
Angel-PTM: A Scalable and Economical Large-scale Pre-training
System in Tencent

Xiaonan Nie†
Peking University

xiaonan.nie@pku.edu.cn

Yi Liu
Tencent Inc.

callbackliu@tencent.com

Fangcheng Fu†
Peking University

ccchengff@pku.edu.cn

Jinbao Xue
Tencent Inc.

jinbaoxue@tencent.com

Dian Jiao
Tencent Inc.

focusjiao@tencent.com

Xupeng Miao
Carnegie Mellon University

xupeng@cmu.edu

Yangyu Tao
Tencent Inc.

brucetao@tencent.com

Bin Cui †‡
Peking University
bin.cui@pku.edu.cn

ABSTRACT

Recent years have witnessed the unprecedented achievements of
large-scale pre-trainedmodels, especially Transformermodels.Many
products and services in Tencent Inc., such as WeChat, QQ, and
Tencent Advertisement, have been opted in to gain the power of
pre-trained models. In this work, we present Angel-PTM, a produc-
tive deep learning system designed for pre-training and fine-tuning
Transformer models. Angel-PTM can train extremely large-scale
models with hierarchical memory efficiently. The key designs of
Angel-PTM are a fine-grained memory management via the Page
abstraction and a unified scheduling method that coordinates com-
putations, data movements, and communications. Furthermore,
Angel-PTM supports extreme model scaling with SSD storage and
implements a lock-free updating mechanism to address the SSD I/O
bottlenecks. Experimental results demonstrate that Angel-PTM
outperforms existing systems by up to 114.8% in terms of maximum
model scale as well as up to 88.9% in terms of training throughput.
Additionally, experiments on GPT3-175B and T5-MoE-1.2T models
utilizing hundreds of GPUs verify our strong scalability.

PVLDB Reference Format:

Xiaonan Nie, Yi Liu, Fangcheng Fu, Jinbao Xue, Dian Jiao, Xupeng Miao,
Yangyu Tao, Bin Cui. Angel-PTM: A Scalable and Economical Large-scale
Pre-training System in Tencent. PVLDB, 16(12): 3781-3794, 2023.
doi:10.14778/3611540.3611564

1 INTRODUCTION

Large-scale pre-trained models, such as Transfomer models, have
achieved remarkable advancements in various fields such as com-
puter vision [13, 32, 51], natural language processing [8, 11, 45, 46],

†School of Computer Science & Key Lab of High Confidence Software Technologies
(MOE), Peking University,
‡Institute of Computational Social Science, Peking University (Qingdao),
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611564

speech recognition [12, 60], and generative AI [1, 52] in recent
years, outperforming traditional ML models and becoming the
SOTA approach. For example, Chat-GPT [1] is capable of generating
human-like text and performing various NLP tasks with impressive
accuracy. The success of Transformer models can be attributed to
their ability to automatically learn and extract hierarchical repre-
sentations of data, making them highly suited for complex tasks [7].

With the hope of achieving better performance, efforts are made
to increase the scale of models — the flagship NLP model size has
been increasing at a rate of 240× for every 2 years [20], and Kaplan
et al. [28] suggested that the trend of increasing model size will con-
tinue for better model quality. Such an explosive growth in model
scale inevitably increases the computational and memory cost, and
training large-scale Transformer models becomes extremely expen-
sive. For instance, Microsoft totally adopts 4480 A100 80G GPUs for
training Megatron-Turing NLG 530B [53], which would cost almost
70 million dollars for only purchasing these computing resources.

Undoubtedly, in order to simultaneously enable the superior
ability of Transformer models in real-world applications and meet
the rapid evolution of model scales, it is necessary for companies to
re-think and re-design the productive deep learning systems in this
era. Regarding the use cases and demands in Tencent Inc., we would
like identify two key characteristics of deep learning systems.

• Easy-to-use and easy-to-scale. In real-world productive appli-
cations, most users are deep learning researchers or data scien-
tists that are good at designing task-specific model architectures.
In contrast, they usually lack the expert knowledge or experi-
ences in deploying and accelerating the model training process
in the distributed manner. Consequently, the deep learning sys-
tem should require only a few lines’ modifications to parallelize
the training tasks. Moreover, since productive clusters are multi-
tenant by nature, the available hardware resources would be
varying. Thus, we seek for seamless scalability. In other words,
when users wish to tune the amount of resources for their tasks,
there should be no need to re-configure their parallel schemes.

• Efficient and cost-effective. Due to the stunning scale of mod-
els and datasets, training large-scale models is extremely time-
consuming. Therefore, how to achieve a better training efficiency

3781

https://doi.org/10.14778/3611540.3611564
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611564


is vital to the practical deployment of pre-trained models. In ad-
dition to the running time, we should also improve the hardware
usage ratio with best efforts. It is undoubtedly that it makes pre-
trained models more economical if we can support the efficient
training of large-scale models using as few resources as possible.

We observe that existing deep learning systems, such asMegatron-
LM [38] and DeepSpeed [47, 50], fail to achieve these characteristics.
First, many systems involve complex parallelism strategies (such
as tensor parallelism and pipeline parallelism) to scale the training
tasks, which require the users to have a thorough understanding
about how to split the models across the available accelerators (e.g.,
GPU devices) to optimize the distributed computing efficiency. This
incurs extra efforts to deploy and scale the training tasks. Second,
we find that existing systems adopt a coarse memory management
to allocate and release the memory during training, which makes
them unavoidably suffer from memory fragments and low resource
usage ratio when training large-scale Transformer models, as we
will analyzed more in-depth in Section 3.

In this work, we developAngel-PTM, a brand new deep learning
system to support the booming applications of Transformer models
in Tencent. The main contributions are summarized as follows:

• We analyze the characteristics and requirements of large-scale
model training tasks in Tencent and propose the underlying
designs of Angel-PTM to address these requirements, which
integrates data parallelism, parameter sharding, and hierarchical
memory to gain the convenience of use and the transparency of
scaling to various numbers of GPUs.

• To reduce the memory fragments and fully utilize the memory
and bandwidth, we propose the fine-grained Page abstraction and
manage the model states at the page level, including allocation,
release, movement, and communication. Furthermore, we design
the unified scheduler together with an fine-grained life-time based
scheduling method to dynamically manage these operations in a
holistic manner for efficient training.

• To support enlarging models to an extreme scale, we integrate
the SSD storage and design the Lock-Free Updating Mechanism
to eliminate the bottleneck of SSD I/O bandwidth.

• We have conducted evaluations on various representative large-
scale Transformermodels. Results show thatAngel-PTM achieves
up to 114.8% improvement in maximum supported model scale
and up to 88.9% improvement in throughput performance com-
pared to existing systems. Experiments also verify the near-linear
scalability of Angel-PTM when training on hundreds of GPUs.

Angel-PTM has been deployed in Tencent for around one year,
facilitating the training of foundational models used across a diverse
spectrum of products and services, including WeChat, QQ, Ten-
cent Games, Tencent Advertising, and Tencent Cloud. In addition,
Angel-PTM has also contributed to the training of the HunYuan
series models, notably aiding the HunYuan-1T model in securing
first place in the overall rankings of the CLUE benchmark [2].

2 BACKGROUND

2.1 Memory Management in Deep Learning

As the size of the models increases, GPU memory management
becomes a critical factor that affects the performance and scalability

1
2

3

4 6

5

SM Thread

Fwd & Bwd Optimizer Update

p32

g16a16 p16 g16p16

activations in FP16
parameters in FP16

gradients of parameters in FP16
model states in FP32

GPU CPU

SSD

Memory Memory

m32 v32

p32 m32 v32

Figure 1: The workflow of training on hierarchical memory.

of deep learning models [8, 28, 39]. In this section, we will provide
a brief overview of the memory consumption during training and
how they are managed in current deep learning frameworks.

Deep Learning Training. The deep learning training can be
represented as a computation graph, where each node stands for
an operation, such as matrix multiply, and each edge is a tensor
or dependency [4]. To achieve a satisfactory model quality, the
training involves numerous forward and backward propagation
passes. During the forward pass, training data is fed through the
computation graph, utilizing the model parameters to produce each
layer’s activation. The final outputs are compared to the expected
values using a loss function. During the backward pass, the error
values are propagated back to compute the gradients of activations
and parameters, respectively, where the gradients of parameters
are further used by the optimizer to update the model parameters.
In summary, the memory during training is primarily consumed by
parameters and their gradients, activations and their gradients, and
the optimizer states. Among them, the parameters and optimizer
states will be preserved during training, while activations, gradients
of activations, and gradients of parameters will be dynamically
generated and released. In the rest of this work, “model states” is
used to denote parameters and optimizer states for simplicity.

Mixed Precision Training. To reduce the computation and
memory requirements without sacrificing model quality, Micikevi-
cius et al. [37] proposed the mixed precision techniques for training.
As shown in Figure 1, the parameters are cast to the half-precision
format (i.e., FP16 or the BF16 variant) before computation, so that
activations and both types of gradients will be calculated in the
FP16 fashion. Meanwhile, the model states are stored in the single-
precision format (i.e., FP32) to preserve model quality. With the
rapid growth of model size, mixed precision has become a de facto
paradigm for large-scale model training and deployment.

Memory Management in Existing Frameworks. Existing
deep learning frameworks (e.g., PyTorch [43], TensorFlow [4], and
Hetu [34]) employ a general memory management method, which
manages the GPUmemory in a separate memory pool that responds
to the executor’s requests, such as allocation and de-allocation. For
example, TensorFlow [4] utilizes the best-fit allocation algorithm,
i.e., BFC, to manage GPU memory and minimize memory frag-
mentation caused by frequent allocations and de-allocations. By
allocating only the necessary amount of memory, this algorithm
tries best to reduce the waste in GPU memory. Compared to other

3782



allocation algorithms, the BFC algorithm may take longer to find an
available block, but it is well-suited for systems with limited GPU
memory. Additionally, Chen et al. [9] proposes the recomputation
technique for memory savings, which releases partial activations
in the forward pass and regenerates them with extra computation
in the backward pass.

Hierarchical Memory for Training. To accommodate the
memory demands of training large models, many frameworks at-
tempt to incorporate the hierarchical memory within GPU servers.
To be specific, to address the memory consumption of Transformer-
based pre-trained models, researchers have proposed shifting the
optimizer states and computations to the CPU memory and the SSD
storage [14, 49, 50]. We illustrate the workflow of training on hier-
archical memory in Figure 1. The GPU (1) fetches the parameters
from the CPU, (2) performs forward and backward computations
on the GPU, and then (3) sends the calculated gradients back to the
CPU. The CPU (4) loads optimizer states from the SSD storage, (5)
performs optimizer updating on CPU, and (6) stores the optimizer
states on the SSD storage.

2.2 Memory Footprints of Transformer

A Transformer layer is stacked by a self-attention network and a
position-wise feed-forward network (FFN), and it employs a residual
connection on each of these two sub-layers, followed by a normal-
ization layer [6]. In the following, we will approximately formulate
the memory footprints of each component within a Transformer
layer under the popular mixed precision training with the Adam op-
timizer scenario, where the input data is 𝑋 ∈ R𝑏×𝑠×𝑑𝑚 . Specifically,
𝑏 is batch size, 𝑠 is sequence length, 𝑑𝑚 is hidden size of embeddings
and𝑑𝑓 𝑓 𝑛 is hidden size of FFN. Results of footprints are summarized
in Table 1, and we ignore the small tensors for simplicity when
calculating the total size, such as params. of LayerNorm.

Self-Attention. The attention block [54] could capture the de-
pendencies between tokens in the sequence, and is effective in se-
quence modeling. As shown in Equation 1, it first linearly projects
the input 𝑋 into queries (𝑄), keys (𝐾) and values (𝑉 ) with three
linear functions respectively, where {𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 } ∈ R𝑑𝑚×𝑑𝑚
and the total footprint of Params in this layer is 3(Q, K, V) ×
2(forward and backward)×2(FP16, 2 bytes)×𝑑𝑚 × 𝑑𝑚 = 12𝑑2𝑚 .
Similarly, the Acts is {𝑄,𝐾,𝑉 } ∈ R𝑏×𝑠×𝑑𝑚 and their footprint is
3(Q, K, V) × 2(forward and backward) × 2 (FP16, 2 bytes) ×
𝑏 × 𝑠 × 𝑑𝑚 = 12𝑏𝑠𝑑𝑚 . The footprint of model states (Optims) is
3(Q, K, V) × 3(master parameter, momentum, variance) × 4
(FP32, 4 bytes)×𝑑𝑚 × 𝑑𝑚 = 12𝑑2𝑚 . The same calculation method
is also applicable to other layers, we will directly give the results
in the table 1 because of the limited space. After this linear layer,
it will compute the attention scores (shape: 𝑏 × 𝑠) between each
query-key (𝑄-𝐾) pair, which is obtained by performing the dot-
product (MatMul) operation as well as the ScaledMaskSoftmax op-
eration. And the three operations, including Scale, Mask(opt.)
and Softmax, are always fused into the ScaledMaskSoftmax op-
eration for time-efficiency and memory-saving via kernel fusion
techniques [56]. The attention vectors (shape: 𝑏 × 𝑠 × 𝑑𝑚) are com-
puted by weighted summation between the attention scores and
values𝑉 . The self-attention layer finally produces the output (shape:
𝑏 × 𝑠 × 𝑑𝑚) by applying a linear transformation (𝑊 ∈ R𝑑𝑚×𝑑𝑚 ) to

Table 1: Memory footprints of a single Transformer layer

under the mixed-precision training with Adam optimizer.

Block Layer Name Parame- Activat- Optimi-
ters. (B) ions. (B) zers. (B)

Attn

Linear(Q,K,V) 12𝑑2𝑚 12𝑏𝑠𝑑𝑚 36𝑑2𝑚
MatMul - 4𝑏𝑠2 -
Scaled- - 4𝑏𝑠2 -Softmax
MatMul - 4𝑏𝑠𝑑𝑚 -
Linear 4𝑑2𝑚 4𝑏𝑠𝑑𝑚 12𝑑2𝑚
Add - 4𝑏𝑠𝑑𝑚 -

LayerNorm 4𝑑𝑚 4𝑏𝑠𝑑𝑚 12𝑑𝑚

FFN
Linear 4𝑑𝑚𝑑𝑓 4𝑏𝑠𝑑𝑓 12𝑑𝑚𝑑𝑓
GeLU - 4𝑏𝑠𝑑𝑓 -
Linear 4𝑑𝑚𝑑𝑓 4𝑏𝑠𝑑𝑚 12𝑑𝑚𝑑𝑓
Add - 4𝑏𝑠𝑑𝑚 -

LayerNorm 4𝑑𝑚 4𝑏𝑠𝑑𝑚 12𝑑𝑚

Total
16𝑑2𝑚 40𝑏𝑠𝑑𝑚+ 48𝑑2𝑚
+8𝑑𝑚𝑑𝑓 8𝑏𝑠2 + 8𝑏𝑠𝑑𝑓 +24𝑑𝑚𝑑𝑓

the attention vectors.

Attn(𝑋 ) = Softmax

(︄
Mask

(︄
(𝑋𝑊𝑄 ) (𝑋𝑊𝐾 )𝑇√︁

𝑑𝑘

)︄)︄
(𝑋𝑊𝑉 ) (1)

Add & LayerNorm.A residual connection is employed between
the input (shape: 𝑏 × 𝑠 × 𝑑𝑚) and output (shape: 𝑏 × 𝑠 × 𝑑𝑚) of the
self-attention layer. Afterwards, a normalization layer is applied to
the output of the Add operation (shape: 𝑏 × 𝑠 × 𝑑𝑚). These same
transformations are also performed on the FFN block, and we for-
mulate them in Equation 2. Moreover, the size of parameters and
their gradients of the LayerNorm layer is 4𝑑𝑚 , one for weights and
one for bias, which can be ignored compared to other parts.

𝑦 = LayerNorm(𝑓 (𝑥) + 𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑓 ∈ {Attention, FFN} (2)

Feed-Forward Networks. As formualted in Equation 3, the
feed-forward network (FFN) layer applies linear transformations
to the inputs with two fully-connected (FC) layers separated by a
GeLU activation function [22]. Specifically, the first FC layer (𝑊1 ∈
R𝑑𝑚×𝑑𝑓 𝑓 𝑛 ) projects the input into a new space with higher dimen-
sion, which allows the model to capture more complex relationships
within a single token, while the second FC layer (𝑊2 ∈ R𝑑𝑓 𝑓 𝑛×𝑑𝑚 )
shrinks the dimension back to original, which helps to ensure that
the output of the model is well-behaved.

FFN(𝑥𝑠 ) =𝑊2 · GeLU(𝑊1 · 𝑥𝑠 ) (3)

MemoryUsageAnalysis.According to Table 1, we can estimate
the memory usage of any decoder-only Transformer models, where
we do not take the embedding_look_up and loss function into
consideration. For the GPT-3 175B [8], the Params, Acts and Optims
consumes 648GB, 162GB, and 1944GB, respectively, when batch
size (𝑏) is 1, sequence length (𝑠) is 2048, hidden size of embeddings
(𝑑𝑚) is 12288 and hidden size of FFN (𝑑𝑓 𝑓 𝑛) is 49152. To satisify the
memory requirement of large model training, multiple GPUs will
be involved for distributed training with parallelism strategies.

3783



2.3 Distributed Training

By partitioning model parameters as well as their computation
among multiple GPUs, the training can be significantly accelerated,
enabling researchers to train large-scale Transformer models in a
shorter amount of time. In this section, we will provide a compre-
hensive overview on existing parallelism strategies that have been
widely adopted for Transformer models.

Data Parallelism and Zero Redundancy Optimization. In
data parallelism (DP), training samples are partitioned while model
parameters and optimizer states are duplicated across multiple de-
vices [31]. Each device executes the forward and backward propa-
gation on its local mini-batch data to obtain its parameter gradients,
and the gradients are averaged through a synchronization across
all devices (e.g., by all-reduce). Eventually, each device updates
the model parameters and optimizer states individually via the
synchronized gradients. However, the vanilla data parallelism re-
quires each device to maintain a full copy of model states, which is
memory-inefficient for large-scale Transformer models. To reduce
the memory consumption, Rajbhandari et al. [48] proposed the
Zero Redundancy Optimization (ZeRO) technique, which evenly
partitions the model states across all devices. To be specific, when
training with 𝑁 devices, each device only stores and updates 1/𝑁
of the model states. However, in each training iteration, an extra
round of all-gather communication is needed to ensure each de-
vice gets the full updated parameters in order to accomplish the
propagation. In short, ZeRO-powered data parallelism improves the
memory efficiency at the cost of extra communication overheads.

Model Parallelism and Hybrid Parallelism. Model paral-
lelism splits the model across multiple devices and performs the for-
ward and backward propagation in a distributed manner. Megatron-
LM [38] proposed tensor parallelism (TP), which partitioned the
queries, keys and values matrices of the the attention network in a
row- or column-parallel fashion, which exploits the inherent par-
allelism of the multi-head attention. In pipeline parallelism (PP),
the model is partitioned into a sequence of stages and each stage is
executed on a separate device. Huang et al. [23] proposed the batch-
splitting pipeline algorithm and achieved almost linear speedup
over multiple GPUs. Hybrid parallelism refers to the combination
of two or more parallelism strategies to improve the training ef-
ficiency, which must consider the three aspects of computation,
communication, and storage simultaneously. Zheng et al. [63] con-
structed a large amounts of model parallelism execution plans by
exploiting both inter-operator and intra-operator parallelism in a
hierarchical manner. They also designed many compilation passes
to automatically derive efficiency plans at each parallelism level.

3 MOTIVATIONS AND SYSTEM DESIGN

3.1 Use Cases in Tencent

Through collecting a significant amount of training task data from
the machine learning platform in Tencent, we have identified two
main categories of common use cases, including pre-training and
fine-tuning. The majority of these tasks involve the large-scale
training of Transformer models, as the Transformer architecture
has revolutionized natural language processing and enabled effi-
cient handling of sequential data with long-range dependencies.

Each task category has its unique characteristics and primary objec-
tives, and we provide a detailed analysis of these categories in the
following section. Additionally, we briefly introduce corresponding
system optimizations to improve their efficiency and effectiveness.

Pre-Training. Pre-training refers to the process of training a
large-scale Transformer model on vast amounts of unlabelled data
to learn rich and diverse features, which then can be useful for a
wide range of downstream tasks, such as question answering and
machine translation. Given the scale of models and datasets, pre-
training tasks are extremely time-consuming and memory-hungry.
Meanwhile, Kaplan et al. [28] suggested that the model quality of
pre-trained models scales as a power-law with data size, model
size, and the amount of computation, which further increases the
demand of pre-training tasks.

After analyzing the log information of the platform, we find that
although pre-training tasks have to use hundreds or even thousands
of GPUs to train for several weeks, they account for only about
10% of the total number of tasks. This is because researchers in
Tencent prefer to jointly train a large-scale Transformer model as
their shared base model. And we observe that there exist two main
characteristics associated with pre-training:

• Low-Efficiency on Scalability. During the running of pre-
training tasks, users may pause and request more GPUs to obtain
experimental results faster. However, in many cases the GPU
utilization and training throughput decrease after more GPUs
are involved, depending on the distributed training strategy of
the model. Take a real case as the example. Training a 64-layer
GPT model with the hybrid parallelism strategy of Megatron-LM
on 72 GPUs is slower than that on 64 GPUs. As discussed in
Section 1, many researchers in Tencent are not familiar with dis-
tributed computation and cannot adjust the parallelism strategy
correspondingly.

• Failure and Recovery. When more GPUs are involved, the
Mean Time To Failure (MTTF) is shortened accordingly. Given
the large amount of GPUs and the long training time, pre-training
tasks would encounter GPU failure with a high probability, and
should be restarted after failure.

Fine-Tuning. Fine-tuning refers to taking the pre-trained model
and adapting it to a specific downstream task with domain-specific
data, such as the supervised fine-tuning (SFT) phase in Instruct-
GPT [42]. After fine-tuning the pre-trained model for a specific
downstream task, researchers aim to deploy the resulting model in
a real-world product. Therefore, they need to carefully tune hyper-
parameters and iterate on experiments to achieve the best possible
performance. This phase involves a trial-and-error progress and
may require several iterations until a satisfactory model is obtained.

After analyzing the log information of the platform, we notice
that the fine-tuning tasks account for about 90% of the total number
of tasks. Each fine-tuning task also requires a large number of GPUs,
but the running time is shorter than pre-training tasks (usually in
hours). And we find that there exists three main characteristics
associated with fine-tuning:

• Low-Efficiency on GPUUtilization. Smaller batch sizes are of-
ten used in fine-tuning tasks due to smaller downstream datasets
and to avoid overfitting. This leads to a disproportionate amount

3784



Table 2: Distribution of tensor sizes within one layer of GPT3.

Tensor Size (MB) 3072 2304 1152 768 576
Counts 4 6 4 20 12

Tensor Size (MB) 288 0.375 0.046875 0.0234375
Counts 8 4 6 4

of time spent on distributed communication, reducing the uti-
lization of expensive GPU computing units.

• Long Response Time. The task queue is frequently populated
with a large number of fine-tuning tasks, each requiring lots of
GPU resources. Due to limited cluster resources, most fine-tuning
tasks face longwait times, sometimes amounting to several hours,
although most of them typically require only a few hours.

3.2 System Design

Lessons from Tencent. To effectively address the two prevalent
use cases within Tencent, we aim to design a system that can not
only scale efficiently across hundreds of GPUs but also facilitate the
fine-tuning of large models within the constraints of limited GPU
resources. Unlike existing systems, such as DeepSpeed, we strive
to avoid modifications to user code, making it easier for wider
adoption. Additionally, we aim to eliminate system complexity,
focusing on user needs to provide the most lightweight implemen-
tation, rather than integrating nearly all optimization strategies as
DeepSpeed does. Therefore, we’ve incorporated the following three
strategic elements into the foundational design of our system:

Data Parallelism. During the pre-training process, the number
of GPUs used for training may vary for each task, which requires
our distributed strategy to be easy-to-scale and have good scala-
bility. While model parallelism might offer superior throughput
performance in certain instances, its design necessitates special-
ized knowledge and presents migration challenges across varying
degrees of parallelism. As such, we’ve opted for data parallelism as
our foundational distributed solution.

Parameter Sharding. With data parallelism(DP), each GPU
needs to hold the complete model states, posing challenges for
training larger models. To address this, we have adopted the param-
eter sharding technique as proposed by ZeRO [48]. This approach
splits each parameter evenly across multiple GPUs and when a
parameter needs to be calculated, a complete parameter is fetched
through an all-gather operation. This approach dramatically re-
duces each GPU’s memory requirements, enabling the training of
substantially larger models.

Hierarchical Memory. The issues of long response time and
low resource utilization are significantly due to the large number
of fine-tuning tasks as well as their excessive numbers of GPUs
w.r.t. the relatively small batch sizes. To tackle these problems,
we incorporate hierarchical storage within GPU servers to meet
the memory requirements for fine-tuning tasks, thereby reducing
the number of GPUs. Additionally, leveraging hierarchical storage
also allows pre-training tasks to train larger models with the same
numbers of GPU servers.

Upon establishing the foundational principles of our system,
we recognized that simply integrating these strategies does not
optimally exploit resource utilization as evidenced in existing sys-
tems [47]. As an initial step, we examined the distribution of tensor

SSD

Memory

CPU

GPU

SM

Thread

SSD SSD

Memory

activation page

parameter page

gradient page

model state page

dynamic cache PCIe

Figure 2: System architecture of Angel-PTM.

sizes within one Transformer layer of the GPT3-175B model during
training, employing the formulation detailed in Table 1. The find-
ings, outlined in Table 2, illustrate a significant variation in tensor
sizes, ranging from 3072MB to a meager 0.02MB. We identified
three main inefficiencies stemming from this disparity, including
inefficient memory utilization, inefficient bandwidth utilization and
inefficient GPU utilization.

To cope with these inefficiencies, we first propose the Page-
based memory organization in Section 4.1 to improve the memory
usage and then design the Unified Scheduler in Section 4.2 to to
fully utilize the bandwidth. Moreover, we also design a Lock-Free
Updating Mechanism in Section 4.3 to address the insufficiency in
GPU usage when enlarging model to an extreme scale.

4 ANGEL-PTM

Our system, namely Angel-PTM, is designed for researchers and
developers to design and experiment large-scale Transformer mod-
els in Tencent. Figure 2 illustrates the system architecture, where
we enable the fine-grained memory management at the Page level
and adopt the dynamic cache techniques for sufficient memory us-
age. In the following subsections, we will analyze the limitations of
existing systems and present our solutions to address these issues.

4.1 Page-Based Memory Organization

Inefficient Memory Utilization. Existing systems suffer from
memory fragments due to their coarse memory management. For
instance, DeepSpeed uses the original memory management of Py-
Torch for offloading and recomputing, which frequently allocates
and releases tensors, leading to space fragments because the sizes
of these tensors are not uniform as discussed in Section 3. Patrick-
Star [14] manages GPU memory in chunks rather than tensors,
where the chunk size must be larger than the largest tensor used in
model training. This would also result in memory fragments within
each chunk as well as the in-efficiency of the overlapping between
communication and computation.

To reduce the fragments of memory space organization and
improve the efficiency of memory movements, we introduce the
Page abstraction, which works as the minimum unit of memory

3785



1 struct Page {
2 /* Page Information */
3 void* data_ptr;
4 size_t total_bytes;
5 size_t available_bytes;
6 // device_map: {0: GPU , 1: CPU , 2: SSD}
7 size_t device_index;
8 // ids for tensors in this page
9 size_t tensor_id [2];
10 // occupied bytes for each tensor
11 size_t tensor_bytes [2];
12
13 /* Page Interface */
14 // allocate required bytes for id-th Tensor
15 void allocate(size_t required_bytes , size_t id);
16 // release space of id-th Tensor
17 void release(size_t id);
18 // move this page to target device asynchronously
19 void move(size_t target_device_index );
20 // send this page to id-th server asynchronously
21 void send(size_t id);
22 // receive contents from id-th server
23 void receive(size_t id);
24 };

Figure 3: The Page Abstraction.

operations for heterogeneous storage, including allocation, release,
movement, and remote communication. In our proposed model,
each tensor is comprised of multiple Pages. Given the fine-grained
level of memory operations, a single tensor may span over several
discontinuous Pages. To mitigate such discontinuity, we initially
leverage the iterative training characteristic to schedule the place-
ment of each Page. If necessary, we further employ an additional
merge operation to arrange these Pages into a contiguous buffer.

Page Abstraction. As illustrated in Figure 3, the Page abstrac-
tion includes several key pieces of information, including a pointer
to the actual memory data, the total number of bytes in the page,
the number of bytes that are available for the next allocation, and
the index of the device where the page is currently located. Addi-
tionally, each Page can be associated with one or more tensors, with
unique identifiers and information about the amount of memory
occupied by each tensor. In order to simplify the memory manage-
ment, we decide to limit each page to contain information about a
maximum of two tensors at any given time. The reasoning behind
this decision will be analyzed in conjunction with the discussion of
the optimal page size in detail below.

Moreover, Page also provides several interfaces for accessing
and manipulating the data stored within it. These interfaces en-
able developers to perform a wide range of operations on Page
objects, including allocating and releasing memory for specific
tensors, moving pages between the heterogeneous memory, and
sending/receiving pages across different servers.

Optimal Page Size. The selection of an optimal Page size rep-
resents a crucial balancing act between memory management ef-
ficiency and overall throughput. A larger Page size can result in
numerous tensors cohabiting within a single page, subsequently
raising management complexity and leading to wasted space. Con-
versely, a smaller Page size could lead to increased overhead due to
under-utilized bandwidth during data movement. In our approach,
we identify the smallest Page size that fully leverages the PCIe

1 struct Tensor {
2 /* Tensor Information */
3 size_t id;
4 vector <Page > page_list;
5 size_t dtype;
6 size_t* shape;
7 size_t device_index;
8
9 /* Tensor Interface */
10 void allocate(size_t* shape , size_t dtype);
11 void release ();
12 void move(size_t target_device_index );
13 void merge ();
14 };

Figure 4: The Tensor structure in our system.

bandwidth as optimal for our system — this corresponds to a size of
4MB. Our observations during training show that the vast majority
of model states exceed this 4MB size, a finding that’s also supported
by the data in Table 1. By arranging these tensors strategically, we
can limit the association to a maximum of two tensors per page,
substantially reducing management complexity. The rationale be-
hind the maximum limit of two tensors per page is rooted in our
approach, which allows a tensor to begin on a partially filled page,
span several complete pages to form its body, and may end on pro-
ducing another partially filled page. For tensors smaller than 4MB,
we permit each to occupy a separate page for simplicity, given they
represent only a small fraction of the total memory usage.

Tensor Management. The Tensor structure is a fundamental
data structure in our system that represents multi-dimensional
arrays of numerical data, composed of at least one page. As shown
in Figure 4, it contains several crucial pieces of information, such
as a unique id associated with the tensor, data type, shape, and
the current device index. Meanwhile, we set the device index as -1
when the tensor is not ready for computation (i.e., some of its pages
need to be fetched from hierarchical memory or other servers).
The Tensor structure also provides a set of interfaces for memory
management, such as allocating a certain shape tensor or releasing
its data. Additionally, it offers an explicit interface for moving data
between heterogeneous memory. Since the space of different pages
may not be contiguous, the Tensor structure provides the merge
interface to make them contiguous.

In short, the Tensor structure, which is user-facing, incorporates
a variety of common operations, thus providing a simple and in-
tuitive interface for users. On the other hand, the Page structure,
invoked by the system runtime, encapsulates all the fine-grained
memory operations. This separation of duties ensures efficient train-
ing, with the Page structure acting as a workhorse that manages
intricate memory tasks behind the scenes, allowing users to interact
with the more accessible Tensor structure.

4.2 Unified Scheduler

Inefficient Bandwidth Utilization. In the context of this hier-
archical storage-based distributed training, model states must be
transferred among various levels of storage via PCIe, while parame-
ter gradients need to be synchronized via network. In terms of hard-
ware design, GPU computations are inherently capable of overlap-
ping with both PCIe and network. Therefore, deciding what needs

3786



Tracer

Unified Scheduler

Executor CommunicatorAllocator

instructions

feedback

tensor life-time

1

2

1 2 1 2 1 2

Figure 5: Illustration of the Unified Scheduler and associated

components in Angel-PTM.

to be communicated and when is crucial to the overall throughput
efficiency of the system. However, existing systems, such as Deep-
speed, distribute model states statically across multi-level storage,
for instance, relegating all optimizer states to CPU memory, while
adopting static scheduling strategies such as prefetching k-layers
in advance. These systems make decisions without considering
the actual demands of workloads, markedly impeding the system’s
throughput and prompting unnecessary data movements.

To efficiently utilize the complex hierarchical network resources
within GPU servers, we devise a unified scheduling method built
upon the Page abstraction for efficient training. As illustrated in Fig-
ure 5, once the user defines the model, the Tracer obtains the tensor
access pattern and lifetime for each tensor (as detailed in Section 5).
Subsequently, the Unified Scheduler, armed with these statistics,
produces a static schedule for each operation during training. The
fundamental principle here is that deep learning model training
is iterative in nature, allowing us to schedule the operators based
on the tensor access pattern. Specifically, by analyzing the lifetime
and size of each tensor, the Unified Scheduler determines the
most appropriate time to execute each operation in each iteration.
This includes calling the Allocator to move tensors, instructing
the Executor to perform GPU computations, and prompting the
Communicator for network communication.

Tensor Life-Time. The life-time of a tensor refers to the du-
ration from its first access time to its last access time within a
training iteration. A fundamental characteristic of deep learning
training is its iterative nature, meaning that computation opera-
tions are sequentially and iteratively inserted into the computing
stream. This allows us to optimize the sequence of data movements
and communications relative to computation, ensuring that the
required data is available at the right time for each computation.
This reduces idle time and improves memory efficiency. Moreover,
as computation is performed at the tensor level, tensor allocation
and release can also be conducted at this level. The use of logical IDs
instead of real-time for lifetime tracking simplifies the scheduling
process. By utilizing tensor lifetime information, we can optimize
the scheduling of computations, movements, and communications
in a comprehensive manner.

Unified Scheduler. The Unified Scheduler is the crucial com-
ponent in Angel-PTM, responsible for orchestrating the activities
of other components. To be more precise, it assimilates life-time
information and access patterns as provided by the Tracer, subse-
quently generating a task queue to establish the operation schedule.

Algorithm 1: Fine-grained Life-time based Scheduling
Input: 𝑚𝑜𝑑𝑒𝑙 = {𝑙0, ..., 𝑙𝑛−1}: list of layers, where 𝑙𝑖 is 𝑖-th layer

𝑡𝑟𝑎𝑐𝑒𝑠 : List of trace for each tensor
𝑔𝑝𝑢𝑀𝑒𝑚𝑜𝑟𝑦 : total GPU memory

Ouptut: 𝑆 : Queue of tasks, each is {operation, page, trigger_id }
1 /* Phase 1: Prioritize move_to_gpu tasks */
2 𝑤𝑎𝑖𝑡_𝑠𝑡𝑎𝑐𝑘 = { };
3 for 𝑙𝑖 ∈𝑚𝑜𝑑𝑒𝑙 do
4 for 𝑝𝑎𝑔𝑒 ∈ 𝑙𝑖 .𝑝𝑎𝑟𝑎𝑚.𝑝𝑎𝑔𝑒_𝑙𝑖𝑠𝑡 do
5 𝑆 .append({move_to_gpu, 𝑝𝑎𝑔𝑒 , 0});
6 for 𝑙𝑖 ∈𝑚𝑜𝑑𝑒𝑙 do
7 while get_available_memory(𝑆 , 𝑡𝑟𝑎𝑐𝑒𝑠) < size(𝑙𝑖 ) do
8 𝑡𝑎𝑠𝑘 ← pop the last movement task from 𝑆 ;
9 𝑤𝑎𝑖𝑡_𝑠𝑡𝑎𝑐𝑘 .push_back(𝑡𝑎𝑠𝑘.𝑝𝑎𝑔𝑒);

10 for 𝑝𝑎𝑔𝑒 ∈ 𝑙𝑖 .𝑝𝑎𝑟𝑎𝑚.𝑝𝑎𝑔𝑒_𝑙𝑖𝑠𝑡 do
11 𝑆 .append({all_gather, 𝑝𝑎𝑔𝑒 , 𝑖});
12 𝑆 .append({compute, 𝑙𝑖 , 𝑖});
13 while 𝑤𝑎𝑖𝑡_𝑠𝑡𝑎𝑐𝑘 .non_empty() and

get_available_memory(𝑆 , 𝑡𝑟𝑎𝑐𝑒𝑠) > page_size do
14 𝑝𝑎𝑔𝑒 ← 𝑤𝑎𝑖𝑡_𝑠𝑡𝑎𝑐𝑘 .pop_back();
15 𝑆 .append({move_to_gpu, 𝑝𝑎𝑔𝑒 , 𝑖});
16

17 /* Phase 2: Advance all_gather tasks to overlap them with
previous computation if no out-of-memory (OOM) */

18 for 𝑡𝑎𝑠𝑘 ∈ {𝑡 |𝑡 ∈ 𝑆, 𝑡 .𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 == all_gather} do
19 𝑡𝑎𝑠𝑘 ← pop 𝑡𝑎𝑠𝑘 from 𝑆 ;
20 𝑖𝑑 ← get the earliest possible id to trigger 𝑡𝑎𝑠𝑘 without OOM;
21 𝑆 ← insert {all_gather, 𝑡𝑎𝑠𝑘.𝑝𝑎𝑔𝑒 , 𝑖𝑑 } into 𝑆 ;
22 return 𝑆 ;

The use of a queue, rather than a priority queue, is deemed sufficient
as we have incorporated priority considerations within Algorithm 1
and have also implemented a roll-back mechanism.

First, we must determine an effective way to distribute the model
states to various memory devices, such as GPU memory, CPU mem-
ory and SSD storage, and distribute computation tasks to various
computing devices, such as CPUs and GPUs, which is a complex
NP planning problem and cannot be solved directly for large-scale
models. To tackle this problem, we develop a heuristic method
and incorporate empirical information to aid in the design of our
strategies. To be specific, the forward and backward computations
of the transformer models are mainly composed of FP16 matrix
multiplication, which is rather compute-intensive and requires less
memory. The optimizer update computations, to the contrary, are
composed of FP32 matrix addition, which is memory-intensive and
takes less time to compute. Given the fact that GPUs have high
computing capabilities but limited memory, we prioritize putting
the forward and backward computations into the GPU, and the
optimizer update computations into the CPU. The SSD storage will
also be involved to store the FP32 optimizer states for scaling model
size. With this approach, it is necessary to transfer the FP16 pa-
rameters from the CPU to the GPU, and subsequently transfer the
FP16 gradients from the CPU back to the GPU. These data move-
ments need to be carefully scheduled to overlap with computations
and avoid introducing extra overhead. Meanwhile, we utilize the
recomputation technique [9] to further alleviate the GPU memory

3787



pressure, where some activations are released in the forward pass
and then are regenerated in the backward pass by re-executing
their forward computation.

Second, we leverage caching techniques to fully exploit the high-
speed memory and computation capabilities of the GPUs after
previous assignments. For instance, if sufficient space is available,
we reserve a portion of the GPU memory as the cache to store a
segment of the CPU’s optimizer states. Additionally, we move the
relevant computations to GPUs, which reduces memory transfers
and accelerates computation, leading to an overall improvement in
training throughput. Moreover, we dynamically make cache size
decisions for each model based on its tensor lifetime information,
ensuring trainingwithout encountering GPU out-of-memory errors.
Such a caching technique allows us to maximize GPU memory
utilization and minimize data transfer overheads.

The Algorithm 1 consists of two phases. In the first phase, we
prioritize the data movements by inserting move_to_gpu tasks for
each page of each tensor at the beginning of the schedule (lines
3-5), which is based on our prior knowledge that the speed of
CPU-GPU data transfer (32GB/s) is slower than that of GPU-GPU
communication (200GB/s). We then iterate over each layer to insert
all_gather tasks and compute tasks on demand (lines 10-12). If
the current available memory is not sufficient for training, we
will pop the last movement task until the memory requirement is
satisfied (lines 7-9). If the current available memory is sufficient for
the movement of the next page, we will schedule it immediately
(lines 13-15). In second phase, we advance all_gather tasks as
early as possible to overlap them with previous computation tasks.
Specifically, for each all_gather task, we gradually try to shift its
scheduled time earlier (i.e., decrease its trigger id by 1). In each trial,
the trace information, tensor sizes, and the schedules after shifting
will be utilized to measure the peak memory usage in order to
determined whether there will be an out-of-memory (OOM) error
after the shifting. And this progress ends at the smallest trigger id
that does not encounter OOM error. Eventually, the all_gather
task will be inserted back to the schedule, along with the new
trigger id (Line 20-21). This approach contributes to more efficient
use of available memory and better overlapping of tasks on the
GPU, ultimately leading to improved performance.

4.3 Lock-Free Updating Mechanism

Inefficient GPU Utilization. When incorporating heterogeneous
memory or multiple GPUs into the training process, GPUs com-
putations often face delays due to data transfer. Primarily, GPUs
are left waiting for the updated parameters to be transferred for
computations, or computed gradients to be cleared to free up space.
Additionally, GPUs must wait for gradient synchronization through
remote communication to update local parameters. This, inevitably,
results in the wastage of GPU resources and a decrease in overall
efficiency. Even more problematic is the integration of SSD storage
into training within existing systems, which further reduces GPU
utilization due to the slow I/O speed of SSDs. To illustrate, consider
the A100 Server from Tencent, which demonstrates I/O speeds for
GPU memory access, CPU-GPU transfer, and SSD-CPU transfer
at 600 GB/s, 32 GB/s, and 3.5 GB/s, respectively. Our observations
have shown that after integrating CPU memory and SSD storage,

Algorithm 2: Lock-Free Updating Mechanism
Input: 𝑚𝑜𝑑𝑒𝑙 = {𝑙0, ..., 𝑙𝑛−1}: list of layers, where 𝑙𝑖 is 𝑖-th layer

𝑝32 (𝑙𝑖 ) : parameters for 𝑙𝑖 in FP32
𝑚32 (𝑙𝑖 ) : first moments of gradients for 𝑙𝑖 in FP32
𝑣32 (𝑙𝑖 ) : second moments of gradients for 𝑙𝑖 in FP32
𝑔16 (𝑙𝑖 ) : gradients for 𝑙𝑖 in FP16
𝑝′16 (𝑙𝑖 ) : buffered parameters for 𝑙𝑖 in FP16
𝑔′16 (𝑙𝑖 ) : buffered gradients for 𝑙𝑖 in FP16

1 /* Updating thread on CPU */
2 while there are uncleared buffered gradients do
3 for 𝑙𝑖 ∈ reverse(𝑚𝑜𝑑𝑒𝑙 ) do
4 Fetch 𝑝32 (𝑙𝑖 ),𝑚32 (𝑙𝑖 ), 𝑣32 (𝑙𝑖 ) from SSD storage;
5 Update 𝑝32 (𝑙𝑖 ),𝑚32 (𝑙𝑖 ), 𝑣32 (𝑙𝑖 ) via 𝑔′16 (𝑙𝑖 ) ;
6 Pass 𝑝32 (𝑙𝑖 ) to the buffering thread;
7 Offload 𝑝32 (𝑙𝑖 ),𝑚32 (𝑙𝑖 ), 𝑣32 (𝑙𝑖 ) to SSD storage;
8

9 /* Buffering thread on CPU */
10 while not finished do

11 if received 𝑝32 (𝑙𝑖 ) from the updating thread then

12 Clear buffered gradients: 𝑔′16 (𝑙𝑖 ) ← 0;
13 Update buffered parameters: 𝑝′16 (𝑙𝑖 ) ← cast(𝑝32 (𝑙𝑖 ), FP16) ;
14 else if received 𝑔16 (𝑙𝑖 ) from the GPU then

15 Accumulate buffered gradients: 𝑔′16 (𝑙𝑖 ) ← 𝑔′16 (𝑙𝑖 ) + 𝑔16 (𝑙𝑖 ) ;
16

17 /* Computation on GPU */
18 while not finished do

19 for 𝑙𝑖 ∈ 𝑚𝑜𝑑𝑒𝑙 do
20 Fetch buffered parameters 𝑝′16 (𝑙𝑖 ) from CPU memory;
21 Perform forward computation with 𝑝′16 (𝑙𝑖 ) ;
22 for 𝑙𝑖 ∈ reverse(𝑚𝑜𝑑𝑒𝑙 ) do
23 Perform backward computation with 𝑝′16 (𝑙𝑖 ) and get 𝑔16 (𝑙𝑖 ) ;
24 Offload 𝑔16 (𝑙𝑖 ) to CPU memory (inform the buffering thread);

nearly 80% of iteration time is spent idle, whereas this figure is a
mere 10% when only CPU memory is introduced.

To mitigate this training bottleneck, we design a novel Lock-Free
Updating Mechanism, which decouples GPU computation from CPU
optimizer operations through a novel asynchronous consistency
control protocol. Algorithm 2 illustrates the details of our proposed
mechanism. The essential idea is to employ two buffers in CPU
memory to store the FP16 parameters and gradients respectively,
and leverage an auxiliary buffering thread to maintain the buffers.
During training, each GPU fetches the FP16 parameters of each
layer from the CPU buffer and perform forward and backward com-
putations (Line 19-23). Then, the generated gradients are offloaded
to CPU memory (Line 24), and eventually accumulated into the
CPU buffer by the buffering thread (Line 15). During optimizer
updating, the updating thread on CPU reads the FP32 parameters
and optimizer states from SSD, which are then updated according
to the buffered, accumulated gradients (Line 4-5). Subsequently,
he buffering thread receives a signal to individually update the
buffers of each layer. This process includes purging the buffered
gradients and converting the updated parameters into the buffered
parameters (Line 12-13). These steps occur concurrently with of-
floading the updated parameters and optimizer states to the SSD
(Line 7). Given that the optimizer’s updates to parameters and the
GPU’s retrieval of parameters operate on a layer-level granularity

3788



for consistency control, rather than on a full model scale, we’ve
designed our update algorithm to be lock-free.

Although our updating mechanism incurs extra memory over-
head, it is acceptable since both the buffered parameters and gradi-
ents are stored in FP16, requiring small memory footprints. Another
side effect of the lock-free mechanism is that it may introduce stal-
eness into the parameters given the fact that the updating thread
on CPU runs slower than the GPU due to the limited SSD I/O
bandwidth. Nevertheless, existing studies have verified that deep
learning model training can well tolerate such staleness. In Sec-
tion 6, we will empirically show that the convergence is not harmed
while enjoying the efficiency improvement brought by the lock-
free mechanism. Last but not least, since the optimizer updates are
element-wise, the data movement and CPU computations can be
scheduled at the Page level, which further improves the efficiency.

5 IMPLEMENTATION

Angel-PTM offers a comprehensive solution for efficient deep learn-
ing model training in industrial settings. It leverages some key
techniques [33, 36, 41] from Hetu [34], gets implemented over Py-
Torch [43], and features the Page abstraction for memory efficiency
and a unified scheduling method for resource utilization. Further-
more, Angel-PTM has undergone extensive optimization on A100
servers, enabling it to take full advantage of hardware capabilities
for deep learning tasks. We would like to briefly go through the
implementation of the key components in this section.

Tracer. The Tracer in Angel-PTM is responsible for tracking
the usage of each tensor and summarizing a tensor access pattern
for the given model as a list of following elements:
• 𝑡𝑒𝑛𝑠𝑜𝑟_𝑖𝑑 : The logical ID of this tensor.
• 𝑓 𝑖𝑟𝑠𝑡_𝑖𝑑 : The logical ID when first accessing this tensor.
• 𝑒𝑛𝑑_𝑖𝑑 : The logical ID when last accessing this tensor.
• 𝑐𝑝𝑢_𝑡𝑖𝑚𝑒: The time for producing this tensor on CPU.
• 𝑔𝑝𝑢_𝑡𝑖𝑚𝑒: The time for producing this tensor on GPU.
To assign a unique tensor ID to each parameter, we modify the
__init__ method of the Parameter class to use a global variable id.
Then, we track the first and last use of each parameter during an
iteration by registering hook functions, recording them as first_id
and end_id, respectively. To capture the generation time of tensors
on both CPUs and GPUs, we use the time.time() and CudaEvent
interfaces respectively to accurately measure the CPU and GPU
time for each tensor.

Unified Scheduler. The Unified Scheduler is responsible for
coordinating the activities of three components, including Allocator,
Executor, and Communicator. Sending instructions by the message
passing will bring severe overheads into training, thus we adopt the
event-driven programming techniques to implement our Unified
Scheduler. For example, computations will be launched into threads
only if the events of modifying its input tensor are completed.

Allocator. The Allocator in Angel-PTM is responsible for man-
aging tensors at the Page level in the hierarchical memory re-
sources. It provides three memory operations for each page, in-
cluding allocate, release and move. To reduce the overhead of
requesting memory space and take advantages of the iterative na-
ture of training, we pre-allocate space from the hierarchical memory
of the system, including GPU memory, CPU pinned memory, and

Table 3: Overview of hardware environments.

The Configuration of one GPU server
CPU 4 × AMD EPYC 7K62 48-Core Processor

CPU Memory 32 × 32GB 2933MHz DDR4
GPU 8 × NVIDIA Tesla A100 Tensor Core GPU

GPU Memory 8 × 40GB HBM2
SSD 11TB

SSD memory. To enable fine-grained memory operations, we divide
the pre-allocated memory into pages of fixed size, where each page
can be allocated, released and moved independently. Moreover, we
utilize cudaMemcpyAsync() and the DeepNVMe library [49] for asyn-
chronous GPU-CPU and CPU-SSD data movements, respectively.

Executor. The Executor in Angel-PTM is responsible for sched-
uling the computation of Tensors on computational devices such
as CPUs and GPUs on the server. Meanwhile, it maintains a sep-
arate stream for each of these computational devices, including a
CPU stream and a GPU stream. By receiving instructions from the
unified scheduler, it inserts computations into the corresponding
stream and schedules them to the computation threads in the order
of insertion. When all the inputs for the computation are ready,
the computation begins, and feedback is sent back to the unified
scheduler after the computation is complete.

Communicator. The Communicator in Angel-PTM is respon-
sible for scheduling communication between different network
devices, including NIC and NVLink. We implement the Commu-
nicator by using the NCCL library [24], which provides efficient
communication primitives for multi-GPU systems. These primi-
tives include collective operations such as AllReduce, AllGather,
and ReduceScatter, which are essential for exchanging model
parameters and gradients between GPUs during training. The Com-
municator also maintains a queue to store communication tasks
and schedules them for execution based on instructions from the
Unified Scheduler, thus it enables reordering the tasks in the queue
to improve the overlap between computation and communication.

Efficient Movement on Distributed Servers. GPU servers
typically have a complex interconnect topology, such as A100
servers [3] that contain two CPUs, four PCIe switches, and eight
A100 GPUs. These GPUs can communicate with the CPU mem-
ory in parallel, providing efficient data movement in distributed
training. To take full advantage of this hardware feature, we evenly
partition the model parameters across GPUs to parallelize the move-
ment of parameters between the CPU and GPUs, which is similar to
ZeRO-Infinity [49]. This further accelerates data movement during
training and achieves excellent scalability.

6 EXPERIMENTAL EVALUATION

6.1 Experiment Setup

Machine environment. Ours experiments are conducted on a
production-grade GPU cluster in Tencent, composed of 96 servers.
Each server is equipped with 8 NVIDIA Tesla A100-40GB GPUs,
with additional details provided in Table 3. Within each server,
GPUs are connected via NVLink-3.0, while servers are networked
using RoCE and supported by 16 NICs, yielding a total bandwidth

3789



Table 4: Models for Evaluation.

Model #Layer #Head dModel dFFN #Expert

GPT3-1.7B 24 24 2304 9216 -
GPT3-13B 40 40 5140 20506 -
GPT3-28B 26 128 8192 32768 -
GPT3-30B 64 36 8192 32768 -
GPT3-55B 68 128 8192 32768 -
GPT3-120B 64 96 12288 49152 -
GPT3-175B 70 112 14336 57344 -
T5-1.4B 16 16 1024 16384 -
T5-27B 28 64 4096 16384 -
T5-58B 60 64 4096 16384 -

T5-MoE-1.2T 16 16 1024 16384 2304

of 200GB/s (16 × 12.5 GB/s). The system’s PCIe bandwidth stands
at 32GB/s with the SSD peak bandwidth reaching 3.5GB/s.

Benchmarks.We conduct evaluations on three large-scale Trans-
former models, namely GPT-3 [8], T5 [46], and T5-MoE [15], to
validate the effectiveness and scalability of our proposed system. To
achieve different model sizes, we experiment with varying numbers
of Transformer blocks, hidden dimensions, and experts, and the
specific model configurations are presented in Table 4. We train
all of these models using the mixed precision technique as intro-
duced in Section 2, which stores the model states in Float32 while
computes in BFloat16.

Baselines. Prior to Angel-PTM, DeepSpeed [50] and Megatron-
LM [38], due to their widespread adoption, are the two pre-training
systems incorporated in the Taiji Machine Learning Platform of
Tencent. Therefore, we choose these two systems as our baselines
to evaluate the effectiveness of Angel-PTM. DeepSpeed is a hetero-
geneous training solution that currently achieves state-of-the-art
performance, and we use the official examples to ensure a fair com-
parison. For Megatron-LM, we search the best parallelism strategy
for each experimented model, which results in a hybrid parallelism
solution that combines data parallelism, model parallelism, and
pipeline parallelism.

We conduct a series of experiments to present the effectiveness
and scalability of Angel-PTM in training large-scale Transformer
models. Specifically, we evaluate the maximum model scale sup-
ported by our system on a single server in Section 6.2 and compare
the throughput of different models on two GPU settings in Sec-
tion 6.3. Additionally, we demonstrate the scalability of our system
on hundreds of GPUs for training both billion-scale dense models
and trillion-scale sparse models in Section 6.4. Furthermore, in Sec-
tion 6.5, we evaluate the convergence performance of our proposed
Lock-Free Updating Mechanism to further validate the effectiveness
of our system when introducing SSD storage to scale the model size
to an extreme level. It is worth noting that, except for experiments
in Section 6.5, which utilizes SSD storage for training, all other
sections utilize the memory of CPUs and GPUs by default.

6.2 Model Scale

We first conduct evaluations on a single server to test the maximum
model size and corresponding maximum throughput that can be
supported by Angel-PTM and DeepSpeed, where we increase the

Table 5: Max Supported Model Scale on a Single Server.

Model System #Params #Batch GPU Mem Samples/s

GPT
DeepSpeed 28B 1 18 0.404

28B 36 40 7.61

AngelPTM
28B 38 39 10.99

55B 1 33 0.464
55B 10 40 3.34

T5
DeepSpeed 27B 1 20 0.317

27B 32 39 7.31

AngelPTM
27B 50 40 14.38

58B 1 38 0.432
58B 4 40 3.37

number of transformer blocks and fix other model settings. Both
systems partition the model evenly across multiple GPUs using
ZeRO-3 [48], which enables efficient linear scaling for model size.

Results are summarized in Table 5. For GPT models, we set the
number of heads as 128, the embedding dimension as 8192, and
the FFN hidden size as 32768. DeepSpeed can support a maximum
model scale of 28B with 26 layers, while Angel-PTM can further
scale it up to 55B with 68 layers, which is a 96.4% improvement.
Note that despite each GPU having 22GB of memory available,
DeepSpeed fails to scale to a larger model size. The reason is that
since DeepSpeed statically partitions the model states across GPUs
and CPUs, the maximum model scale will be limited by the CPU
memory. In contrast, to fully exploit this available memory, Angel-
PTM uses the dynamic memory management that moves partial
model states into GPU memory to achieve larger model scale. Re-
garding training efficiency, specifically the samples/s column in
Table 5, the maximum trhoughput of DeepSpeed is 7.61 samples/s,
while that of Angel-PTM is 10.99 samples/s, which is a 44% im-
provement. Furthermore, the training efficiency of Angel-PTM
for the largest supported GPT model, 55B, is 3.34 samples/s. These
analyses can also be adapted to T5 models, where Angel-PTM
achieves 114.8% improvement in terms of max model scale as well
as 96.7% improvement in terms of throughput performance.

In summary, compared with DeepSpeed, Angel-PTM can (1)
support larger scale of models using the same hardware resources
and (2) achieve higher training efficiency for the same model.

6.3 Throughput

To verify the training efficiency of Angel-PTM, we assess the
throughput of each competitor. Specifically, we trained a series of
GPT models with the maxmium batch size on 8 GPUs and 32 GPUs
respectively, and the sizes of GPT models range from 1.7B to 120B.
To provide a clear comparison between the systems, we normalize
the throughput of each system w.r.t. DeepSpeed. The results are
presented in Figure 6.

In the configuration of 1x8 GPUs, Angel-PTM consistently out-
performs the other systems in terms of training efficiency, except
for the 1.7B models. This is because the 1.7B model is small enough
to be accommodated by a single GPU, and therefore the vanilla data
parallelism (without ZeRO) achieves the best performance, which
is also the strategy adopted by Megatron-LM. Since Angel-PTM in-
volves extra overhead on memory management even when memory
movement is not needed, it runs slightly slower than Megatron-LM

3790



1.00 1.00 1.00 
1.00 1.00 1.00 

1.00 

1.25 
1.49 

0.96 0.78 0.63 

1.22 

1.70 

1.47 

1.11 

1.39 

1.19 

1.40 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

1.7B 13B 30B 120B 1.7B 13B 30B 120B

Sp
ee

d-
U

p 
 O

ve
r D

ee
pS

pe
ed

DeepSpeed Megatron-LM Angel-PTM

O
O

M

O
O

M

1 x 8 GPUs 4 x 8 GPUs

O
O

M

Figure 6: Compare Angel-PTM with other famous pre-

trained systems on a series of GPT models.

(a 2.4% slowdown). On the 1.7B and 13B models, both Angel-PTM
and Megatron-LM outperform DeepSpeed. This is reasonable as
DeepSpeed statically partitions models states between the CPU
memory and the GPUmemory, leading to redundant memorymove-
ments. However, as the model size increased to 30B, Megatron-LM
fails with the out-of-memory error due to the limited GPU mem-
ory and Angel-PTM still outperforms DeepSpeed because of our
fine-grained life-time based scheduling method, which partitioned
the model states to CPU on demand and scheduled the movements
at the right time.

In the configuration of 4x8 GPUs, the performance of Angel-
PTM is still the best. With more GPUs, Megatron-LM is able to
support the 30B model, while DeepSpeed and Angel-PTM are fur-
ther able to support the 120B model thanks to the ZeRO technique.
Both Angel-PTM and DeepSpeed outperform Megatron-LM be-
cause they can train with larger micro batch sizes.

In summary, the experimental results demonstrate that Angel-
PTM consistently outperforms both DeepSpeed and Megatron-
LM in terms of throughput performance. Specifically, Angel-PTM
achieves an average of 35.4% and up to 70% improvement over the
state-of-the-art hierarchical training system, DeepSpeed. It also
outperforms the state-of-the-art hybrid parallelism training system,
Megatron-LM, by an average of 38.9% and up to 88.9%.

6.4 Scalability

To verify the scalability of Angel-PTM, we conduct evaluations on
two extremely large-scale Transformer models, which are GPT3-
175B and T5-MoE-1.2T.

Evaluations on GPT3-175B. The GPT3-175B model is first
proposed by OpenAI [8], which is trained on an enormous amount
of text data and perfroms a range of NLP tasks, such as language
translation and question answering. It also acts as the foundation
model for ChatGPT [1], which is a groundbreaking achievement in
the field of artificial intelligence. Therefore, it is crucial to verify
our system’s ability and scalability to support this model.

The configuration of GPT-175B is detailed in Table 4 and we
illustrate the throughput of training this model on different number
of GPUs in Figure 7. Our results demonstrate that Angel-PTM
achieves super-linear scalability when training the GPT-175Bmodel.
We observe a throughput of 11.68 samples/s on 32 nodes (256 GPUs),
which increases to 36.46 samples/s on 96 nodes (768 GPUs), resulting
in a 3.12× speed-up. As the number of GPUs increases, the model
states are distributed across more GPUs. This allows us to increase

149.1 

288.7 

560.8 

1030.0 

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

32 64 96 128 160 192 224 256

Sa
m

p
le

s/
s

Number of GPUs

11.68

19.78

25.79

31.84
33.96

36.46

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

256 320 384 448 512 576 640 704 768

Sa
m

p
le

s/
s

Number of GPUs

Figure 7: Scalability on training GPT3-175B models.

the global batch size, which in turn fully utilizes the available GPU
memory. Moreover, the optimizer updating process is parallelized
across more CPUs, and data movements are parallelized across
more PCIes. These factors attribute to the super-linear scalability
and higher training throughput.

The results indicate that our system can take full advantage of
the increasing number of GPUs and achieve efficient parallelization
of data movements on PCIe, which is critical for training large
models in a timely and cost-effective manner.

149.1 

288.7 

560.8 

1030.0 

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

32 64 96 128 160 192 224 256

Sa
m

p
le

s/
s

Number of GPUs

11.68

19.78

25.79

31.84
33.96

36.46

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

256 320 384 448 512 576 640 704 768

Sa
m

p
le

s/
s

Number of GPUs

Figure 8: Scalability on training T5-MoE models.

Evaluations on T5-MoE-1.2T. The T5-MoE model is another
well-known line of largemodels that employs a sparseMoE architec-
ture and was first proposed by Google as Switch-Transformer [15,
30]. MoE models can significantly reduce training cost by routing
input data to only a small number of expert networks. Angel-PTM
trained T5-MoE models using expert parallelism [40], where expert
parameters within an MoE layer are sharded among all GPUs while
non-MoE parameters are duplicated.

The T5-MoE-1.2T model has 2304 experts per MoE layer, and
the number of experts per GPU per MoE layer is fixed at 9 to
achieve different model sizes when varying the number of GPUs.
For example, the T5-MoE model trained on 128 GPUs has 1152
experts per MoE layer. The detailed configuration is presented in
Table 4. We summarize the results in Figure 8, which indicates that
Angel-PTM has near-linear scalability when training the T5-MoE
model. With more servers involved in training, more input data
will be feed into the all-to-all communication of the MoE layer,
which can result in throughput degradation. Thus, the scalability
on T5-MoE-1.2T is lower than that on GPT3-175B.

6.5 Advancing Support for Extreme Model Scale

As noted by Kaplan et al. [28], larger models tend to outperform
smaller ones, which has motivated many researchers to increase
the size of their models continuously. In this study, we evaluate the
ability of Angel-PTM in supporting extreme-scale models, using a
scaled-up version of the T5-MoE model with 10T parameters.

3791



Table 6: Training on Large-scale T5-MoE model with SSD .

System #Params #GPUs Samples/s Valid Loss↓

AngelPTM 1T 64 37.26 1.124
10T 576 317.82 0.853

+ Lock-Free 10T 576 942.31 0.861

We conduct pre-training of T5-MoE-1T and T5-MoE-10T based
on an industrial text dataset. To support extreme model scales, we
utilize the SSD storage into training. The experimental results are
presented in Table 6, including training efficiency in samples/s and
model quality in terms of validation loss. Angel-PTM achieves
a throughput of 37.26 samples/s using 64 GPUs on the T5-MoE-
1T model. When we scale up the model to 10T by increasing the
number of experts, Angel-PTM achieves a throughput of 317.72
samples/s with 64 GPUs, demonstrating the near-linear scalability.

Moreover, when introducing SSD training, the I/O bandwidth of
SSD significantly slows down the overall training speed. By lever-
aging the Lock-Free Updating Mechnaism in Section 6.5 to perform
asynchronous updates between CPUs and GPUs, Angel-PTM sig-
nificantly improves the overall training throughput. To be specific,
for the T5-MoE-10T model, the training throughput increased from
317.82 samples/s to 962.31 samples/s when the lock-free mechanism
is enabled, achieving a speedup of 2.96×. Meanwhile, experimental
results on the validation loss verify that this mechanism has little
impact to the model quality.

7 RELATEDWORK

Distributed Training System. Many well-known systems has
been designed and implemented for large-scale model training.
DeepSpeed proposed the ZeRO optimization on data parallelism,
which evenly partitions model states across all devices with dif-
ferent optimization levels, including optimizer states (e.g., 32-bit
parameter, the first and second moments of Adam [29]) in stage 1,
gradients in stage 2 and 16-bit parameters in stage 3 [47]. However,
this approach introduces extra communication to obtain the full
parameters, leading to more time overheads for higher optimization
levels, although they result in more memory reductions. Megatron-
LM proposed a novel approach called tensor-parallelism, which is
easy to implement and efficient in executing on highly connected
GPUs such as A100 with NVLink-3.0 [38]. Galvatron proposed an
efficient algorithm for finding the optimal strategy to combine data-
parallelism, model-parallelism, pipeline-parallelism and ZeRO opti-
mization together [35, 59]. ZeRO can not be used for scaling large
models due to the limited GPU memory and the model parallelism
techniques, including Megatron-LM and Galvatron, are difficult to
deploy in industry settings due to their complexity. Angel-PTM
adresses these challenges by integrating ZeRO with hierarchical
memory, which achieves flexiblity as well as good scalability.

Heterogeneous Training System. With the evolution of deep
learning, the type of models being trained has also evolved from
early CNN-based models [21] to current transformer-based mod-
els [8, 11, 45, 46]. For CNN-based models, the memory usage is
mainly occupied by activations, and research is mainly focused on
optimizing single-GPU memory. Wang et al. [58] proposed evicting
some activations by either recomputing them or offloading them

to CPU based on cost analysis. Nie et al. [41] proposed the tensor-
splitting optimization for fine-grainedmemorymanagement, which
can help break memory bottlenecks and lead to more efficient exe-
cution plans. Transformer-based models have high memory usage
due to their large model states, and research efforts have focused
on optimizing GPU memory for distributed training. Ren et al. [50]
proposed offloading optimizer computations andmodel states to the
CPU to save GPUmemory, and further combined this with a unique
optimal offloading strategy and ZeRO-powered data parallelism.
Rajbhandari et al. [49] introduced SSD storage into training and
proposed a bandwidth-centric partitioning algorithm to distribute
the model among all devices. Fang et al. [14] dynamically man-
aged the model states during training via a chunk-based memory
manager. Different from existing systems, Angel-PTM employs a
fine-grained memory management via Page to reduce the memory
fragments and improve the training efficiency.

GPU Memory Management. Many memory management op-
timizations have been proposed to pre-allocate most GPU memory
and then manage the memory themselves, including paging [5],
replacement caching [57] and memory pool [62]. Mosaic [5] pro-
vided application-transparent support for multiple page sizes to
page-in and page-out. MultiQx-GPU [57] designed a cost-driven
replacement policy for efficient executions of concurrent queries in
GPU databases. Zhang et al. [62] proposed a memory pool, CNMeM,
which utilizes lifetime semantics to reduce memory fragments and
designed a heuristic algorithm to simplify the optimization prob-
lem. However, studies on paging, replacement caching, and unified
memory address are not designed for deep learning training and do
not utilize the special nature of tensor access patterns, while others
about memory pool do not consider CPU memory. Angel-PTM
utilized the life-time information to improve overall performance,
which reduced the fragements and improve the overlap between
different resources.

8 CONCLUSION

This work introduced Angel-PTM, an easy-to-use and highly-
efficienct deep learning systems for pre-training and fine-tuning
tasks in Tencent. To be user-friendly and seamlessly scalable, we
designed Angel-PTM with the basis of data parallelism, parameter
sharding, and hierarchical memory. To fully utilize the memory and
bandwidth during training, a Page abstraction was introduced to
enable the fine-grained memory management along with a unified
scheduling method was proposed to holistically manage the key
operations during training. Moreover, we integrated the SSD stor-
age to boost the pre-trained models to extreme scale and developed
a lock-free updating mechanism to address the SSD I/O bandwidth
bottleneck. Empirical results showed that Angel-PTM outperforms
existing systems in terms of both maximum supported model scale
and training throughput.

9 ACKNOWLEDGMENTS

This work is supported by the National Key Research and Devel-
opment Program of China (No. 2020AAA0105200), the National
Natural Science Foundation of China (No. 61832001 and U22B2037)
and PKU-Tencent joint research Lab. Fangcheng Fu and Bin Cui are
the corresponding authors.

3792



REFERENCES

[1] 2022. ChatGPT: Optimizing Language Models for Dialogue. https://openai.com/
blog/chatgpt/.

[2] 2022. CLUE Benchmark. https://www.cluebenchmarks.com/rank.html.
[3] 2022. Overall DGX A100 System Architecture. https://www.microway.com/hpc-

tech-tips/dgx-a100-review-throughput-and-hardware-summary/.
[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. InUSENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 265–283.

[5] Rachata Ausavarungnirun, Joshua Landgraf, VanceMiller, Saugata Ghose, Jayneel
Gandhi, Christopher J. Rossbach, and Onur Mutlu. 2017. Mosaic: a GPU memory
manager with application-transparent support for multiple page sizes. In Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 136–150.

[6] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[7] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[9] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[10] Ali Davoudian, Liu Chen, Hongwei Tu, and Mengchi Liu. 2021. A workload-
adaptive streaming partitioner for distributed graph stores. Data Science and
Engineering 6 (2021), 163–179.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In The North American Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, 4171–4186.

[12] Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition. In IEEE international con-
ference on acoustics, speech and signal processing. IEEE, IEEE, 5884–5888.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16Words: Transformers for Image Recognition at Scale. In International
Conference on Learning Representations. OpenReview.net.

[14] Jiarui Fang, Zilin Zhu, Shenggui Li, Hui Su, Yang Yu, Jie Zhou, and Yang You. 2022.
Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory
Management. IEEE Transactions on Parallel and Distributed Systems 34, 1 (2022),
304–315.

[15] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Transformers:
Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. Journal
of Machine Learning Research 23, 120 (2022), 1–39.

[16] Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang,
and Bin Cui. 2020. Don’t Waste Your Bits! Squeeze Activations and Gradients for
Deep Neural Networks via TinyScript. In International Conference on Machine
Learning, Vol. 119. PMLR, 3304–3314.

[17] Fangcheng Fu, Xupeng Miao, Jiawei Jiang, Huanran Xue, and Bin Cui. 2022.
Towards Communication-efficient Vertical Federated Learning Training via
Cache-enabled Local Update. Proceedings of the VLDB Endowment 15, 10 (2022),
2111–2120.

[18] Fangcheng Fu, Yingxia Shao, Lele Yu, Jiawei Jiang, Huanran Xue, Yangyu Tao,
and Bin Cui. 2021. VF2Boost: Very Fast Vertical Federated Gradient Boosting for
Cross-Enterprise Learning. In International Conference on Management of Data.
ACM, 563–576.

[19] Jia-Ke Ge, Yan-Feng Chai, and Yun-Peng Chai. 2021. WATuning: a workload-
aware tuning system with attention-based deep reinforcement learning. Journal
of Computer Science and Technology 36, 4 (2021), 741–761.

[20] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W Mahoney, and Kurt Keutzer.
2021. AI and Memory Wall.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE conference on computer vision and pattern
recognition. 770–778.

[22] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[23] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks using pipeline parallelism.
Advances in neural information processing systems 32 (2019), 103–112.

[24] Sylvain Jeaugey. 2017. Nccl 2.0. In GPU Technology Conference (GTC), Vol. 2.
[25] Zhong Ji, Kexin Chen, Yuqing He, Yanwei Pang, and Xuelong Li. 2022. Hetero-

geneous memory enhanced graph reasoning network for cross-modal retrieval.
Science China Information Sciences 65, 7 (2022), 172104.

[26] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. 2018. SketchML: Accelerat-
ing DistributedMachine Learning with Data Sketches. In International Conference
on Management of Data. 1269–1284.

[27] Youhe Jiang, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, and Bin Cui. 2023. OSDP:
Optimal Sharded Data Parallel for Distributed Deep Learning. arXiv preprint
arXiv:2209.13258 (2023).

[28] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[29] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations.

[30] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2021. GShard:
Scaling Giant Models with Conditional Computation and Automatic Sharding.
In International Conference on Learning Representations.

[31] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In USENIX Symposium
on Operating Systems Design and Implementation. 583–598.

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 10012–10022.

[33] Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma,
and Bin Cui. 2021. Heterogeneity-Aware Distributed Machine Learning Training
via Partial Reduce. In International Conference on Management of Data. ACM,
2262–2270.

[34] Xupeng Miao, Xiaonan Nie, Hailin Zhang, Tong Zhao, and Bin Cui. 2023. Hetu:
A highly efficient automatic parallel distributed deep learning system. Science
China Information Sciences 66, 1 (2023), 1–2.

[35] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang,
and Bin Cui. 2022. Galvatron: Efficient Transformer Training over Multiple GPUs
Using Automatic Parallelism. arXiv preprint arXiv:2211.13878 (2022).

[36] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao,
and Bin Cui. 2021. HET: scaling out huge embedding model training via cache-
enabled distributed framework. Proceedings of the VLDB Endowment 15, 2 (2021),
312–320.

[37] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In International Con-
ference on Learning Representations. OpenReview.net.

[38] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. In International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 1–15.

[39] Xiaonan Nie, Xupeng Miao, Shijie Cao, Lingxiao Ma, Qibin Liu, Jilong Xue,
Youshan Miao, Yi Liu, Zhi Yang, and Bin Cui. 2021. Evomoe: An evolutional
mixture-of-experts training framework via dense-to-sparse gate. arXiv preprint
arXiv:2112.14397 (2021).

[40] Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue, Lingxiao Ma,
Gang Cao, and Bin Cui. 2023. FlexMoE: Scaling Large-scale Sparse Pre-trained
Model Training via Dynamic Device Placement. Proceedings of the ACM on
Management of Data 1, 1 (2023), 1–19.

[41] Xiaonan Nie, Xupeng Miao, Zhi Yang, and Bin Cui. 2022. TSPLIT: Fine-grained
GPU Memory Management for Efficient DNN Training via Tensor Splitting. In
International Conference on Data Engineering. IEEE, 2615–2628.

[42] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155 (2022).

[43] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[44] Yun Peng, Byron Choi, and Jianliang Xu. 2021. Graph learning for combinatorial
optimization: a survey of state-of-the-art. Data Science and Engineering 6, 2
(2021), 119–141.

[45] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAI
blog 1, 8 (2019), 9.

[46] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of

3793

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://www.cluebenchmarks.com/rank.html
https://www.microway.com/hpc-tech-tips/dgx-a100-review-throughput-and-hardware-summary/
https://www.microway.com/hpc-tech-tips/dgx-a100-review-throughput-and-hardware-summary/


Machine Learning Research 21 (2020), 1–67.
[47] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani

Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed-
MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-
Generation AI Scale. In International Conference on Machine Learning. PMLR,
18332–18346.

[48] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parametermodels. In International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–16.

[49] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 1–14.

[50] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-Offload:
Democratizing Billion-Scale Model Training.. In USENIX Annual Technical Con-
ference. USENIX Association, 551–564.

[51] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe
Jenatton, André Susano Pinto, Daniel Keysers, and Neil Houlsby. 2021. Scaling
vision with sparse mixture of experts. Advances in Neural Information Processing
Systems 34 (2021), 8583–8595.

[52] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
IEEE, 10684–10695.

[53] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. 2022. Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative languagemodel. arXiv preprint arXiv:2201.11990
(2022).

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[55] Danshi Wang, Chunyu Zhang, Wenbin Chen, Hui Yang, Min Zhang, and Alan

Pak Tao Lau. 2022. A review of machine learning-based failure management in
optical networks. Science China Information Sciences 65, 11 (2022), 211302.

[56] Guibin Wang, YiSong Lin, and Wei Yi. 2010. Kernel fusion: An effective method
for better power efficiency on multithreaded GPU. In International Conference on
Green Computing and Communications. IEEE, IEEE, 344–350.

[57] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding,
and Xiaodong Zhang. 2014. Concurrent analytical query processing with GPUs.
Proceedings of the VLDB Endowment 7, 11 (2014), 1011–1022.

[58] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU memory
management for training deep neural networks. In ACM SIGPLAN symposium
on principles and practice of parallel programming. ACM, 41–53.

[59] Yujie Wang, Youhe Jiang, Xupeng Miao, Fangcheng Fu, Xiaonan Nie, and Bin Cui.
2023. Improving Automatic Parallel Training via Balanced Memory Workload
Optimization. arXiv preprint arXiv:2307.02031 (2023).

[60] Yongqiang Wang, Abdelrahman Mohamed, Due Le, Chunxi Liu, Alex Xiao, Jay
Mahadeokar, Hongzhao Huang, Andros Tjandra, Xiaohui Zhang, Frank Zhang,
et al. 2020. Transformer-based acoustic modeling for hybrid speech recognition.
In International Conference on Acoustics, Speech and Signal Processing. IEEE, IEEE,
6874–6878.

[61] Hua-Peng Wei, Ying-Ying Deng, Fan Tang, Xing-Jia Pan, and Wei-Ming Dong.
2022. A Comparative Study of CNN-and Transformer-Based Visual Style Transfer.
Journal of Computer Science and Technology 37, 3 (2022), 601–614.

[62] Junzhe Zhang, Sai Ho Yeung, Yao Shu, Bingsheng He, and Wei Wang. 2019.
Efficient memory management for gpu-based deep learning systems. arXiv
preprint arXiv:1903.06631 (2019).

[63] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. 2022.
Alpa: Automating Inter-and {Intra-Operator} Parallelism for Distributed Deep
Learning. InUSENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 559–578.

3794


	Abstract
	1 Introduction
	2 Background
	2.1 Memory Management in Deep Learning
	2.2 Memory Footprints of Transformer
	2.3 Distributed Training

	3 Motivations and System Design
	3.1 Use Cases in Tencent
	3.2 System Design

	4 Angel-PTM
	4.1 Page-Based Memory Organization
	4.2 Unified Scheduler
	4.3 Lock-Free Updating Mechanism

	5 Implementation
	6 Experimental Evaluation
	6.1 Experiment Setup
	6.2 Model Scale
	6.3 Throughput
	6.4 Scalability
	6.5 Advancing Support for Extreme Model Scale

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

