
Cornus: Atomic Commit for a Cloud DBMS with
Storage Disaggregation

Zhihan Guo
Xinyu Zeng
Kan Wu

University of Wisconsin-Madison
{zhihan,xzeng,kanwu}@cs.wisc.edu

Wuh-Chwen Hwang
Ziwei Ren

Xiangyao Yu
University of Wisconsin-Madison

{wuh-chwen,ziwei,yxy}@cs.wisc.edu

Mahesh Balakrishnan
Confluent, Inc.

mbalakrishnan@confluent.io

Philip A. Bernstein
Microsoft Research

philbe@microsoft.com

ABSTRACT
Two-phase commit (2PC) is widely used in distributed databases
to ensure atomicity of distributed transactions. Conventional 2PC
was originally designed for the shared-nothing architecture and
has two limitations: long latency due to two eager log writes on the
critical path, and blocking of progress when a coordinator fails.

Modern cloud-native databases are moving to a storage disag-
gregation architecture where storage is a shared highly-available
service. Our key observation is that disaggregated storage enables
protocol innovations that can address both the long-latency and
blocking problems. We develop Cornus, an optimized 2PC protocol
to achieve this goal. The only extra functionality Cornus requires is
an atomic compare-and-swap capability in the storage layer, which
many existing storage services already support. We present Cornus
in detail and show how it addresses the two limitations. We also
deploy it on real storage services including Azure Blob Storage and
Redis. Empirical evaluations show that Cornus can achieve up to
1.9× latency reduction over conventional 2PC.

PVLDB Reference Format:
Zhihan Guo, Xinyu Zeng, Kan Wu, Wuh-Chwen Hwang, Ziwei Ren,
Xiangyao Yu, Mahesh Balakrishnan, Philip A. Bernstein. Cornus: Atomic
Commit for a Cloud DBMS with Storage Disaggregation. PVLDB, 16(2): 379
- 392, 2022.
doi:10.14778/3565816.3565837

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/CloudOLTP/Cornus.

1 INTRODUCTION
Databases are migrating to the cloud because of desirable features
such as elasticity, high availability, and cost competitiveness. Mod-
ern cloud-native databases feature a storage-disaggregation archi-
tecture where the storage is decoupled from computation as a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.
doi:10.14778/3565816.3565837

Network

(a) Shared-nothing

Network

(b) Storage-disaggregation

Figure 1: Shared-Nothing vs. Storage-Disaggregation.

standalone service as shown in Figure 1b. This architecture allows
independent scaling and billing of computation and storage, which
can improve resource utilization, reduce operational cost, and en-
able flexible cloud deployment with heterogeneous configurations.
Many cloud-native database systems adopt such an architecture for
both OLTP [21, 49, 62, 67] and OLAP [14–16, 23, 30, 60]. Nowadays,
as storage services offer essential functions such as fault tolerance,
scalability, and security at low-cost, systems start to layer their
designs on the existing disaggregated storage services [22, 26].

This paper focuses on efficient deployment of the two-phase
commit protocol on existing storage services. Two-phase commit
(2PC) is the most widely used atomic commit protocol, which en-
sures that distributed transactions commit in either all or none
of the involved data partitions. 2PC was originally designed for
the shared-nothing architecture and suffers from two major prob-
lems. The first is long latency: 2PC requires two round-trip network
messages and associated logging operations. Previous work has
demonstrated that the majority of a transaction’s execution time
can be attributed to 2PC [19, 20, 32, 42, 50, 52, 64]. The second
problem is blocking [24, 25, 53]. Blocking occurs if a coordinator
crashes before notifying participants of the final decision. These
two problems greatly limit the performance of 2PC, especially in a
storage disaggregation architecture

Various techniques have been proposed to address these two
problems with 2PC. Some proposed optimizations target the shared-
nothing architecture and do not solve both problems simultane-
ously. These protocols either reduce latency by making strong
assumptions about the workload and/or system that are not always
practical for disaggregated storage [18–20, 25, 45, 46, 55, 56], or
they mitigate the blocking problem by adding an extra phase and

379

https://doi.org/10.14778/3565816.3565837
https://github.com/CloudOLTP/Cornus
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565816.3565837
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Coordinator

prepare request

vote yes
[log] COMMIT

commitback to user

[log] VOTE-YES

[log] COMMIT

Prepare Phase Begin

Commit Phase Begin

[log] COMMIT

[log] VOTE-YES

Participant 1 Participant 2

compute

storage

(a) 2PC with no failure.

Coordinator

prepare request

vote yes

[log] VOTE-YES
Prepare Phase Begin

Commit Phase Begin

Block until
Coordinator
recovers!

[log] VOTE-YES

Participant 1 Participant 2

compute

storage
timeout timeout

fail

timeout timeout

(b) 2PC with coordinator failure (cooperative termination protocol).

Figure 2: Illustration of Two-Phase Commit (2PC) — The lifecycle of successful commit (a) and a scenario of coordinator failure (b).

prolong latency [24, 41, 53]. Another line of research addresses
both problems through customizing the storage. Examples include
Paxos Commit [38], TAPIR [65], MDCC [44], and parallel com-
mit in CockroachDB [57]. Existing solutions, however, are not
applicable to general storage services because they require cus-
tomized storage designs that perform conflict detection between
transactions [6, 44, 57, 65] and/or need specific replication proto-
cols [38, 44, 65]. Therefore, they cannot be readily applied to most
existing storage services.

In this paper, we aim to maximize the flexibility brought by
disaggregation without requiring customized APIs for the storage
service. Therefore, a database can adopt existing highly optimized
storage services and thereby avoid the expense of developing a
new one, and can also allow the storage to adopt new mechanisms
(e.g., new replication protocols) independently. We aim to answer
the following research question:What is the minimal requirement
from the storage layer to enable 2PC optimizations addressing high
latency and blocking? Our answer is that the only requirement is
the ability to provide log-once functionality, which ensures that
for each transaction, only one update of its state in the log is al-
lowed. We show that log-once semantics can be achieved with a
simple compare-and-swap-like API, which is supported by almost
every storage service today, including Redis [9], Microsoft Azure
Storage [27], Amazon Dynamo [31], and Google BigTable [28].

We introduce Cornus, an optimized 2PC protocol specifically
designed for the storage disaggregation architecture in cloud-native
databases. Cornus makes two major changes to conventional 2PC.
First, it eliminates decision logging by the coordinator, which sig-
nificantly reduces the latency of 2PC. A transaction is committed
as soon as all participants have written VOTE-YES in their log in
response to prepare requests in phase one. This optimization is
feasible because highly-available disaggregated storage ensures
that after log is written, it will not be lost. Second, Cornus uses
a LogOnce() API based on compare-and-swap functionality to ad-
dress the blocking problem. The API allows multiple participants to
read and update the same log file and ensures that only the first log
append for a transaction can update this transaction’s state. This fea-
ture allows any participant that is uncertain about the transaction’s
outcome to force an abort by writing a vote to an unresponsive
participant’s log.

We study the deployment of Cornus over commercial cloud stor-
age services (e.g., Azure Table, Azure Blob, Redis, Amazon S3, etc.)
and discuss its implications for performance and privacy. We im-
plement Cornus in an open-source distributed DBMS, Sundial [64],
and deploy it on Azure Blob [27] and Redis [9].

In summary, this paper makes the following contributions:
• We revisit the design of 2PC in the context of the novel storage-

disaggregation architecture
• We develop Cornus, an optimized 2PC protocol for the storage-

disaggregation architecture. It reduces transaction latency during
normal processing and alleviates the blocking problem.

• We deploy Cornus on practical storage services, Redis [9] and
Azure Blob [27], and show up to a 1.9× speedup in latency.
The rest of the paper is organized as follows: Section 2 provides

background about two-phase commit and the architectural changes
brought by storage disaggregation. Section 3 describes Cornus,
including pseudocode, optimizations for read-only transactions,
and analyses of failure cases. Section 4 discusses the deployment
of Cornus on practical storage services and Section 5 evaluates it.
Section 6 discusses related work and Section 7 is the conclusion.

2 BACKGROUND AND MOTIVATION
2.1 Two Phase Commit (2PC)
In a partitioned database, each partition has a corresponding pro-
cess called a resource manager that handles reads and writes to the
partition. 2PC is an atomic commit protocol that ensures a trans-
action involving multiple partitions either commits everywhere
or aborts everywhere. 2PC contains a prepare phase and a commit
phase, shown in Figure 2. The process initiating 2PC is called the
coordinator. Resource managers that took part in the distributed
transaction are called participants.

Figure 2a shows the logging events and network messages when
all participating resource managers agree to commit the transaction
and no failure occurs. If the coordinator fails before sending the
decision to all participants, as shown in Figure 2b, some partici-
pants may not know the decision. A participant that voted yes and
then times out waiting for the coordinator’s decision will initiate a
termination protocol. In a naive termination protocol, the participant
needs to wait until the coordinator recovers. If the coordinator
includes a list of participants in the prepare request, the uncertain

380

participants can run a cooperative termination protocol. In this case,
an uncertain participant contacts other participants to learn the
decision. It repeats this process until at least one participant knows
the decision as shown in Figure 2b. In 2PC, the coordinator’s de-
cision log record serves as the ground truth of the commit/abort
decision — the final outcome of the transaction relies on the success
of logging this record. The conventional 2PC has two limitations.
Limitation 1: Latency of Two Phases

In the standard 2PC protocol, the transaction caller experiences
an average latency of one network round-trip and two logging op-
erations, as shown in Figure 2a. Such a delay directly affects the
transaction response time that an end-user will experience.
Limitation 2: Blocking Problem

In 2PC, a participant learns the decision of a transaction either
directly from the coordinator or indirectly from other participants.
In an unfortunate corner case shown in Figure 2b where the coordi-
nator fails before sending any notification, no participant can make
or learn the decision.While the decision is uncertain, any new trans-
action that conflicts with the current uncertain transaction cannot
commit, since it depends on the outcome of the uncertain transac-
tion. This is the well known blocking problem which causes data
to be inaccessible due to the failure of another resource manager
not holding the data, limiting the performance and data availability
of 2PC.

Many optimizations have been developed to improve the two
limitations above in a shared-nothing architecture, including elim-
inating the prepare phase, at the cost of making extra system as-
sumptions [18, 20, 46, 55, 56], or eliminating blocking, at the cost of
a third phase [24, 41, 53]. In Section 6, we describe these protocols
in more detail and explain their relationship with Cornus.

2.2 2PC in Storage-Disaggregation Architecture
Modern cloud-native DBMSs use a storage disaggregation archi-
tecture where storage and computation are separate services con-
nected by the data center network (Figure 1b), in contrast to shared-
nothing systems with direct-attached storage (Figure 1a). Many
cloud-native OLTP databases adopt this architecture including
Amazon Aurora [62], Apple FoundationDB [66], CockroachDB [6],
Google Spanner [49], and Microsoft SQL Server [21]. The disag-
gregation architecture allows the computation and storage layers
to scale and be developed independently. It offers better elasticity,
flexibility, and resource utilization, and separates the concerns to
achieve easier management and lower operational cost.

Naively deploying 2PC over a storage-disaggregation architec-
ture increases the logging latency since the storage service is at the
other side of the network. Previous research has tried to leverage
the architectural features of storage disaggregation to optimize
classic 2PC for better performance. Paxos Commit [38] was the
first to develop a theoretical framework. In particular, the protocol
contains four key ideas: (1) A transaction’s fate is no longer decided
by the decision logging of the coordinator, but by the votes logged
by all participants including the coordinator. (2) Paxos acceptors
can pre-prepare to save the first phase in Paxos. (3) Participants can
directly propose the prepared message to replicas (i.e., acceptors),
thereby skipping the Paxos leader to save one message delay. (4)
The coordinator is also the Paxos leader of all Paxos instances. The

Coordinator

prepare request

vote yesback to user
[log] VOTE-YES

Prepare Phase Begin

Commit Phase Begin

[log] VOTE-YES

Participant 1 Participant 2

compute

storage

[log] COMMIT

commit

[log] COMMIT

Figure 3: Illustration of Cornus.

coordinator can learn the decision directly from acceptors to save
two more message delays.

Paxos Commit and its followup protocols [6, 36, 44, 48, 63, 65] co-
design 2PC with the underlying consensus protocol in the storage
service. While they are non-blocking and achieve low latency, they
require significant customization of the storage layer. Thus, they
cannot be readily deployed in existing storage services. In this paper,
we aim to solve the long latency and blocking problems without
customizing the storage service. We aim to develop a protocol that
largely retains the performance advantage of Paxos Commit-like
optimizations while being deployable in existing storage services.

3 CORNUS
Cornus is a non-blocking, low-latency 2PC variant that has minimal
requirements on the disaggregated storage service. The only new
storage-layer function needed by Cornus is the logging procedure
LogOnce(), which can be implemented using compare-and-swap —
a capability supported in many cloud-native storage services. This
section presents the Cornus protocol in detail.

After presenting the big picture in Section 3.1, we describe the
APIs and protocols in Sections 3.2 and 3.3 respectively. Section 3.4
describes how Cornus handles failures and recovery. Section 3.5
discusses read-only transactions and Section 3.6 discusses further
optimizations. The proof of correctness of Cornus is provided in a
technical report [40].

3.1 Design Overview
Disaggregated storage enables the optimizations in Cornus as it
has the following features that a conventional shared-nothing ar-
chitecture does not provide:
Feature #1: A disaggregated storage service has built-in data repli-
cation to support high availability.
Feature #2: A disaggregated storage service can be accessed by all
the participants.
Feature #3: A disaggregated storage service can support limited
computation tasks beyond basic reads and writes.

Below we explain why these new features of storage disaggre-
gation can enable optimizations that reduce commit latency and
avoid blocking at the same time.
Latency reduction. In conventional 2PC, the final outcome of a
transaction is determined by the coordinator’s decision log. In Cor-
nus, we follow the first idea in Paxos Commit (cf. Section 2.2) and
change the criterion to be the collective votes in all participants logs;
namely, a transaction commits if and only if all participants have

381

logged VOTE-YES. Figure 3 shows the procedure of a committing
transaction in Cornus. Compared to conventional 2PC as shown
in Figure 2a, the coordinator no longer needs to log the decision,
which eliminates this source of latency.

Features #1 and #2 are critical in achieving this latency reduction.
They guarantee that once a vote is written to storage, all resource
managers can access it most of the time. In Section 3.3, we show
how Cornus ensures correctness by leveraging these features.
Non-blocking. Conventional 2PC can block when a coordinator
fails and its decision log cannot be accessed. Cornus avoids blocking
because the collective decision logs are written to the storage ser-
vice (not the coordinator’s local disk) and thus are highly available
(Feature #1). If a participant is uncertain about the transaction’s
outcome, it can read the votes of all participants to learn that out-
come. The uncertain participant can even write to a log on behalf
of an unresponsive participant to enforce the final decision (Fea-
ture #2). Here we assume that each data partition keeps one log. A
single-partition transaction writes to the log in the corresponding
data partition; a distributed transaction writes to logs of all corre-
sponding partitions that it accesses. These behaviors are identical
to 2PC.

If multiple participants try to resolve the outcome of an unre-
sponsive participant by writing to the same log, they can create
a data race. To avoid this, we leverage Feature #3 and introduce
a new API in the storage service called LogOnce(). It guarantees
that a transaction’s state in the log is write-once — after the first
update of the transaction’s state, future updates to the state have
no effect. LogOnce() is the only extra storage-layer API required by
Cornus and is powerful enough to ensure correctness and avoid
blocking. We will explain the LogOnce() API in detail in Section 3.2
and its implementation using commercial storage services in Sec-
tion 4. We note that Cornus may still block due to a failure of the
underlying storage system. However, in any storage-disaggregation
database, the system would be blocked if the storage becomes un-
available, since all persistent data is inaccessible. Moreover, modern
cloud storage services are typically highly available. For example,
Azure Blob Storage has “11 nines” durability with locally redundant
storage and “12 nines” with zone-redundant storage [5].

3.2 Cornus APIs
We first describe our RPC notation for remote procedure calls and
then introduce the logging APIs used in Cornus.
Remote Procedure Calls (RPC)

We model communication between participants as RPCs. An
RPC can be either synchronous or asynchronous. A synchronous
call blocks until the callee returns. An asynchronous call allows the
caller to continue executing until it explicitly waits for the response.

We represent an RPC using the following notation:

RPC𝑛
sync/async::FuncName()

where the subscript can be sync or async for synchronous and
asynchronous RPCs respectively. The superscript 𝑛 denotes the
destination. FuncName() is the function to be called on the remote
site and can take arbitrary arguments. In this paper, we consider
the following two RPC functions:
Log(txn, type)

The Log(txn, type) function simply appends a log record of a
certain type to the end of transaction txn’s log. It is used in both
the conventional 2PC protocol and Cornus.
LogOnce(txn, type)

In Cornus, we introduce LogOnce(txn, type) to guarantee that
a transaction’s state can be written at most once. It atomically
checks if a log record already exists for txn, and if not assigns the
value in type to the record, namely VOTE-YES, COMMIT, or ABORT.
It returns the state of txn after performing the atomic operation,
which is either type or the existing state, depending on whether
the operation updated the state. This function is used in Cornus
but not in conventional 2PC.

3.3 Cornus Protocol
The pseudocode for Cornus is shown in Algorithm 1. We use a gray
background to highlight the key changes in Cornus compared to
standard 2PC with cooperative termination protocol introduced in
Section 2.1, where a coordinator will send out each prepare request
along with a list of coordinator’s and participants’ addresses. In
the following, we explain the pseudocode for the coordinator, the
participant, and the termination protocol.
Coordinator::StartCornus(txn)

After a transaction txn finishes the execution phase, the coor-
dinator calls StartCornus(txn) to start the atomic commit protocol.
The coordinator sends out vote requests along with a list of all par-
ticipants involved in the transaction to all participants (lines 2–3).
Then the coordinator waits for responses from all participants (line
4). If it receives an ABORT, the transaction reaches an abort decision
(line 5). If it receives VOTE-YES from all participants (i.e., none of
them is ABORT), the transaction reaches a commit decision (line
6). If it times out, it invokes the termination protocol to finalize a
decision (line 7). The latter is unlike 2PC, which unilaterally aborts
the transaction without running the termination protocol.

Once the decision is reached, it can be returned to the transac-
tion caller immediately without logging the decision. It is a key
difference between Cornus and 2PC; the latter would reply to the
caller only after the decision is written to stable storage. This opti-
mization reduces the caller-observed latency by the duration of one
logging operation. Finally, the coordinator broadcasts the decision
to all participants asynchronously (lines 9–10).
Participant::StartCornus(txn)

The participant logic is very similar for Cornus and 2PC. A
participant waits for a VOTE-REQ message from the coordinator
(line 12). If it times out, it can unilaterally abort the transaction
(line 13).

After receiving a VOTE-REQ, a participant votes VOTE-YES or
VOTE-NO based on its local state of the transaction. For a VOTE-NO,
it logs an ABORT record and replies to the coordinator (lines 24–25).
This logging operation can be asynchronous following the presumed
abort optimization in conventional 2PC [50].

For a VOTE-YES, the participant logs the record using LogOnce()
(line 15). There are two possible outcomes. If the function returns
ABORT, then another participant already aborted the transaction on
behalf of this participant through the termination protocol. In this
case, the participant aborts the transaction and returns ABORT to the

382

Algorithm 1: API of Resource Managers in Cornus —
Assuming a committing transaction. Differences between
Cornus and 2PC are highlighted in gray.

1 Function Coordinator::StartCornus(txn)
2 for p in txn.participants do
3 send VOTE-REQ to 𝑝 asynchronously

4 wait for all responses from participants
5 on receiving ABORT decision← ABORT

6 on receiving all responses decision← COMMIT

7 on timeout decision← TerminationProtocol(txn)
8 reply decision to the txn caller
9 for p in txn.participants do
10 send decision to p asynchronously

11 Function Participant::StartCornus(txn)
12 wait for VOTE-REQ from coordinator

13 on timeout RPC local log
sync ::Log(ABORT) return

14 if participant votes yes for txn then
15 resp← RPC local log

sync ::LogOnce(VOTE-YES)
16 if resp is ABORT then

Another participant has logged ABORT for it
17 reply ABORT to coordinator
18 else
19 reply VOTE-YES to coordinator
20 wait for decision from coordinator
21 on timeout decision← TerminationProtocol(txn)

22 RPC local log
sync ::Log(decision)

23 else
24 RPC local log

async ::Log(ABORT)
25 reply ABORT to coordinator

26 Function TerminationProtocol(txn)
27 for every paticipant p other than self do
28 RPC p.log

async::LogOnce(ABORT)

29 wait for responses
30 on receiving ABORT decision← ABORT

31 on receiving COMMIT decision← COMMIT

32 on receiving all responses decision← COMMIT

33 on timeout retry from the beginning
34 return decision

coordinator (lines 16–17). Otherwise the function returns VOTE-YES,
in which case the participant returns VOTE-YES to the coordinator
(lines 19) and starts to wait for the coordinator’s decision message
(line 20). If it times out, it executes the termination protocol (lines
21). Otherwise, the decision received from the coordinator is written
to the local log (line 22).
TerminationProtocol(txn)

In both 2PC and Cornus, a participant executes the termination
protocol when it times out while waiting for a message and cannot
unilaterally abort the transaction. In 2PC, the participant running
the cooperative termination protocol contacts all the other partici-
pants for the outcome of the transaction. If any participant returns
the outcome, the uncertainty is resolved. Otherwise, it will block
until the failure is recovered.

Cornus avoids this problem. Instead of contacting the resource
managers, the participant running the termination protocol tries
to log an ABORT record in each participant’s log using the function
LogOnce() (lines 27–28). If the remote storage has not received any
log record for the transaction yet, the ABORT record will be logged
and returned (line 30). If the log already received a decision log
record (i.e., COMMIT or ABORT) for this transaction, the function will
return that decision (line 30–31). Another case is that the LogOnce()
returns a VOTE-YES record. If the current participant receives this
response from all the logs, it commits the transaction (line 32). If
the current participant experiences a timeout again, it retries the
termination protocol (line 33).

The only case where Cornus blocks is when it cannot reach
the storage service, which we assume is highly unlikely since the
storage service is designed to be highly available.

3.4 Failure and Recovery
This section discusses the behavior of Cornus when failures occur.
For simplicity, we assume each site has one process and we discuss
cases where only one site fails at a time.
Coordinator Failure

Here we list the system behaviors when the coordinator fails at
different points of the Cornus protocol.

Case 1: The coordinator fails before the protocol starts. In this
case, a participant times out waiting for VOTE-REQ (line 13 in Al-
gorithm 1). Therefore, all participants can unilaterally abort the
transaction locally.

Case 2: The coordinator fails after sending some but not all vote
requests. A participant that did not receive the request has the same
behavior as Case 1; namely, it unilaterally aborts the transaction. A
participant that received the request logs the vote, sends a response
to the coordinator, and times out while waiting for the final decision
because the coordinator failed (line 21 in Algorithm 1). Then the
participant runs the termination protocol to check the votes of all
participants. It either learns the abort decision or appends an ABORT
to their logs, thereby aborting the transaction.

Case 3: The coordinator fails after sending all the vote requests
but before sending any decision. In this case, all participants will
time out waiting for the decision from the coordinator. They all
run the termination protocol to learn the final outcome of the
transaction and act accordingly.

Figure 4a illustrates such a case. The figure can be compared
with Figure 2b showing how Cornus avoids blocking. After a par-
ticipant’s timeout, instead of contacting the coordinator, which
has failed, it contacts all the logs in the shared storage using the
LogOnce() function. Since all have VOTE-YES in their logs, each
participant learns the decision of COMMIT and avoids blocking.

Case 4: The coordinator fails after sending out the decision to
some but not all participants. For participants that have already
received the decision, their local protocol terminates. The other par-
ticipants time out waiting for the decision and run the termination
protocol to learn the final decision.

Case 5: The coordinator fails after sending out the decision to
all participants. In this case, all participants have completed the
local protocol and thus have no effect.

383

fail

Coordinator

prepare request

vote yes

[log] VOTE-YES
Prepare Phase Begin

Commit Phase Begin

[log] VOTE-YES

Participant 1 Participant 2

compute

storage

vote yes

timeouttimeout
[logOnce]
ABORT

[log] COMMIT [log] COMMIT

(a) Coordinator fails before sending decision

Coordinator

prepare request

vote yes

Prepare Phase Begin

Commit Phase Begin

[log] VOTE-YES

Participant 1 Participant 2

abort
vote yes
timeout [logOnce]

ABORT

[log] ABORT

[log] ABORT

fail

back to user

abort

(b) Participant fails before logging vote

Figure 4: Cornus under Failures — The behavior of Cornus under two failures scenarios.

Regardless of the cases, the coordinator has no actions during
the recovery since it keeps no state and participants can terminate
the transaction on their own.
Participant Failure

We discuss the effects of a participant failing at different points
of the Cornus protocol.

Case 1: The participant fails before receiving the vote request
from the coordinator. In this case, the coordinator times out waiting
for all responses from participants and then runs the termination
protocol (line 7 in Algorithm 2).

The coordinator logs an ABORT record for the failed participant,
thereby aborting the transaction. The coordinator then broadcasts
the decision to the remaining participants. If another participant
also times out and initiates the termination protocol, the end ef-
fect is the same. After the failed participant recovers, it runs the
termination protocol to learn the final decision.

Case 2: The participant fails after it receives the vote request
but before logging its vote. The behavior of the system is the same
as in Case 1 because, from the other participants’ perspectives, the
behavior of the failed participant is identical.

Figure 4b shows an example of this case. The coordinator receives
a VOTE-YES from participant 2 and times out while waiting for a
response from participant 1. At this point, the coordinator runs the
termination protocol to try to log ABORT on behalf of the participants
via LogOnce() . After the coordinator logs ABORT for participant 1
and learns that participant 2 logged VOTE-YES, it logs its abort
decision and sends it to participant 2. The example assumes the
coordinator times out. Participant 2might also experience a timeout,
which will lead to the same final outcome.

Case 3: The participant fails after it logs the vote, but before
replying to the coordinator. In this case, the coordinator times
out waiting for votes and runs the termination protocol. Then it
can see all the participants’ votes from the storage and learns the
outcome. The remaining participants learn the decision either from
the coordinator or by running the termination protocol themselves.
After the failed participant recovers, it aborts the transaction if it
found its local vote is an abort; otherwise, it runs the termination
protocol to learn the outcome.

Case 4: The participant fails after sending out the vote. This
failure does not affect the others — the coordinator and remaining
participants execute the rest of the protocol normally. After the

failed participant recovers, it either finds that it already logged a
decision or else runs the termination protocol to learn the outcome.

3.5 Read-Only Transactions
Conventional 2PC can be optimized for read-only participants [50].
Specifically, if a transaction issues only read requests to one par-
ticipant, this participant does not need to log during the prepare
phase and can directly release locks. For simplicity, we will call such
participant a read-only participant. In Cornus, this optimization
has a small subtlety that we will explain in the following two cases.

The simple case is that the entire transaction is read-only and
the coordinator knows this fact before starting 2PC. In this case,
similar to 2PC, all participants can skip logging in the prepare phase
in Cornus. In practice, we believe it is possible to learn read-only
transactions before starting 2PC in many scenarios.

In the second case, the transaction does not know whether each
participant is read-only before starting 2PC. In this case, all parti-
tions including the read-only ones must log VOTE-YES in Cornus
(in contrast to 2PC which skips logging for read-only partitions).
Such a log is necessary because otherwise other participants will
interpret the absence of a VOTE-YES in a read-only participant’s
log as an abort (e.g., consider a read-only transaction that times
out waiting for a VOTE-REQ and aborts). Although writing such a
log for read-only participants is additional overhead, it can happen
in parallel with log writes of read-write participants. Therefore,
it does not increase the number of log writes on the critical path,
though it might affect tail latency if a read-only participant is slow.
By contrast, in 2PC, the coordinator has an extra log write on the
critical path, to log the commit decision. Therefore, Cornus still has
lower latency compared to conventional 2PC.

3.6 Further Optimization Opportunities
With Cornus, we leverage the functionality that is already supported
in existing storage systems to optimize 2PC — LogOnce() through
compare-and-swap. Now we discuss more optimization opportuni-
ties if storage systems provide extra functionalities.

Optimization #1. Upon receiving a request, an existing storage
service would send the response only to the requesting participant.
By letting the storage service respond to multiple participants, we
can further reduce the latency of the protocol. Specifically, after a
participant’s vote is logged in the storage layer, the response can
be sent to both the requesting participant and the coordinator. As

384

a result, the coordinator can learn the votes directly from storage
instead of requiring another message hop from the participant. This
saves one message delay in the critical path, without introducing
any extra messages.

Optimization #2. The optimization above can be extended by
having the storage broadcast its vote to all participants of a transac-
tion. Then each participant can learn the final decision directly from
distributed votes, rather than waiting for the coordinator to send a
decision message after it receives all votes. This further reduces the
overall latency but does not impact the user-observed latency. Un-
like optimization #1 above, this optimization incurs extra network
messages due to broadcasting.

These two optimizations can be implemented as extensions to
existing storage services, without changing the underlying replica-
tion or consensus protocol. If the internals of the storage layer are
exposed to the compute layer, further optimizations can be enabled,
as in Paxos Commit as shown in Section 5.6. However, this exposure
is contrary to our goal of having 2PC optimizations work with any
storage service as long as they support the needed APIs.

4 DEPLOYMENT
In this section, we discuss the deployment of Cornus in practical
cloud storage systems. In particular, this requires implementing
Log() and LogOnce() introduced in Section 3.2, using existing cloud
storage services. This entails two requirements.

One requirement is to guarantee that after the decision is made
it will not be altered, even if multiple participants concurrently ex-
ecute the termination protocol. We can leverage existing compare-
and-swap-like APIs in cloud storage services to support this feature.
The other requirement is access control. In 2PC, logging in the
prepare phase persists both transaction states and the user data. In
Cornus, a participant may need to access other participants’ trans-
action states. This requires separate access control for transactions’
states and user data so that a participant cannot read others’ log of
user data while accessing the transaction states.

In this paper, we studied a wide range of modern in-cloud storage
services on how these services support compare and swap (CAS)
and data privacy, and we deploy Cornus on two of them — Redis
and Azure Blob Storage (a.k.a. Windows Azure Storage for Blob)
for quantitative evaluations in the next section.

4.1 Deployment on Redis
Redis [9] is an in-memory data store that supports optional durabil-
ity and can be used as a distributed, in-memory key-value database,
cache, and message broker.
Compare-and-swap. Redis supports compare-and-swap oper-
ations through the “EVAL” command and Lua scripting [11]. It
guarantees that Lua scripts run by “EVAL” commands are executed
atomically. That is, the effect of a script is either all or none with
respect to scripts and commands of other Redis clients.
Access Control. Redis Access Control List (ACL) [10] manages
users’ access to certain commands and/or keys patterns. We can
configure using the “ACL SETUSER” command so that each partici-
pant has read-write access to all participants’ transaction states but
cannot access other participants’ user data.

4.2 Deployment on Microsoft Azure Blob
Storage

Microsoft Azure Blob Storage is a scalable storage system that
supports secure object storage for cloud-native workloads, archives,
data lakes, high-performance computing, and machine learning.
Compare-and-swap. Azure Storage assigns an identifier to each
stored object. The identifier is updated every time the object is
updated. An HTTP GET request returns the identifier as part of the
response using the Etag (entity tag) header defined within HTTP.
A user updating an object can send in the original Etag with an
“If-Match” conditional header so that the update will be performed
only if the stored ETag matches the one passed in the request [12].
Access Control. Azure Blob Storage supports Azure attribute-
based access control (Azure ABAC). It allows read access to blobs
based on tags and custom security attributes. As it does not support
batching updating items in different ACL groups, we use two sepa-
rate requests to log the transaction state after successfully logging
the user data. In this case, Cornus shows no improvements over
2PC as we will show in Figure 5e. Many applications do not require
the data to be private to the corresponding partitions, in which case
Cornus does not introduce this extra overhead.

4.3 Deployment on Key-Value Databases
Amazon DynamoDB [31] is a highly available key-value storage sys-
tem with rich APIs [2]. It provides “putItem” and “updateItem” APIs
to support conditional puts and updates respectively and achieve
CAS functionality. The “TransactWriteItems” API allows submit-
ting multiple actions in one request including the “putItem” and
“updateItem” mentioned above. As DynamoDB offers item-level ac-
cess control [1], transaction data and transaction states can be kept
as separate attributes in a table or kept in different tables, while they
can be updated simulatenously using a single "TransactWriteItems"
request.

Google Cloud Bigtable [28] is a Distributed Storage System for
Structured Data. It supports conditional writes [7] so Cornus can
implement LogOnce() on top. Google Cloud uses Identity Access
Management (IAM) for access control. It is a role-based access
control mechanism. For Bigtable, it can control accesses at the table
level so that transaction states and logs of user data can be kept in
separate tables. Each participant can have read/write permission to
its own log of user data stored in one table, as well as all transaction
states stored in another table. However, Bigtable does not support
writing to multiple tables in a batch, which, like Azure Storage,
causes extra overhead when using it for Cornus.

5 EXPERIMENTAL EVALUATION
In this section, we compare the performance of Cornus with stan-
dard 2PC. We introduce the experimental setup in Section 5.1. We
evaluate Cornus in a range of settings to demonstrate its efficacy
in reducing latency, primarily in the commit phase.

5.1 Experimental Setup
5.1.1 Architecture. In this paper, we focus on an architecture com-
prised of multiple nodes in the compute layer accessing a disaggre-
gated storage service. The database data is partitioned, where each

385

compute node runs a resource manager and has exclusive access
to one partition. While a compute node executes transactions, it
sends data access requests to the corresponding compute node. At
commit time, one compute node coordinates the resource managers
participated in the transaction to commit. Every compute node can
write log records to the storage service.

We implemented Cornus on Sundial [64], an open-source dis-
tributed DBMS testbed. Compute nodes communicate with each
other using gRPC [13]. It can be either synchronous or asynchro-
nous. Each node has a gRPC client sending requests and a gRPC server
managing a pool of server threads to handle requests.

5.1.2 Compute Node Hardware and Storage Service. For compute
nodes, we use a cluster of up to eight servers running Ubuntu
18.04 on Microsoft Azure. Each server has one Intel(R) Xeon(R)
Platinum 8272CL CPUs (8 cores 𝑡𝑖𝑚𝑒𝑠 2 HT) and 64 GB of DRAM.
The servers are connected by a 12.5 Gbps Gigabit Ethernet. Based
on our measurements, a network round trip is 0.5 ms between two
compute nodes.

Cornus can use any cloud storage service and we use the follow-
ing two services in our evaluations:
• Microsoft Azure Blob Storage (Azure Blob) [3]: We use a

StorageV2 (general purpose v2) Azure storage account to store
blobs, with geo-redundant storage (GRS) replication enabled.
Data is stored in two regions. In the primary region, data is
synchronously three-way replicated in one physical location.
Then the data is asynchronously copied to a secondary region
hundreds of miles from the primary. The average time for a
conditional write request is 10.40 ms and for a plain write request
is 10.29 ms.

• Microsoft Azure Cache for Redis (Redis) [4]: This experiment
uses the Redis service provided by Microsoft Azure. We created
a Premium P4 Redis instance of version 4.0.14. It uses master-
slave replication with one master and one slave in the same
region. Only the master node accepts reads and writes. It applies
changes to the slave node asynchronously. The average time
for a conditional write request is 1.96 ms and for a plain write
request is 1.84 ms.

5.1.3 Workloads. We use the Yahoo! Cloud Serving Benchmark
(YCSB) [29] for performance evaluation. YCSB is a synthetic bench-
mark modeled on cloud services. It contains a single table par-
titioned across servers in a round-robin fashion. Each partition
contains 10 GB data with 1 KB tuples. Each transaction accesses
16 tuples as a mixture of reads (50%) and writes (50%). The queries
access tuples following a Zipfian power law distribution controlled
by a parameter 𝜃 . By default, we use 𝜃 = 0, which means data access
is uniformly distributed. All transactions are executed as stored
procedures that contain program logic intermixed with queries.

5.1.4 Implementation Details and Parameter Setup. Unless other-
wise specified, we use the following parameter settings:We evaluate
the system on up to eight compute nodes and a storage service.
Eight worker threads per node execute the transaction logic, and
eight worker threads per node serving the remote requests. The
default concurrency control algorithm is NO-WAIT.

For each data point, we run five trials with 30 seconds per trial.
We collect the latencies for distributed transactions — transactions

2 4 6 8
Number of Nodes

0

5

10

15

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
(m

s)

1.7x 1.6x 1.4x 1.4x

Cornus avg
Cornus 99%

2PC avg
2PC 99%

(a) Latency (Redis)

2 4 6 8
Number of Nodes

0

2

4

6

8

La
te

nc
y

Br
ea

kd
ow

n
(m

s)

Cornus (left) 2PC (right)
execution
prepare

commit
abort

(b) Latency Breakdown (Redis)

2 4 6 8
Number of Nodes

0

50

100

150

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
(m

s)

1.9x 1.7x 1.5x 1.5x

Cornus avg
Cornus 99%

2PC avg
2PC 99%

(c) Latency (Azure Blob)

2 4 6 8
Number of Nodes

0

20

40

La
te

nc
y

Br
ea

kd
ow

n
(m

s)

Cornus (left) 2PC (right)
execution
prepare
commit
abort

(d) Latency Breakdown (Azure Blob)

2 4 6 8
Number of Nodes

0

50

100

150

200

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
(m

s)
1.0x 0.9x 0.9x 0.8x

Cornus avg
Cornus 99%

2PC avg
2PC 99%

(e) Latency
(Azure Blob - Separate ACLs)

2 4 6 8
Number of Nodes

0

20

40

La
te

nc
y

Br
ea

kd
ow

n
(m

s)

Cornus (left) 2PC (right)
execution
prepare
commit
abort

(f) Latency Breakdown
(Azure Blob - Separate ACLs)

Figure 5: Scalability

involving more than one partition (node) — and take the result from
the trial with median average latency. Running the experiments for
a longer time does not change the conclusions.

We assume the coordinator of a transaction can learn whether it
is read-only at the end of the execution phase. Therefore, Cornus
and 2PC can skip both the prepare and commit phases for read-only
transactions [50].

We describe the details of implementing LogOnce() on different
storage services in the technical report [40]. As Azure Blob does
not support batch updates of two resources with separate access
control, we implemented two versions. In the default version, we
used the same access control for transaction data and transaction
states for all experiments in this section. In the second version,
we use separate ACLs for data and states. Profiling shows that the
second version increases the time for LogOnce() from an average of
10.40 ms to an average of 18.43 ms.

5.2 Scalability
We first evaluate Cornus’s scalability on YCSB as the number of
compute nodes increases from 2 to 8. We set parameters to the
default values described in Section 5.1.3. The results in Figure 5(a–
d) show that both Cornus and 2PC scale well in YCSB with Redis or
Azure Blob. As the number of nodes increases, the latency of both
2PC and Cornus increases linearly. The speedup of Cornus over
2PC on average latency slightly decreases as the number of nodes
increases. This is due to the time spent on RPC calls in execution
phase increases. Overall, the latency speedup is up to 1.9×.

386

0 20 40 60 80 100
Percentage of Read-Only Txns

0

5

10

15

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
(m

s)

1.5x 1.6x 1.4x 1.2x 1.0x

Cornus avg
Cornus 99%

2PC avg
2PC 99%

(a) Latency (Redis)

all read-write txns all read-only txns
Txn Type

0

2

4

6

La
te

nc
y

Br
ea

kd
ow

n
(m

s)

Cornus (left) 2PC (right)
execution
prepare
commit
abort

(b) Latency breakdown (Redis)

0 20 40 60 80 100
Percentage of Read-Only Txns

0

20

40

60

80

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
(m

s)

1.6x 1.7x 1.5x 1.3x 1.0x

Cornus avg
Cornus 99%

2PC avg
2PC 99%

(c) Latency (Azure Blob)

all read-write txns all read-only txns
Txn Type

0

10

20

La
te

nc
y

Br
ea

kd
ow

n
(m

s)
Cornus (left) 2PC (right)

execution
prepare
commit
abort

(d) Latency breakdown (Azure Blob)

Figure 6: Varying percentage of read-only transactions

Figure 5e and Figure 5f show the evaluation of an implementation
on Azure Blob with separate access control for transaction data and
transaction states as introduced in Section 5.1.4. In 2PC, data and
states are stored in a resource within the same access control group
as both of them will not be accessed by other partitions. However,
in Cornus, the data and states are stored in separate access control
groups so that two remote logging requests instead of one must
be used for LogOnce() . Thus, Cornus spent ∼9.48 ms more time in
the prepare phase for logging than 2PC (Figure 5f) and shows no
improvement. We conclude that the current version of Azure Blob
cannot benefit from Cornus for applications that want separate
access control between data and transaction states.

5.3 Percentage of Read-only Transactions
We evaluate the performance of Cornus under YCSB with different
fractions of read-only transactions. We manage the percentage of
read-only transactions by controlling the probability of each request
being read in a transaction. With 𝑛 requests per transaction and
each request has a probability of 𝑝 being read, the percentage of
read-only transactions is expected to be 𝑛𝑝 . We expect Cornus to
obtain a latency speedup solely for read-write transactions because
both Cornus and 2PC omit the prepare and commit phases for
read-only transactions, as discussed in Section 3.5 and Section 5.1.4.

The results shown in Figure 6a and Figure 6c match the expec-
tation. The improvement of Cornus (relative to 2PC) grows as the
percentage of read-only transactions decreases. When there are
more read-write transactions, Cornus improves both average and
P99 latency over 2PC by up to 1.7×. The pattern is consistent across
different storage services. The result can be explained by the la-
tency breakdown illustrated in Figure 6b and Figure 6d. Cornus
improves latency for read-write transactions by eliminating the
commit phase, which takes a significant amount of time especially
in Azure Blob with geo-distribution and synchronous replication.
Finally, we note that Cornus spends slightly more time in the pre-
pare phase than 2PC due to the subtle differences between Log()
and LogOnce() (Algorithm 1 Line 16).

0.0 0.2 0.4 0.6 0.8 1.0
Zipfian Theta

100

101

102

103

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
(m

s)
 in

 lo
g

sc
al

e

1.6x 1.6x 1.7x
1.2x

1.0x

Cornus avg
Cornus 99%
2PC avg
2PC 99%

(a) Latency (YCSB, Redis)

0.0 0.5 0.7 0.9 0.99
Zipfian Theta

0

20

40

La
te

nc
y

Br
ea

kd
ow

n
(m

s)

Cornus (left) 2PC (right)
execution
prepare
commit
abort

(b) Latency breakdown (YCSB, Redis)

64 16 4
Number of Warehouse(s)

0

500

1000

1500

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
(m

s)

1.7x 1.9x 1.5x

Cornus avg
Cornus 99%

2PC avg
2PC 99%

(c) Latency (TPC-C, Redis)

64 16 4
Number of Warehouse(s)

0

200

400

La
te

nc
y

Br
ea

kd
ow

n
(m

s)

Cornus (left) 2PC (right)
execution
prepare
commit
abort

(d) Latency breakdown (TPC-C, Re-
dis)

Figure 7: Varying workload contention

2 4 6 8
Number of Nodes

0

2

4

6
La

te
nc

y
of

 T
er

m
in

at
io

n
(m

s)
99% latency
50% latency
min latency

(a) Latency (Redis)

2 4 6 8
Number of Nodes

0
20
40
60
80

100

La
te

nc
y

of
 T

er
m

in
at

io
n

(m
s)

99% latency
50% latency
min latency

(b) Latency (Azure Blob)

Figure 8: Time to terminate transactions on failure

5.4 Contention
We evaluate the performance of Cornus under varying contention
using YCSB and TPC-C workloads. For YCSB, we adjust the Zipfian
distribution of data accesses through 𝜃 . Increasing 𝜃 increases the
level of contention. For TPC-C, we vary the number of warehouses;
fewer warehouses indicate higher contention in the workloads.
Figure 7 shows the results of both workloads; the x-axis from left to
right indicates low to high contention for both YCSB and TPC-C. As
shown in the figure, Cornus always improves transaction latency
over 2PC — the improvement is up to 1.8 × for YCSB, and 1.9 ×
for TPC-C workloads. Figure 7b and Figure 7d show that Cornus
provides less improvement under high contention since the abort
time dominates the total transaction elapsed time.

5.5 Time to Terminate Transactions on Failure
Figure 8 shows the time to run the termination protocol in Cornus
once it is triggered. In 2PC, there is no bound on the time to run
the termination protocol — a transaction that falls into uncertain
states (due to coordinator failure before the decision is sent out
to any participants) is blocked indefinitely, until the coordinator
recovers. However, in Cornus, compute node failure does not lead
to blocking. In this experiment, we assume the storage is still avail-
able and measure the time to terminate a transaction through the

387

termination protocol while varying the number of nodes. As shown,
for up to 8 nodes, Cornus always terminates a transaction within
4 ms with Redis and within 20 ms on average with Azure Blob.
The tail latency of Azure Blob increases more than Redis as the
number of nodes increases. This is due to the geo-distribution setup
and some synchronous replication in Azure. In contrast, the two
replicas of Redis are co-located in the same region and only perform
asynchronous replication, as introduced in Section 5.1.2.

5.6 2PC Optimizations
In this section, we evaluate common 2PC optimizations and com-
pare them with Cornus. These optimizations typically make differ-
ent system/workload assumptions from the classic 2PC; therefore
we conduct the comparisons here instead of in the main results.
Speculative Precommit

The first optimization is to speculatively presume commit in
the prepare phase. This optimization makes the assumption that a
transaction entering the prepare phase is unlikely to abort due to
system crashes. Therefore, a transaction can allow others to read its
pre-committed data while waiting for the log to be persistent. Many
previous papers [8, 33, 37, 43, 54] have studied this optimization.

This 2PC optimization is equally applicable to Cornus. We imple-
ment it in both Cornus (i.e., Cornus-ELR) and 2PC (i.e., 2PC-ELR)
following a state-of-the-art protocol for distributed systems [39].
Our implementation is based on pessimistic concurrency control,
and thus we refer it as Early Lock Release (ELR) in this paper. Fig-
ure 9 compares Cornus and 2PC with and without the speculative
precommit respectively in the YCSB workload. In this experiment,
we use Azure Redis as the remote storage and vary the contention
levels on the x-axis. As shown, ELR can significantly improve both
2PC and Cornus, particularly when workload contention is high.
Specifically, Cornus and 2PC can improve by 175% and 267% with
zipfian theta of 0.99 in throughput. With the optimization, the differ-
ence between Cornus and 2PC in throughput and latency decreases
under high contention since contention becomes the dominating
factor as shown in Figure 7b. In short, for systems that rarely crash
during the prepare phase, this technique can be applied to Cornus
to further improve the performance under high contention.
Coordinator Log

Another common 2PC optimization is to let the coordinator log
on behalf of all participating nodes so that the transaction does
not wait for other nodes to persist the logs. In our implementation,
we ask the coordinator to log for all partitions during the prepare
phase. At the same time, we send prepare requests to participants,
which reply with their votes without logging. Upon receiving the
votes, the coordinator makes decision and appends it to its log.

We implement this technique following the ideas in previous
works [55, 56] and compare it with 2PC and Cornus quantitatively.
In this experiment, we use Azure Redis as the storage service, where
the latency of writing to storage is around 100 ms. In Figure 10,
we see that having the coordinator handle all logging (i.e., CL for
Coordinator Log) outperforms the baseline 2PC by 33% in terms of
average latency since it batches all the logs into one write request
to storage. The improvement is significant especially with such
high latency of writing to Redis. However, CL still underperforms

0 0.5
Zipfian Theta

0

5

10

Di
st

rib
ut

ed
 T

xn

La
te

nc
y

(m
s)

Cornus Cornus-ELR 2PC 2PC-ELR

0.9 0.99
Zipfian Theta

0

50

100

150

(a) Latency (Redis)

0 0.5 0.9 0.99
Zipfian Theta

0

1000

2000

Th
ro

ug
hp

ut
 ((

tx
ns

/s
))

Cornus Cornus-ELR 2PC 2PC-ELR

(b) Throughput (Redis)

Figure 9: Cornus and 2PC with speculative precommit

2 4 6 8
Number of Nodes

0

100

200

300

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
 (m

s)

Cornus avg
Cornus 99%

2PC avg
2PC 99%

CL avg
CL 99%

(a) Latency (Redis)

2 4 6 8
Number of Nodes

0

100

200

300

La
te

nc
y

Br
ea

kd
ow

n
(m

s)

Cornus (left) 2PC CL (right)
execution
prepare

commit
abort

(b) Latency (Redis)

Figure 10: Coordinator log

Cornus by 50% since the coordinator needs to wait until both the
data and the decision are logged by coordinator, while Cornus
directly replies to the user without waiting for the commit decision
to be logged.

Note that the coordinator log optimization has several limita-
tions compared to 2PC or Cornus. First, it increases the size of
acknowledgement messages. Second, it increases the complexity of
recovery and raises security concerns. Specifically, it violates site
autonomy which requires internal information concerning the local
execution of transactions such as log records to remain private to a
site and not be exported [18, 19]. Although some works including
Cornus allow other sites to access the log of transaction states,
other sites will not access actual user data in Cornus (the second
requirement discussed in Section 4).
Integration with Replication Protocol

While Cornus directly runs on top of a highly-available stor-
age service through a consensus-agnostic interface, many prior
works [38, 44, 57, 65] manage the replication on their own and
co-design 2PC with replication protocols for further optimizations.
Although these protocols cannot be directly applied to existing
storage services, we still evaluate them to show the potential opti-
mization space when having different assumptions.

We first performed theoretical evaluation on the expected latency
for protocols combining with Paxos. Table 1 shows the number of
Round Trip Times (RTTs) each protocol has on the critical path —
from the time the coordinator starts the protocol until the decision
can be returned to the user. We use A + B = C to show (A) the
number of RTTs in the prepare phase, (B) the number of RTTs in
the commit phase, and (C) the sum.

For 2PC and Cornus, we assume each process (coordinator/par-
ticipant) runs an instance of Multi-Paxos in the underlying storage.
When a participant sends a log request to the storage, it sends it
to the leader of a Paxos instance, which refers to the proposer that
has already run phase 1 to become a stable leader. The leader then

388

Protocol # RTT Extra Requirements
2PC 3 + 2 = 5 -
Cornus 3 + 0 = 3 Storage supports conditional write
Cornus (opt-
mization)

2.5 + 0 =
2.5

Leader of Paxos can forward a mes-
sage to coordinator

2PC (co-
location)

2 + 1 = 3 Participant coordinates replication

Cornus (co-
location)

2 + 0 = 2 Participant coordinates replication

Paxos Com-
mit / MDCC-
Classic

1.5 + 0 =
1.5

Participant coordinates replication;
Acceptors forward messages to co-
ordinator to learn from quorum

Table 1: Time complexity for protocols integrating with
Paxos or its variations

0 1 2 3 4
Number of Replicas

0

50

100

Di
st

rib
ut

ed
 T

xn
 L

at
en

cy
 (m

s)

2PC
2PC-CO

Cornus
Cornus-CO

Cornus-OPT
PaxosCommit

(a) same region (RTT = 0.46 ms)

0 1 2 3 4
Number of Replicas

0

200

400

Di
st

rib
ut

ed
 T

xn

La
te

nc
y

(m
s)

2PC
2PC-CO

Cornus
Cornus-CO

Cornus-OPT
PaxosCommit

(b) across region (RTT = 68 ms)

Figure 11: Cornus and 2PC with customized storage

initiates the second round of Paxos using one RTT and then gets
back to the participant. Cornus can eliminate the coordinator log-
ging from the critical path which corresponds to 2 RTTs (one for a
participant communicating with the Paxos leader and one for the
second round of Paxos).

Cornus (optimization) refers to Cornus with optimization 1 dis-
cussed in Section 3.5. It can save the latency of logging acknowl-
edgment from Paxos leader to participant (0.5 RTT) by forwarding
the message to the coordinator. This optimization requires the stor-
age to be able to send the message to an extra recipient but the
replication details are still completely handled by the storage.

Cornus (co-location) and 2PC (co-location) represent the designs
that co-locates a participant with the Paxos leader, i.e., the par-
ticipant initiates the second round of Paxos by talking to all the
replicas directly instead of asking the leader to initiate the process.
Compared with naive Cornus and 2PC, this optimization can save
the 1 RTT of Paxos leader communicating with other acceptors.
However, this assumes that participants manage the replication
process explicitly.

Paxos Commit [38] and MDCC [44] are two related works intro-
duced in Section 2 and Section 6. MDCC-Classic refers to a protocol
in the paper following the framework of Paxos Commit. These
protocols apply all the optimizations discussed above. Specifically,
during the prepare phase, a participant directly talks to all acceptors
to log and all acceptors forward the logging acknowledgment to
the coordinator. The coordinator then learns all the votes from the
quorum. It can save 1 RTT for inter-replica communication and 0.5
RTT for logging acknowledgment sent from Paxos to coordinator

compared with Cornus. However, it also requires participant/coor-
dinator coordinating replication and acceptors forwarding logging
acknowledgement to the coordinator.

Besides the theoretical analysis, we also perform quantitative
evaluation of these protocols with a self-implemented disaggregated
storage and vary the number of replicas in the underlying storage.
We run the experiment in two situations — one with all replicas
in the same region (Figure 11a) and one with replicas distributed
across regions from US. East to US. West (Figure 11b). Overall, the
experiment results confirm the theoretical computation in Table 1
— the relative performance maps to the expected differences in
expected count of RTTs and the absolute improvement increases
as RTT increases. The performance difference also increases with
more replicas. The set of experiments demonstrate how much per-
formance may be sacrificed when treating the storage as a black
box with a consensus-agnostic abstraction as well as the poten-
tial optimization space with co-designing 2PC with consensus to
different degrees.

6 RELATEDWORK
This section describes related works on optimizing 2PC. We catego-
rize prior works into three categories: techniques reducing latency,
techniques addressing blocking, and codesign of 2PC and replica-
tion to address both problems.

6.1 Techniques Reducing Latency

Centralized Logging. Centralized logging asks the coordinator to
log for all participants on behalf of them to reduce latency. A line of
previous work follows this idea including coordinator log [55, 56],
implicit yes vote [20], and Lee and Yeom’s protocol [46]. The main
idea is to have each participant send its logwith its acknowledgment
of its prepare request to the coordinator. The coordinator force
writes those acknowledgments to its log along with its commit
decision so that it eliminates the logging latency in prepare phase.
However, as discussed in Section 5.6, these designs increase the size
of acknowledgment, increase the complexity of recovery, and raise
security concerns as they violate site autonomy.
Early Prepare During Execution. Another technique to reduce
2PC latency is to let participants prepare during execution so that
a transaction can skip the prepare phase at commit time. Many
previous works incorporate this idea to reduce the commit la-
tency [20, 46, 55, 56]. For example, in Early Prepare (EP) [55], each
participant forces a prepare record before replying to the coordina-
tor on receiving a work request during execution. It also requires
the coordinator to record the identity of the participant in the log
before sending the work request. However, if the transaction ac-
cesses more than one partition or requests for each partition cannot
be batched into one request, EP needs to pay more logging in the
critical path than 2PC.

To address this issue, subsequent works try to combine this
technique with centralized logging or decentralized decision. For
example, implicit yes vote [20] applies both centralized log and early
prepare. It asks participant to piggyback its log in the acknowledge-
ment of every work request and treats the acknowledgement as
an implicit yes vote. However, it still suffers from the limitations

389

of centralized log discussed above and additionally restrict the de-
sign of concurrency control. For example, protocols like optimistic
concurrency control and two-phase locking with wound-wait [25]
need to be carefully redesigned since a participant may abort after
sending the acknowledgement at the end of execution phase [19].
Speculative Pre-Commit. If a transaction that has entered the pre-
pare phase is unlikely to abort due to system crashes, the database
can speculatively presume commit in the prepare phase. Specifi-
cally, a transaction can let others read its pre-committed data while
waiting for the log to be persistent. Many previous works [8, 33,
37, 43, 54] have studied this optimization known as early lock re-
lease [43] and controlled lock violation [37]. In Section 5.6, we have
shown this optimization can be applied to both 2PC and Cornus
leading to similar throughput improvement and latency reduction.

6.2 Techniques Addressing Blocking

Extra Network Roundtrip. Skeen [53] gave necessary and suffi-
cient conditions for a correct non-blocking commit protocol, known
as the fundamental nonblocking theorem. It proved that a fifth state
in addition to initial, wait, abort, and commit can be added to avoid
blocking with the same assumptions made in 2PC. Adding this state
requires one more network round trip, resulting in a three-phase
commit (3PC) protocol. Although it solves the blocking issue, 3PC
magnifies the problem of latency delay in 2PC.
Extra Message Count. Some protocols decrease the chance of
blocking by asking each site to broadcast the messages upon receiv-
ing. EasyCommit [41] solves the blocking problem by requiring
each participant to forward the decision to other participants be-
fore logging it. However, the protocol satisfies the atomic commit
properties only if at least one participant receives the forwarded
message before the sender flushes the decision to its log. It also in-
troduces extra messages during normal execution and increases the
complexity when failure happens. Babaoglu and Toueg [24] propose
a non-blocking atomic commit protocol based on 2PC. It applies
three strategies: (1) synchronizing clocks on different sites so that
out-of-time messages can be ignored; (2) having participants for-
ward the decision to other participants upon receiving the message
from the coordinator; and (3) presuming abort instead of running a
termination protocol upon timeout. The first two strategies enable
the last to avoid blocking. However, the protocol introduces more
communication in the absence of failure, and it relies on synchro-
nized clocks, a non-trivial requirement for real-world applications.

6.3 Co-design of 2PC and Replication
Many prior works optimize 2PC through the co-design of 2PC and
replication protocols (e.g., Paxos) to solve latency and blocking prob-
lems at the time. Gray and Lamport [38] proposed Paxos Commit,
which is a theoretical framework for optimizing 2PC and Paxos with
a space of optimizations. It proposed some Paxos-specific optimiza-
tions such as pre-preparing acceptors and piggybacking messages
of 2PC and Paxos. Several implementations followed the spirit of
Paxos Commit and made adaption for their scenarios [44, 65].

Kraska et al. [44] introduced Multi Data Center Consistency
(MDCC). It assumes resource manager and Paxos leader are co-
located on the same site so that it can piggyback the messages of
Paxos with 2PC requests to save message roundtrips. They also
propose a leaderless version combining 2PC and Fast Paxos. This
version assumes that each acceptor can perform conflict detection
for optimistic concurrency control independently and produce the
same validation result. It can further reduce latency when conflicts
are rare. Moreover, it optimizes for commutative operations by
using update intents ("options") instead of the actual updates.

A recent work of parallel commit protocol [17, 61] in Cock-
roachDB (CRDB) [57] uses primary copy replication based on Raft
to determine whether the commit operation is completed. It co-
locates the leader of Raft with participants (resource manager)
while Cornus elevates this check to an external wrapper over cloud
storage, whose replication algorithm is a black box.

Zhang et al. [65] introduced TAPIR. It used a customized repli-
cation protocol, Inconsistent Replication, to relax consistency in
storage replicas and relies on application protocols to resolve in-
consistencies. Mahmoud et al. [48] proposed a Replicated Commit
protocol that runs 2PC at different data centers. It uses Paxos to
reach consensus across data centers to determine if a transaction
should commit. Yan et al.’s Carousel [63] runs 2PC in parallel with
the execution phase and state replication, but assumes the read
and write key sets are known in advance. Fan et al. [36] combines
concurrency control, transaction commit, and replication in a single
protocol to better utilize data locality and reduce cross-data center
networks.

Finally, deterministic databases [34, 35, 47, 51, 58, 59] take a dras-
tically different approach to handle 2PC and replication. Instead
of treating computation nodes and storage service as horizontally
separated layers, a deterministic database vertically partitions the
cluster into replicas, and ensures consistency across replicas by run-
ning the same input transactions deterministically in all the replicas
such that they produce identical results. Deterministic databases
also simplify 2PC since only the inputs of transactions are made
persistent and no logging happens during transaction execution.
Compared to 2PC and Cornus, deterministic databases have sev-
eral limitations. For example, transactions need to be one-shot (i.e.,
cannot support multiple interactions with the DBMS); transactions
must run in batches such that a single long-running transaction
prolongs response time for the entire batch; most deterministic
databases (except Aria [47]) require knowing the read/write sets of
transactions before execution.

7 CONCLUSION
We proposed Cornus, a protocol optimizing 2PC for storage disag-
gregation, an architecture widely used by modern cloud databases.
Cornus solves both the long latency and the blocking problem in 2PC
by leveraging the new features provided by the architecture. We
formally proved the correctness of Cornus (in technical report [40])
and evaluated it on top of practical storage services including Redis
and Azure Blob Storage. Our evaluations on YCSB show a speedup
of up to 1.9× in latency. This work was supported in part by Na-
tional Science Foundation (NSF) under grant IIS-2144588. Zhihan
Guo is supported by Microsoft Research Fellowship.

390

REFERENCES
[1] [n.d.]. Amazon DynamoDB: Allows item-level access to DynamoDB based on

an Amazon Cognito ID. https://docs.aws.amazon.com/IAM/latest/UserGuide/
reference_policies_examples_dynamodb_items.html. (visited on 2022/03/01).

[2] [n.d.]. Amazon DynamoDB API Operations. https://docs.aws.amazon.com/
amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB.
html. (visited on 2022/03/01).

[3] [n.d.]. Azure Blob Storage. https://azure.microsoft.com/en-us/services/storage/
blobs/. (visited on 2022/03/01).

[4] [n.d.]. Azure Cache for Redis. https://azure.microsoft.com/en-us/services/cache/.
(visited on 2022/03/01).

[5] [n.d.]. Azure Storage redundancy. https://docs.microsoft.com/en-us/azure/
storage/common/storage-redundancy. (visited on 2022/03/01).

[6] [n.d.]. CockroachDB. https://www.cockroachlabs.com.
[7] [n.d.]. Google Cloud BigTable — Writes. https://cloud.google.com/bigtable/docs/

writes#conditional. (visited on 2022/03/01).
[8] [n.d.]. H-Store: A Next Generation OLTP DBMS. http://hstore.cs.brown.edu.
[9] [n.d.]. Redis. https://redis.io. (visited on 2022/03/01).
[10] [n.d.]. Redis ACL. https://redis.io/topics/acl. (visited on 2022/03/01).
[11] [n.d.]. Redis EVAL script. https://redis.io/commands/eval. (visited on 2022/03/01).
[12] 2014. Managing Concurrency inMicrosoft Azure Storage. https://azure.microsoft.

com/en-us/blog/managing-concurrency-in-microsoft-azure-storage-2/. (visited
on 2022/03/01).

[13] 2015. gRPC: A high performance, open-source universal RPC framework. https:
//grpc.io/. (visited on 2022/03/01).

[14] 2018. Amazon Athena — Serverless Interactive Query Service. https://aws.
amazon.com/athena. (visited on 2022/03/01).

[15] 2018. Amazon Redshift. https://aws.amazon.com/redshift. (visited on
2022/03/01).

[16] 2018. Presto. https://prestodb.io. (visited on 2022/03/01).
[17] 2020. Parallel Commits. https://www.cockroachlabs.com/docs/v20.2/

architecture/transaction-layer.html#parallel-commits (visited on 2022/03/01).
[18] Maha Abdallah. 1997. A non-blocking single-phase commit protocol for rigorous

participants. In In Proceedings of the National Conference Bases de Donnes Avances.
Citeseer.

[19] Maha Abdallah, Rachid Guerraoui, and Philippe Pucheral. 1998. One-phase
commit: does it make sense?. In Proceedings 1998 International Conference on
Parallel and Distributed Systems (Cat. No. 98TB100250). IEEE, 182–192.

[20] Y Al-Houmaily and P Chrysanthis. 1995. Two-phase commit in gigabit-
networked distributed databases. In Int. Conf. on Parallel and Distributed Com-
puting Systems (PDCS).

[21] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, et al. 2019. Socrates: The new sql server
in the cloud. In Proceedings of the 2019 International Conference on Management
of Data. 1743–1756.

[22] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
Michał undefinedwitakowski, Michał Szafrański, Xiao Li, Takuya Ueshin,Mostafa
Mokhtar, Peter Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold
Xin, and Matei Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proc. VLDB Endow. 13, 12, 3411–3424. https://doi.org/
10.14778/3415478.3415560

[23] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD.

[24] Ozalp Babaoglu and Sam Toueg. 1993. Understanding non-blocking atomic
commitment. Distributed systems (1993).

[25] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Vol. 370. Addison-wesley New York.

[26] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim
Kraska. 2008. Building a Database on S3. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (Vancouver, Canada) (SIGMOD
’08). Association for Computing Machinery, New York, NY, USA, 251–264. https:
//doi.org/10.1145/1376616.1376645

[27] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al.
2011. Windows azure storage: a highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 143–157.

[28] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2, 1–26.

[29] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[30] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
JianshengHuang, et al. 2016. The Snowflake Elastic DataWarehouse. In SIGMOD.

[31] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.
ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[32] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, andMiguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In SOSP. 54–70.

[33] Tamer Eldeeb and Phil Bernstein. 2016. Transactions for Distributed Actors in the
Cloud. Technical Report.

[34] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion
Concurrency Control. PVLDB (2015), 1190–1201.

[35] Jose M Faleiro, Daniel J Abadi, and Joseph MHellerstein. 2017. High performance
transactions via early write visibility. Proceedings of the VLDB Endowment 10, 5
(2017), 613–624.

[36] Hua Fan and Wojciech Golab. 2019. Ocean vista: gossip-based visibility control
for speedy geo-distributed transactions. Proceedings of the VLDB Endowment 12,
11 (2019), 1471–1484.

[37] Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, and Alistair Veitch.
2013. Controlled lock violation. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data. ACM, 85–96.

[38] Jim Gray and Leslie Lamport. 2006. Consensus on Transaction Commit. ACM
Trans. Database Syst. 31, 1 (March 2006), 133–160. https://doi.org/10.1145/
1132863.1132867

[39] Hua Guo, Xuan Zhou, and Le Cai. 2021. Lock Violation for Fault-tolerant Dis-
tributed Database System. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 1416–1427.

[40] Zhihan Guo, Xinyu Zeng, KanWu,Wuh-ChwenHwang, Ziwei Ren, Xiangyao Yu,
Mahesh Balakrishnan, and Philip A. Bernstein. 2021. Cornus: Atomic Commit
for a Cloud DBMS with Storage Disaggregation (Extended Version). https:
//doi.org/10.48550/ARXIV.2102.10185

[41] Suyash Gupta and Mohammad Sadoghi. 2018. EasyCommit: A Non-blocking
Two-phase Commit Protocol.. In EDBT. 157–168.

[42] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. 2017.
An Evaluation of Distributed Concurrency Control. VLDB (2017), 553–564.

[43] Hideaki Kimura, Goetz Graefe, and Harumi A Kuno. 2012. Efficient locking
techniques for databases on modern hardware.. In ADMS@ VLDB. 1–12.

[44] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan Fekete.
2013. MDCC: Multi-data center consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems. 113–126.

[45] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[46] Inseon Lee and Heon Young Yeom. 2002. A single phase distributed commit
protocol for main memory database systems. In Proceedings 16th International
Parallel and Distributed Processing Symposium. IEEE, 8–pp.

[47] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical
deterministic OLTP database. (2020).

[48] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and
Amr El Abbadi. 2013. Low-latency multi-datacenter databases using replicated
commit. Proceedings of the VLDB Endowment 6, 9 (2013), 661–672.

[49] Dahlia Malkhi and Jean-Philippe Martin. 2013. Spanner’s concurrency control.
ACM SIGACT News 44, 3 (2013), 73–77.

[50] C Mohan, Bruce Lindsay, and Ron Obermarck. 1986. Transaction management in
the R* distributed database management system. ACM Transactions on Database
Systems (TODS) 11, 4 (1986), 378–396.

[51] Thamir Qadah, Suyash Gupta, and Mohammad Sadoghi. 2020. Q-Store: Dis-
tributed, Multi-partition Transactions via Queue-oriented Execution and Com-
munication.. In EDBT. 73–84.

[52] George Samaras, Kathryn Britton, Andrew Citron, and C Mohan. 1993. Two-
phase commit optimizations and tradeoffs in the commercial environment. In
Proceedings of IEEE 9th International Conference on Data Engineering. IEEE, 520–
529.

[53] Dale Skeen. 1981. Nonblocking commit protocols. In Proceedings of the 1981 ACM
SIGMOD international conference on Management of data. 133–142.

[54] Eljas Soisalon-Soininen and Tatu Ylönen. 1995. Partial strictness in two-phase
locking. In International Conference on Database Theory. Springer, 139–147.

[55] James W Stamos and Flaviu Cristian. 1990. A low-cost atomic commit protocol.
In Proceedings Ninth Symposium on Reliable Distributed Systems. IEEE, 66–75.

[56] JamesW Stamos and Flaviu Cristian. 1993. Coordinator log transaction execution
protocol. Distributed and Parallel Databases 1, 4 (1993), 383–408.

[57] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
Cockroachdb: The resilient geo-distributed SQL database. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1493–1509.

391

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_dynamodb_items.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_dynamodb_items.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB.html
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/cache/
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://www.cockroachlabs.com
https://cloud.google.com/bigtable/docs/writes##conditional
https://cloud.google.com/bigtable/docs/writes##conditional
http://hstore.cs.brown.edu
https://redis.io
https://redis.io/topics/acl
https://redis.io/commands/eval
https://azure.microsoft.com/en-us/blog/managing-concurrency-in-microsoft-azure-storage-2/
https://azure.microsoft.com/en-us/blog/managing-concurrency-in-microsoft-azure-storage-2/
https://grpc.io/
https://grpc.io/
https://aws.amazon.com/athena
https://aws.amazon.com/athena
https://aws.amazon.com/redshift
https://prestodb.io
https://www.cockroachlabs.com/docs/v20.2/architecture/transaction-layer.html#parallel-commits
https://www.cockroachlabs.com/docs/v20.2/architecture/transaction-layer.html#parallel-commits
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/1376616.1376645
https://doi.org/10.1145/1376616.1376645
https://doi.org/10.1145/1132863.1132867
https://doi.org/10.1145/1132863.1132867
https://doi.org/10.48550/ARXIV.2102.10185
https://doi.org/10.48550/ARXIV.2102.10185

[58] Alexander Thomson and Daniel J Abadi. 2010. The case for determinism in
database systems. Proceedings of the VLDB Endowment 3, 1-2 (2010), 70–80.

[59] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In SIGMOD. 1–12.

[60] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. 2010. Hive — A
Petabyte Scale Data Warehouse Using Hadoop. In ICDE.

[61] Nathan VanBenschoten. 2019. Parallel Commits: An Atomic Commit Protocol For
Globally Distributed Transactions. https://www.cockroachlabs.com/blog/parallel-
commits/ (visited on 2022/03/01).

[62] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041–1052.

[63] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,
Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-latency transaction pro-
cessing for globally-distributed data. In Proceedings of the 2018 International
Conference on Management of Data. 231–243.

[64] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez, Larry Rudolph, and Srini-
vas Devadas. 2018. Sundial: harmonizing concurrency control and caching in
a distributed OLTP database management system. Proceedings of the VLDB
Endowment 11, 10 (2018), 1289–1302.

[65] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan RK Ports. 2018. Building consistent transactions with inconsistent
replication. ACM Transactions on Computer Systems (TOCS) 35, 4 (2018), 1–37.

[66] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J Beamon, Rusty Sears, John Leach, et al.
2021. Foundationdb: A distributed unbundled transactional key value store. In
Proceedings of the 2021 International Conference on Management of Data. 2653–
2666.

[67] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav.
2021. FoundationDB: A Distributed Unbundled Transactional Key Value Store.
Association for Computing Machinery, New York, NY, USA, 2653–2666. https:
//doi.org/10.1145/3448016.3457559

392

https://www.cockroachlabs.com/blog/parallel-commits/
https://www.cockroachlabs.com/blog/parallel-commits/
https://doi.org/10.1145/3448016.3457559
https://doi.org/10.1145/3448016.3457559

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Two Phase Commit (2PC)
	2.2 2PC in Storage-Disaggregation Architecture

	3 Cornus
	3.1 Design Overview
	3.2 Cornus APIs
	3.3 Cornus Protocol
	3.4 Failure and Recovery
	3.5 Read-Only Transactions
	3.6 Further Optimization Opportunities

	4 Deployment
	4.1 Deployment on Redis
	4.2 Deployment on Microsoft Azure Blob Storage
	4.3 Deployment on Key-Value Databases

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Scalability
	5.3 Percentage of Read-only Transactions
	5.4 Contention
	5.5 Time to Terminate Transactions on Failure
	5.6 2PC Optimizations

	6 Related Work
	6.1 Techniques Reducing Latency
	6.2 Techniques Addressing Blocking
	6.3 Co-design of 2PC and Replication

	7 Conclusion
	References

