine 𝑀 whose 𝑟 has the largest 𝜃 , which evaluates the angle

between 𝑟 and the diagonal direction vector 𝑃 (Line 3). While 𝜃 is

greater than 𝜃𝑡 (Line 4), we search a pair of instances 𝐼 ∈ 𝑀 and

𝐼 ′ ∈ 𝑀′ which leads to an optimal feasible exchange (Line 5). We

use Δ𝜃 = 𝜃 (𝑟 ) − 𝜃 (𝑟 + 𝐼 − 𝐼 ′) and Δ𝜃 ′ = 𝜃 (𝑟 ′) − 𝜃 (𝑟 ′ − 𝐼 + 𝐼 ′) (i.e.,
the difference between the 𝜃 before exchange and the 𝜃 after ex-

change) to evaluate skewness reductions of 𝑀 and𝑀′. To improve

optimization stability, we constrain that Δ𝜃 > 0 and Δ𝜃 ′ > 0. If

no feasible exchange can be found, the skewness of 𝑀 is already

optimized (Line 6); otherwise, we execute this exchange (Line 7).

Figure 4 (b) presents an example of instance exchange. In this

figure, black arrows represent residual capacities of machines 𝑀

and𝑀′ before instance exchange, red arrows represent exchanged

instances, and black dotted arrows represent residual capacities

after instance exchange. In this figure, we can find that after in-

stance exchange, 𝜃 (machine𝑀) is reduced by Δ𝜃 , and the residual

capacities of both𝑀 and𝑀′ move towards 𝑃 .

Binary search of 𝜃𝑡 . To improve bin packing performance, we

run instance exchange before instance migration. To search for the

optimal bin packing solution under migration cost constraints, we

take advantage of 𝜃𝑡 in Algorithm 2. We observe that smaller 𝜃𝑡
leads to better bin packing performance at the expense of higher

migration cost. Therefore, it is critical to find the optimal 𝜃𝑡 . For

example, in Figure 4 (c), solid lines represent the migration costs

of emptied machines when using different 𝜃𝑡 s, and the dotted line

represents the migration cost constraint 𝑄 . In this figure, although

we can empty more machines when 𝜃𝑡 =
𝜋
7
, under the constraint

Algorithm 3 VRO offline optimization

1: function OfflineVRO(M,𝑄, 𝑁 , 𝜃min, 𝜃max, 𝜖)

2: M0 ← M
3: for 𝑖 ← 1 to 𝑁 do
4: M𝑖 ← M𝑖−1

5: 𝜃𝑙 , 𝜃𝑟 ← 𝜃min, 𝜃max

6: while 𝜃𝑟 − 𝜃𝑙 > 𝜖 do
7: Mtmp ← M𝑖−1

8: 𝜃𝑡 ← (𝜃𝑙 + 𝜃𝑟 )/2
9: Mtmp ←Exchange(Mtmp, 𝜃𝑡 )

10: Mtmp ←Migration(Mtmp,𝑄)

11: M𝑖 ← min(M𝑖 ,Mtmp )
12: if migration is early terminated then 𝜃𝑙 ← 𝜃𝑡

13: else 𝜃𝑟 ← 𝜃𝑡

14: if |M𝑖 | = |M𝑖−1 | then break

15: returnM𝑛

𝑄 , 𝜃𝑡 =
𝜋
6
is the best choice (3 emptied machines). In practice, we

use binary search to find the optimal 𝜃𝑡 .

Algorithm 3 describes VRO offline optimization. The inputs in-

clude a clusterM, migration cost constraint 𝑄 , iteration number

𝑁 , and the binary search parameters 𝜃min, 𝜃min and 𝜖 . In this algo-

rithm, the outer loop (Line 3-15) iteratively optimizes the cluster,

and the inner loop (Line 6-13) searches the optimal 𝜃𝑡 of each itera-

tion. In the inner loop, we initialize the current clusterMtmp and

𝜃𝑡 (Line 7-8), try to consolidateMtmp through instance exchange

and instance migration (Line 9-10), and always retain the smallest

consolidated cluster (Line 11). If we find the migration phase is

early terminated due to violation of migration cost constraint, it

indicates that 𝜃𝑡 should be increased (Line 12). Otherwise, 𝜃𝑡 should

be decreased for better bin packing performance (Line 13).

4.2 Management for Warm Resources
In order to optimize warm machines in the warm layer, we propose

Exponential Smoothing (ES) with Smoothed Adaptive Margin, a

forecasting model optimized for sharp spikes, to predict short-term

resource allocation (e.g., memory allocation in the next minute) on

node pools. In the following paragraphs, we present our intuition

of smoothed adaptive margins.

ES with Constant Margins. Traditional statistic time-series fore-

casting (e.g., ES, MA, AR) does not predict sharp spikes well. In-

spired by Autopilot [24], we adopt a variable𝑀𝑎𝑟𝑔𝑖𝑛, and add it to

the ES prediction result. In practice, 𝑀𝑎𝑟𝑔𝑖𝑛 is a variable tuned by

statistic models. For example, given a time interval 𝑇 , we collect

differences of allocated memory every (i.e., delta memory), fit a

probability distribution of𝑇 , and select a𝑀𝑎𝑟𝑔𝑖𝑛 from the distribu-

tion (e.g., 90%th quantile). We call this method ES with Constant

Margin, and summarize it in the following equations:

𝐹𝑡+1 = 𝑆𝑡+1 +𝑀𝑎𝑟𝑔𝑖𝑛 (6)

where 𝐹𝑡+1 represents target warm memory at future timestamp

𝑡 + 1, 𝑆𝑡+1 represents ES prediction result:

𝑆𝑡+1 = 𝛼𝑂𝑡 + (1 − 𝛼)𝑆𝑡 (7)

where𝑂𝑡 represents actual allocated memory at current timestamp

𝑡 , 𝑆𝑡 represents prediction result of ES at 𝑡 − 1, and 𝛼 is a user-

specified smoothing factor of ES.

3800



−0.6 −0.4 −0.2 0.0 0.2 0.4
normalized memory

0
5

10
15
20
25
30
35

pr
ob

ab
ili

ty

cauchy
laplace
norm

Figure 5: Probability distribution fitting results when adopt-
ing different probability distribution models.

ES with Adaptive Margin The drawback of constant margin is

lack of flexibility. Observing that the allocated memories rise with

acceleration rates, we consider using an adaptive margin where

the margin changes based on real-time acceleration rates (i.e., the

second-order derivative of allocated memory 𝑂 ′′). When 𝑂 ′′ is
small, the time series is stable, and we use a smaller margin to

reduce the cost of warm resources. When 𝑂 ′′ is large, based on

empirical experience, we assume the time series is likely to retain

the current acceleration rate and use a larger margin to improve

resource availability. We summarize this method as follows:

𝐹𝑡+1 = 𝑆𝑡+1 + (1 + 𝑅𝑡+1) ×𝑀𝑎𝑟𝑔𝑖𝑛 (8)

where 𝑅𝑡+1 is called adaptive slope and is defined by

𝑅𝑡+1 = (
𝑂 ′′𝑡
𝑂 ′′𝑚𝑎𝑥

)𝛾 (9)

where 𝑂 ′′𝑡 represents current second order derivative of allocated

memory, 𝑂 ′′𝑚𝑎𝑥 represents the maximum value of historical 𝑂 ′′s in
a sliding window, and 𝛾 ∈ [0, 1] is a user-specified parameter that

amplifies 𝑅𝑡+1.
ES with Smoothed Adaptive Margin The adaptive margin in-

creases rapidly when the allocated memory is rising with an accel-

eration rate. However, it also drops rapidly when 𝑂 ′′𝑡 is negative

and makes the prediction unstable. In practice, we want 𝑀𝑎𝑟𝑔𝑖𝑛

to decrease smoothly when 𝑂 ′′𝑡 < 0 since it is risky to sharply

reduce warm resources. To solve this problem, based on adaptive

margins, we propose ES with Smoothed Adaptive Margin which

adopts different adaptive slopes according to signs of 𝑂 ′′𝑡 :

𝑅𝑡+1 =


( 𝑂 ′′𝑛
𝑂 ′′𝑚𝑎𝑥

)𝛾 𝑂 ′′𝑡 ≥ 0

𝛽𝑅𝑡 − (1 − 𝛽) (
|𝑂 ′′𝑡 |
𝑂 ′′𝑚𝑎𝑥

)𝛾 𝑂 ′′𝑡 < 0

(10)

where 𝛽 ∈ [0, 1] is a user-specified smoothing factor that enables

exponential decay of margins when 𝑂 ′′ < 0. In summary, using ES

with Smoothed Adaptive Margins, warm resources cost few when

allocated memory is stable (𝑂 ′′ is small), rise rapidly when allocated

memory is quickly increasing (𝑂 ′′ > 0), and drop smoothly when

allocated memory is quickly decreasing (𝑂 ′′ < 0).

4.3 Management of Offline Resources
4.3.1 Probabilistic Time Series Forecasting. In order to optimize

offline machines in the cold layer, we adopt Temporal Convolu-

tional Network (TCN) [6] to predict long-term resource allocation

(e.g., daily memory allocation in the future 21 days) on node pools.

Notably, instead of fitting a deterministic curve of future values,

our model estimates probability distributions of future values (prob-

abilistic time series forecasting). It captures the uncertainty of the

future, and allows users to select the proper quantile of probability

distributions. In this section, we introduce two empirical optimiza-

tions to improve the performance of TCN:

• Time series clustering. Training a model for each time series

of a node pool will easily lead to overfitting. On the contrary, the

model trained on multiple time series does not perform well due

to the heterogeneity of different clusters. In practice, some time

series of allocated memory are increasing, some are fluctuating

and others are decreasing. In order to solve this problem, we

use Dynamic Time Wrapping (DTW) to evaluate the distance

between time series and use k-means to cluster them based on

DTW evaluations. Finally, we train a model for each cluster.

• Cauchy Distribution. Our model estimates probability distri-

butions of the daily difference of memory allocation (i.e., delta

memory). Instead of randomly picking a probability distribution,

we select three well-adopted candidates and fit their parameters

by minimizing the Mean Square Error (MSE) of real-world data.

Figure 5 shows the histogram of delta memory (yellow bars)

in a node pool, and the fitted probability density functions of

Cauchy, Laplace and Normal Distributions. Obviously, Cauchy

Distribution best fits the raw data.

4.3.2 Minimum-stock Policy. Based on the predicted time series,

we need a mechanism to estimate the optimal cluster size and take

corresponding actions (e.g., add or removemachines). This drives us

to explore the field of stock/inventory management, a logistics dis-

cipline for stocks of goods. However, traditional stock management

policies (e.g., Base-stock Policy [2]) rarely consider cases where

the stock may instantaneously increase due to “returned" products

(e.g., cloud resources are released by end users), therefore, lack

mechanisms to remove stocks.

In order to solve this problem, we design Minimum-stock Policy.

Algorithm 4 describes this algorithm. In Line 1-4, 𝑝 and 𝑙 represent

the period time (i.e., time interval) and lead time (i.e., time for the

supplier to deliver machines) in days, 𝐵 represents the current stock

size (e.g., cold machines), and 𝑝𝑙 represents a list of pipeline stock,

the resources ordered in the past and will be delivered in the future.

In each iteration, we collect the current time 𝑇𝑐 (Line 6) and check

whether it is time to adjust stocks. If so (Line 7), we firstly compute

𝑠 [𝑇𝑐 : 𝑇𝑐 + 𝑙 + 𝑝], predicted daily delta memory in the future 𝑙 + 𝑝
days (Line 8). Next, SimStock computes target stocks and simulated

stocks of sub-series 𝑠 [𝑇𝑐 : 𝑇𝑐 + 𝑙] and 𝑠 [𝑇𝑐 + 𝑙 : 𝑇𝑐 + 𝑙 +𝑝] (Line 9-10).
The function SimStock is described in Algorithm 5. Given pre-

dictions of future delta memory, this algorithm simulates how the

stock will change if the initial stock is 0. 𝑠 represents the predicted

time series of delta memory, 𝑇 represents the beginning time of 𝑠 ,

and 𝑝𝑙 represents the pipeline stock list. We initialize two variables:

simulated stock 𝑠𝐵 and minimum stock𝑚𝐵 (Line 2-3). Next, we sim-

ulate future stocks through traversing 𝑠 and pipeline stock list 𝑝𝑙 ,

and record the minimum of simulated stocks𝑚𝐵 (Line 4-6). Finally,

we define target stock 𝑡𝐵 as the opposite of𝑚𝐵 (Line 7). It indicates

the minimum stock we should maintain in order to prevent insuffi-

cient resource events in the future 𝑠 .size() days. Figure 6 presents

an example of simulated stock computing. Solid orange line and

solid blue line represent simulated stock series of 𝑠 [𝑇𝑐 : 𝑇𝑐 + 𝑙] and
𝑠 [𝑇𝑐 + 𝑙 : 𝑇𝑐 + 𝑙 + 𝑝]. Dotted lines represent simulated stock series if

the initial stocks are 𝑡𝐵1 and 𝑡𝐵2.
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Algorithm 4 Minimum-stock policy

1: 𝑝 ← period time

2: 𝑙 ← lead time

3: 𝐵 ← current stock size

4: 𝑝𝑙 ← pipeline stock list

5: while true do
6: 𝑇𝑐 ← current time

7: if 𝑇 mod 𝑝 = 0 then
8: 𝑠 [𝑇𝑐 : 𝑇𝑐 + 𝑙 + 𝑝 ] ← prediction of daily delta memory

9: 𝑡𝐵1, 𝑠𝐵1 ← SimStock(𝑠 [𝑇𝑐 : 𝑇𝑐 + 𝑙 ],𝑇𝑐 , 𝑝𝑙 )
10: 𝑡𝐵2, 𝑠𝐵2 ← SimStock(𝑠 [𝑇𝑐 + 𝑙 : 𝑇𝑐 + 𝑙 + 𝑝 ],𝑇𝑐 + 𝑙, 𝑝𝑙 )
11: Δ← 𝑡𝐵2 − (𝑡𝐵1 + 𝑠𝐵1 )
12: if Δ ≥ 0 then
13: if 𝐵 ≥ 𝑡𝐵1 + Δ then
14: 𝐵 ← 𝑡𝐵1 + Δ ⊲ remove stocks

15: else
16: 𝑝𝑙 [𝑇𝑐 + 𝑙 ] ← 𝑡𝐵1 + Δ − 𝐵 ⊲ add stocks

17: else
18: if 𝐵 ≥ 𝑡𝐵1 then
19: 𝐵 ← 𝑡𝐵1 ⊲ remove stocks

20: else if 𝐵 ≤ 𝑡𝐵1 + Δ then
21: 𝑝𝑙 [𝑇𝑐 + 𝑙 ] ← 𝑡𝐵1 + Δ − 𝐵 ⊲ add stocks

Algorithm 5 Compute simulated stock series

1: function SimStock(𝑠,𝑇 , 𝑝𝑙 )

2: 𝑠𝐵 ← 0 ⊲ simulated stock

3: 𝑚𝐵 ← 0 ⊲ minimum stock

4: for 𝑖 ← 𝑇 to𝑇 + 𝑠 .size() do
5: 𝑠𝐵 ← 𝑠𝐵 − 𝑠 [𝑖 ] + 𝑝𝑙 [𝑖 ]
6: 𝑚𝐵 ← min(𝑠𝐵,𝑚𝐵)

7: 𝑡𝐵 ← −𝑚𝐵 ⊲ target stock

8: return 𝑡𝐵, 𝑠𝐵

The intuition behind the Minimum-stock Policy is to maintain

minimal stock while preventing insufficient resource events in the

future 𝑙 +𝑝 days. Given simulated stocks and Δ (Line 11), we discuss

four situations that correspond to four different optimal actions.

• When ∆ > 0, it indicates the second time period ([𝑇𝑐 + 𝑙 : 𝑇𝑐 +
𝑙 + 𝑝]) requires larger stocks than the residual stocks at the end

of the first time period ([𝑇𝑐 : 𝑇𝑐 + 𝑙]). For example, in Figure 6,

𝑡𝐵2 > 𝑡𝐵1 + 𝑠𝐵1. In order to prevent insufficient resource events

in future 𝑙 + 𝑝 days, the target stock at 𝑇𝑐 should be 𝑡𝐵1 + Δ.
– When B ≥ tB1 + ∆, we should remove 𝐵 − (𝑡𝐵1 +Δ) stocks.
– When B < tB1 + ∆, we should add 𝑡𝐵1+Δ−𝐵 stocks, which

will be on-hand in 𝑙 days.

• When ∆ ≤ 0, we only need to ensure that no insufficient re-

source events will happen in the future 𝑙 days.

– When B ≥ tB1, we remove 𝐵 − 𝑡𝐵1 stocks.
– WhenB ≤ tB1 + ∆, insufficient resource events are inevitable

in the future 𝑙 days. However, we can add 𝑡𝐵1 +Δ−𝐵 stocks,

so that the stocks will be sufficient in the second period.

5 FAST SCHEDULING FOR SERVERLESS
WORKLOAD

With the introduction of serverless database services, Eigen is ex-

pected to handle requests from both user-specified scaling requests

Figure 6: An example of simulated stock series.

and auto-scaling requests based on metrics collected from server-

less database instances, such as their CPU and memory usage. This

brings new challenges to the scheduler: how to process resource

allocation requests on a more frequent basis, and how to reduce the

migration cost caused by cross-node auto-scaling. In this section,

we introduce optimizations for overcoming these challenges.

5.1 Master-agent Collaborative Scheduling
This design decouples two scheduling procedures: central sched-

uling and local auto-scaling. The central scheduling processes cre-
ating requests and scaling requests require migration of database

instance. As shown in Figure 8 (solid arrows), central scheduling

includes the following steps: Step 1○, Eigen Master receives a cre-
ating or scaling request of a database instance. Step 2○, based on

the node states and the online version of VRO (i.e., allocatable re-

sources of each node), Scheduler assigns the database instance to
the “best” node. Step 3○, Eigen Master sends Trylock to request to

Eigen Agent of the target node. Step 4○, Eigen Agent checks local
allocatable resources. If there are sufficient resources, Eigen Agent
locks requested resources, then returns success response to Eigen
Master. If local resources are insufficient, Eigen Agent returns fail
response. Step 5○, if Trylock request succeeds, Eigen Master exe-
cutes resource allocation, then builds instances or scales up/down

existing instances asynchronously; otherwise, Eigen Master asks
Scheduler to re-schedule.

Local auto-scaling processes the auto-scaling requests that can

be fulfilled locally. Similarly, this procedure is depicted in Figure 8

(dotted arrows): Step 1, Eigen Agent receives local auto-scaling re-
quests from local database instances. Step 2, Eigen Agent checks
local allocatable resources. If there are sufficient resources, Eigen
Agent executes scaling locally. If local resources are insufficient,

Eigen Agent tries to evict cold instances to release more local re-

sources. After cold instance eviction, if the released resources are

still not enough, Eigen Agent communicates with Eigen Master for
cross-node auto-scaling (instance migration). Step 3, Eigen Agent
asynchronously updates node states to Eigen Master.

On the one hand, master-agent collaborative scheduling allows

each machine to execute auto-scaling partially without the master

node. Therefore, it increases scheduling throughput and reduces the

cost of instance migration. However, from the Scheduler’s perspec-
tive, local auto-scaling may not have the globally optimal decisions.

To solve this problem, we implement offline bin packing in Re-
balancer to periodically consolidate clusters. On the other hand,

master-agent collaborative scheduling concerns master-local con-

sistency. To reduce schedule conflict, we implement the Trylock

mechanism and require Eigen Agent to update node states to Eigen
Master in real time. First, Trylock ensures that allocated resources
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Figure 7: Memory allocation ratios and disk allocation ratios of a physical machine cluster and an ECS machine cluster when
using different bin packing algorithms.

Figure 8: Master-agent collaborative scheduling.

will not be reclaimed by other database instances. Second, the

asynchronous update is designed to trade off scheduling efficiency

against conflict. In practice, node states are updated every ten sec-

onds, during which Scheduler rarely meets scheduling conflicts

caused by lagged versions of node states.

5.2 Cold Instance Eviction
During local auto-scaling, Eigen Agent tries to evict cold instances

(i.e., migrate less active database instances) if there are no sufficient

spare resources on that machine for a scale-up request. We prefer

to evict cold instances out of this machine because migrating a

“cold” instance costs less than a “hot” one. In practice, we define a

metric to reflect the “temperature” of database instances according

to multiple factors, such as CPU usage, memory usage, database

size, and the number of connections and evaluate the metric peri-

odically. Specifically, we assign the weights to each of the factors

and compute the sum of the products of the weight-factor pairs.

6 EVALUATION
In this section, we present evaluation results of Eigen. We launch

both simulated and practical experiments on real-world clusters

(i.e., node pools) of Alibaba’s serverless databases in the production

environment. The evaluations of three resource optimization algo-

rithms are demonstrated and discussed in Section 6.1, 6.2, and 6.3

respectively. In Section 6.4, we show how Eigen improves end-to-

end resource allocation ratio with little increase of delayed resource

requests caused by insufficient resource provision.

6.1 VRO
Experiments of VRO are launched on physical machine clusters and

ECS machine clusters. Specifically, on physical machine clusters,

multi-dimensional bin packing involves CPU, memory and local

disk; on ECS clusters, it involves memory and cloud disk. On ECS

clusters, each database instance is associated with several cloud

disks (e.g., 1, 2, 4), and each ECS node has a maximum number

of cloud disks. On each machine, we constrain that the memory

allocation ratio cannot surpass 95%, and the local and cloud disk

allocation ratio cannot surpass 85% and 100% respectively.

Resource skewness.We first evaluate VRO by estimating resource

skewness when adopting different bin-packing algorithms. Figure 7

presents scatter graphs of a physical machine cluster (upper graphs)

and an ECS machine cluster (lower graphs). In each figure, the x-

axis represents the local disk or cloud disk allocation ratio, the

y-axis represents the memory allocation ratio, and each scatter

represents a non-empty machine. Figures 1-a and 2-a show the

original clusters without bin packing. Figures 1-b and 2-b show the

baseline where the database instances are sequentially requested

through a resource scheduler that runs the best-fit online algorithm.

Figure 1-c 2-c through Figure 1-e 2-e show the results when the

resource scheduler runs different versions of the VRO algorithm.

We summarize our observations below: 1. Bin packing algorithms,

even the baseline best-fit online, significantly improve the resource

allocation ratios of the whole cluster; 2. Compared to best-fit, the

scatters of machines after using VRO (c, d, e) distribute closer to the

diagonal line (particularly the upper right corner). It indicates that

VRO can reduce resource skewness and improves allocation ratios.

3. The VRO offline performs the best, and instance exchange can

further reduce resource skewness and improve allocation ratios.

Number of emptied machines. We evaluate the performance

of offline bin packing algorithms based on the number of emptied
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Table 1: Numbers of emptied machines when using different offline bin packing algorithms, optimal numbers of emptied
machines, and total machines of different clusters.

Cluster First-fit Best-fit MostAllocated RTCR Diagonal Diagonal+ Bottleneck Bottleneck+ DP DP+ Optimal Total

Physical

machines

1 131 135 131 129 137 140 141 143 136 137 156 445

2 59 58 59 59 60 60 60 60 63 63 64 158

3 79 80 80 79 82 82 83 84 84 84 89 211

4 67 64 64 63 68 69 67 68 71 72 76 203

5 111 107 107 106 116 117 113 113 111 111 117 298

6 88 97 97 96 103 103 102 102 101 102 111 350

ECS machines

7 101 99 100 100 108 113 112 117 105 111 141 451

8 3 3 3 3 4 6 4 6 4 6 20 230

9 43 41 41 41 45 45 45 46 45 46 52 281

10 42 29 32 29 43 44 43 43 43 43 96 1476

(a) (b) (c)

Figure 9: Emptied machines under different migration cost (a), simulated (b) and real-world (c) memory allocation ratios.

machines after consolidating the clusters. Table 1 presents the bin

packing results (i.e., emptied machines), the optimal results (i.e.,

maximum emptied machines), and the total machines of 10 clus-

ters. Specifically, clusters 1-4 are physical clusters that involve two

dimensions: memory and disk; clusters 5-6 involve three dimen-

sions: CPU, memory and disk; clusters 7-10 are ECS clusters that

involve two dimensions: memory and cloud disk. In each row, gray

cells highlight the best bin-packing results of each cluster. We use

first-fit, best-fit (L2 Norm), and two scheduling strategies from K8s:

MostAllocated and RequestToCapacityRatio (RTCR) [15] as base-

line policies, then compare them to VRO policies with and without

exchange phase. For example, columns “DP” and “DP+” indicate us-

ing dot product policy during the migration phase with and without

the exchange phase. From this table, we observe that VRO online

allocation always outperforms the baseline. Additionally, instance

exchange improves bin packing performance regardless of which

policy is used during the migration phase.

Next, we evaluate bin packing performance under migration cost

constraints. In this experiment, we compare VRO offline optimiza-

tion with two baseline algorithms, which adopt best-fit and first-fit

during the migration phase. Figure 9 (a) presents the number of

emptied machines under different migration cost constraints (per-

centiles of the sum of migration costs of all database instances). We

observe that under the same migration cost constraint, VRO offline

optimization always outperforms baselines.

Memory allocation ratio of online machines. We show how

VRO improves allocation ratios of online machines of real-world

clusters.We collect the trace of the actual history of Eigen allocation

for six months and simulate the performance of scheduling based

on the trace. When computing the simulated memory allocation ra-

tio, we re-allocate database instances using bin packing algorithms.

Specifically, we consolidate (e.g., using VRO offline optimization)

the cluster every two months (red vertical lines). Between each

consolidation, we use online bin-packing algorithms to allocate

database instances. Figure 9 (b) presents simulated memory alloca-

tion ratios when using best-fit (blue line), VRO (orange line), and the

actual allocation ratio (black dashed line) of online machines. We

can observe that the consolidation of the cluster (either best-fit or

VRO) sharply increases the memory allocation ratio. Compared to

the original line, bin packing algorithms can significantly improve

the allocation ratio. Compared to best-fit, VRO further improves

the memory allocation ratio by reducing resource skewness.

Figure 9 (c) presents the memory allocation ratio of a cluster from

our production environment. In this figure, the red vertical line

indicates the timestamp when we applied VRO. Explicitly, at that

time, we started to use VRO online allocation for real-time resource

requests and began rebalancing using VRO offline optimization. Due

to the high cost of database instance migration, it is impractical to

consolidate the whole cluster instantly. Therefore, we can observe

that the memory allocation ratio gradually rises during the first 40

days when we gradually migrated database instances.

6.2 ES with Smoothed Adaptive Margins
Predicted time series Figure 10 presents the memory of actual

allocation and prediction of a real-world cluster when using ES

with constant margins (a), ES with adaptive margins (b) and ES with

smoothed adaptive margins (c). Red circles highlight timestamps

when the prediction is surpassed by actual allocated memory (i.e.,

insufficient resource events). In Figure 10 (a), insufficient resource

events happen four times (A, B, C, and D) when the actual allo-

cated memory rapidly rises. When predicting memory allocation

of timestamps A, B and C (i.e., at one timestamp earlier), the actual

allocation series has large accelerations (i.e., second-order deriva-

tives). Constant margins cannot handle this situation. In Figure 10

(b), ES with adaptive margins overcomes failures at A, B and C.

However, its predicted series becomes unstable and is surpassed by

the actual allocation at timestamps D and E when the accelerations

are negative. In Figure 10 (c), ES with smoothed adaptive margins
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Figure 10: Memory of actual allocation and prediction.
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Figure 11: The cost of warm machines (bars) and times of
insufficient resource events (dots).

overcomes all five failures. We can observe that the margin drops

smoothly when the accelerations are negative (e.g., at timestamp D

and E), thus the predicted series become much more smoothing.

Warm resource cost and insufficient resource eventsWe show

how ES with smoothed adaptive margins solves the dilemma of

maximizing resource utilization or availability in the warm layer.

In Figure 11, the left y-axis measures the bars of cost of warm

machines (memory times days), and the right y-axis measures the

dots of insufficient resource events during a month when using

different warm resource management methods. Blue bars represent

the methods that maintain warm machines of constant percentages

of allocated memory (e.g., 5%, 2%, 1%). Yellow bars represent classic

time series prediction methods: AR (AutoRegressor), MA (Moving

Average), ARIMA, ES, and Eigen’s methods: ES with constant mar-

gins, adaptive margins and smoothed adaptive margins. Compared

to the methods using constant percentages, ES with smoothed adap-

tive margins strikes a good balance between reducing the cost and

reducing insufficient resource events. Furthermore, out method sig-

nificantly reduces insufficient resource events with little increase

in cost, when compared to other ES variants.

6.3 TCN and Minimum-stock Policy
Prediction accuracy We divide time series data of daily allocated

memory into a training set and a testing set (4:1), then evaluate

the prediction accuracy of TCN model on the testing set. Figure 12

shows Mean Relative Error (MRE), which measures the deviation of

the predictions from the actual data, when using different quantiles

(a) and output sizes (b). In Figure 12 (a), we set the output size 28

(days), and we can find that MRE is less than 1% when using 50%th

quantile (Q50) of predicted distributions. In practice, to prevent

failed requests, we normally select higher quantiles, such as Q60 or

even Q70. Next, in Figure 12 (b), we use Q50 of the predicted dis-

tributions, and we can find that prediction accuracy mildly decays
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Figure 12: Mean relative error of TCN prediction.

when the output size increases. MRE is no more than 1.1% when

the model predicts allocated memory in the future 50+ days.

Predicted time series Figure 14 (a) shows the memory of actual

allocation and prediction of a real-world cluster when using Base-

stock Policy and Minimum-stock Policy. Notably, the predicted

series is tuned by different stock management policies. In this fig-

ure, we set period time 𝑝 = 7 and lead time 𝑙 = 21. We can ob-

serve that the predicted series of Minimum-stock Policy proactively

adds offline machines before the actual allocation increases, and

removes offline machines before the actual allocation decreases. In

addition, compared to Base-stock Policy, the prediction series of

Minimum-stock Policy is more accurate. In particular, when the

actual allocation is decreasing, Base-stock Policy lacks a mechanism

to remove offline machines, thus causing much more cost.

Offline resource cost and insufficient resource daysWe demon-

strate how TCN with Minimum-stock Policy solves the dilemma of

maximizing resource utilization or availability in the offline layer.

Figure 14 (b) presents the costs of offline machines and days of insuf-

ficient resource events when using different offline resource man-

agement methods for three months. We first compare prediction-

based methods to the methods using constant percentages. When

the percentages are large (e.g., 5%, 4%), prediction-based methods

cost much lower while having comparable insufficient resource

days. When the percentages are small (e.g., 0.5%, 0.1%), prediction-

basedmethods havemuch fewer insufficient resource dayswhile the

costs are close. Moreover, compared to Base-stock Policy, Minimum-

stock Policy has better performance regarding both cost and insuf-

ficient resource days.

6.4 End-to-end Evaluation
We select three large-scale representative clusters, whose memory

allocations are decreasing, fluctuating and increasing respectively,

to present end-to-end evaluation results of Eigen. Figure 13 presents

the memory of actual allocation, configured machines (i.e., online
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Figure 14: Memory of actual allocation and prediction.

& warm machines), total machines (i.e., online & warm & offline

machines) during a month after using Eigen, and the original to-

tal machines before Eigen. In these experiments, we compute ES

with smoothed adaptive margins every ten minutes and adjust to-

tal machines every seven days. From the figures, we can observe

that both configured machines and total machines are proactively

adjusted before the actual allocated memory changes. Compared to

the original total machines, Eigen significantly decreases stranded

resources to save the expenses of clusters.

Table 2 presents memory allocation ratios, memory utilization

ratios, and ratios of delayed resource requests of three clusters in

Figure 13 (Cluster a, b, c) before and after using Eigen. In each

cluster, VRO improves allocation ratios and utilization ratios of

non-empty machines, and the other two resource optimization

algorithms improve allocation ratios by maintaining just enough
empty and offline machines. On the one hand, after using Eigen,

both allocation ratios and utilization ratios are significantly im-

proved. On average, the allocation ratio is improved to 87%, and

the utilization ratio is improved to 61.37%. On the other hand, after

using Eigen, a few requests were delayed due to the mis-prediction

of ES with smoothed adaptive margins. Moreover, no request failed

because of insufficient resource provision before and after Eigen.

To summarize, Eigen significantly improved resource utilization

with a little rise of delayed/failed resource requests.

7 RELATEDWORK
There are previous works of d-VBP heuristics that discuss resource

skewness. Zhang et al. [31] propose an FFD variant that clusters

Virtual Machines (VM) by their dominant resources (i.e., the largest

component of VM’s resource vector) into groups, then allocates

each group based on the residual capacities of the whole cluster

of Physical Machines (PM). Hieu et al. [10] propose Max-BRU, a

bin-centric heuristic that searches for the most appropriate VM for

the most “suitable” PM. In this paper, they adopt Resource Balance

(RB), a resource skewness metric, as a scoring strategy for PMs.

Table 2:Memory allocation ratios, utilization ratios and delay
ratios before and after deploying Eigen.

allocation ratio utilization ratio Delayed ratio

Cluster Before After Before After Before After

a 58.73% 88.01% 50.41% 75.55% 0% 0.09%

b 61.40% 83.7% 37.34% 51.88% 0% 0%

c 59.01% 89.31% 36.83% 56.68% 0% 0.05%

These two algorithms reduce resource skewness, however, they

are offline algorithms and do not address migration costs. Li et

al. [17] propose a space partition model for online VM allocation.

The model divides PMs into three domains based on the size and

skewness of machines’ resource usage, where the domains have

different scheduling priorities. Compared to this algorithm, VRO

online allocation is also a mixture of loss-first and skewness-first

heuristics, but does not rely on rigid domain partition.

Some previous works use statistical and machine learning tech-

niques to optimize utilization ratios. Google’s Autopilot [24] en-

ables vertical scaling (i.e., tuning the number of resources allocated

for jobs/tasks) through an exponentially-smoothed sliding win-

dow over historical usage to decide the optimal resource limit of

each job/task. FIRM [21] uses a reinforcement learning model (i.e.,

DDPG) to make dynamic resource provision decisions for microser-

vices. P-Store [27] uses SPAR to predict periodic workloads of data-

base instances. Based on workload prediction, it can proactively

add/reduce resource provision before the workload of a database

instance changes. Moneyball [20] uses statistic models to learn

pause/resume patterns of serverless database instances, therefore

supporting proactive resumes to reduce delays of resource provi-

sion. Although effective, none of them has optimizations for sharp

spikes in short-term forecasting and long-term cloud resource con-

trol.

8 CONCLUSION
In this paper, we present Eigen, a large-scale, cloud-native cluster

management system for Alibaba’s cloud database. Eigen adopts

a hierarchical resource management system with three novel re-

source optimization algorithms: Vectorized Resource Optimization,

ES with Smoothed Adaptive Margins and TCN with Minimum-

stock Policy, which enable end-to-end resource optimization. In

addition, we present Eigen’s system optimizations for serverless

database services that promote user experience by reducing re-

source scheduling latencies and improving scheduling throughput.

The evaluation results show that Eigen significantly improves the

resource allocation ratio without hurting resource availability.
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