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ABSTRACT
This paper presents ScalarDB, a universal transaction manager
that achieves distributed transactions across multiple disparate
databases. ScalarDB provides a database-agnostic transaction man-
ager on top of its database abstraction; thus, it achieves transac-
tions spanning various databases without depending on the trans-
actional capability of underlying databases. ScalarDB is based on
several research works and extended to provide a strong correctness
guarantee (i.e., strict serializability), further performance optimiza-
tions, and several critical mechanisms for productization. In this
paper, we describe the design and implementation of ScalarDB. We
also present evaluation results showing that ScalarDB achieves
database-spanning transactions with reasonable performance and
near-linear scalability without sacrificing correctness. Finally, we
share some case studies and lessons learned while building and
running ScalarDB.
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1 INTRODUCTION
One size does not fit all [61] is becoming common sense in data
management systems. Major cloud vendors offer several purpose-
built database products to meet various users’ needs. For instance,
Amazon AWS offers more than 10 database products [58], such
as Aurora (relational) [66], DynamoDB (key-value) [15], Neptune
(graph) [56], and QLDB (ledger) [57]. Unsurprisingly, there are
many cases where an application uses multiple databases to provide
its services.

A microservice architecture [7, 32, 49] accelerates the trend of
managing multiple (potentially disparate) databases. Each microser-
vice of a single application is encouraged to use an isolated database,
which is selected based on the service’s use cases and the developers’
experiences for better maintainability and productivity. This archi-
tectural style is likely to make an application have different kinds
of databases or multiple database instances of the same database.
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Managing multiple disparate databases is not uncommon in
enterprise systems as well. An enterprise comprises several organi-
zations, departments, and business units to support agile business
operations. This leads to siloed information systems; different orga-
nizations manage different applications at disparate locations, and
the applications use different databases [27, 62].

Obviously, a federation of multiple disparate databases is at-
tractive for such applications to mitigate the complexity of deal-
ing with the databases separately. Federated database systems and
multi-database systems [4, 28, 43, 59] have been explored since
around the 1990s to address the goal. Due to the increasing deploy-
ments of multiple disparate databases, there are also new demands
[14, 16, 60], such as supporting various query notations, provid-
ing all the functionalities of underlying databases, and providing
distributed transactions across multiple databases that do not sup-
port the same transaction model. The database community recently
named such new federated database systems polystores [5, 14, 60]
to distinguish them from previous federated database systems.

In this paper, we present a universal transaction manager for
polystores called ScalarDB, which achieves distributed transactions
across multiple disparate databases. Specifically, ScalarDB provides
a database-agnostic transaction manager on top of its database ab-
straction; thus, it achieves transactions spanning multiple disparate
databases without depending on the transactional capability of un-
derlying databases. ScalarDB is based on several research works
and extended to provide a strong correctness guarantee (i.e., strict
serializability [30]), further performance optimizations, and several
critical mechanisms for productization.

ScalarDB has been built to meet several key design goals: data-
base agnosticism as a primary goal, strong correctness, reason-
able performance, high scalability, and high availability. Specifi-
cally, ScalarDB provides a database-agnostic property and can run
transactions not only on major relational database systems such as
MySQL, MariaDB, PostgreSQL, Oracle Database, and Microsoft SQL
Server but also NoSQL databases such as Apache Cassandra, Ama-
zon DynamoDB, and Azure Cosmos DB while addressing the other
design goals. Therefore, for example, it achieves scalable, strict
serializable ACID transactions spanning PostgreSQL and Amazon
DynamoDB, which cannot be easily realized with existing solutions.

Existing off-the-shelf solutions aiming to achieve distributed
transactions over multiple disparate databases do not fully match
our design goals. Oracle Tuxedo [48], Atomikos [2], and Seata (XA
mode) [54] are middleware that manage distributed transactions
over multiple databases based on X/Open XA [24], which is a stan-
dard specification for allowing multiple independent resources to
participate in a single and distributed transaction by using the two-
phase commit (2PC) protocol [22]. Although the two-phase commit
protocol based on XA can work on XA-compliant databases, such as
major relational databases [25, 45–47], it cannot run transactions on
other databases, such as NoSQL databases [18, 19, 44, 55] and recent
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distributed SQL engines [21, 31, 63, 69] that are not XA compliant.
Making databases XA compliant is not necessarily straightforward
or impractical due to the rigid XA specification. Several frame-
works [2, 54] help users to implement other approaches, such as
Try-Confirm/Cancel (TCC) [29] and Saga [20], to run distributed
transactions over multiple databases in a non-strict and lightweight
way. These approaches could work on a wider range of databases.
However, they only guarantee eventual consistency and weaker
isolation than serializable because they realize an application-level
transaction by using multiple database-level transactions; the ap-
plications must deal with transaction anomalies by themselves.

ScalarDB is a production-grade system that has been used for
real-world applications. It is also cloud-agnostic and designed for
cloud-native applications. ScalarDB is provided as a Docker con-
tainer and can easily be deployed to various environments such as
Kubernetes. The source code for the core components of ScalarDB
is available on GitHub [51] under the Apache 2.0 License.1

This paper makes the following contributions:
• We describe the design and implementation of ScalarDB, a uni-

versal transaction manager that achieves database-agnostic and
database-spanning transactions. Specifically, we describe how
ScalarDB has incorporated and extended previous research ef-
forts to build a practical and cloud-native product.

• We present evaluation results showing that ScalarDB achieves
database-spanning transactions with reasonable performance
and near-linear scalability. We also show ScalarDB’s database-
agnostic property by evaluating ScalarDB on several database
systems.

• We share a couple of case studies of ScalarDB. We also share
lessons learned not only from the experiences of building ScalarDB
over the last five years but also from our production experiences.
The remainder of the paper is organized as follows. Section 2

discusses our design goals and key challenges of ScalarDB. Section
3 introduces an overview of ScalarDB. Section 4 discusses how
ScalarDB guarantees strong correctness. Section 5 discusses how
ScalarDB optimizes performance. Section 6 discusses several critical
mechanisms of ScalarDB for productization. Section 7 presents the
results of our evaluation. Section 8 presents ScalarDB case stud-
ies. Section 9 presents lessons learned while building and running
ScalarDB and some future work. Finally, Section 10 concludes the
paper.

2 DESIGN GOALS AND CHALLENGES
This section introduces our design goals for transaction manage-
ment that achieves distributed transactions spanning multiple dis-
parate databases. In this paper, we call these transactions global
transactions. Then, we provide possible approaches for achieving
global transactions and share our design choice for ScalarDB. Lastly,
we summarize the challenges we address with ScalarDB.

2.1 Design Goals
After carefully considering our customers’ feedback, we set the fol-
lowing design goals to make global transactions practically usable.

1The source code of some other components is not publicly available and is licensed
under a commercial license.
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Figure 1: Design choices for achieving global transactions.

Database Agnosticism. Database-agnosticism is a primary goal
for achieving global transactions. Global transactions should be
able to span not only relational databases but also NoSQL databases
and other types of databases. This is the top-priority goal based on
our customers’ demands.2
Strong Correctness. Correctness is an essential property in trans-
actional systems. Specifically, distributed transactions should be
ACID compliant with a strict serializability guarantee for the intu-
itiveness of results and ease of development.
Reasonable Performance. Although managing global transac-
tions is non-trivial work, it should not be a limiting factor of overall
transaction performance.
High Scalability. Scalability is one of the common key factors in
distributed transactional systems. Specifically, transaction perfor-
mance should scale as the performances of underlying databases
scale.
High Availability. Availability is also one of the common key
factors in distributed transactional systems. Managing global trans-
actions should be achievable without a single point of failure, and
its availability should be increased as more computing resources
(e.g., nodes) are used.

2.2 Design Choices
The approaches for achieving global transactions can be categorized
in two ways: multi-level transaction management and single-level
transaction management, as shown in Figure 1. In both approaches,
there is a coordination process (transaction coordinator or coordi-
nator) that manages global transactions with a two-phase commit
protocol or its extended variants, and there are databases that par-
ticipate in the global transactions. In this section, we clarify the
advantages and disadvantages of the approaches and share our
decision based on the design goals.
Multi-level transaction management. The multi-level transac-
tion management (MultiTM) approach (Figure 1(a)) achieves global
transactions by coordinating transactions at the coordinator in co-
operation with the transaction managers of underlying databases.
Therefore, there are abstractions (e.g., specifications) in both the
coordinator and underlying databases for cooperation. Examples of

2We show one of our customer case studies that uses global transactions in Section 8.
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systems that follow this approach are Oracle Tuxedo [48], Atomikos
[2], and Seata (XA mode) [54], which are all based on X/Open XA
[24].

The advantages of theMultiTM approach are as follows: (1) There
is a standard specification such as X/Open XA, along with some
real-world products (e.g., Oracle Tuxedo) based on the specification.
Moreover, there is a long history of research on the approach [4,
43, 59]. Therefore, we have already learned some lessons to exploit.
(2) Optimizing transaction performance is straightforward. That is
because underlying databases do most of the concurrency control
work for global transactions and the optimization of transaction
performance for those underlying databases would benefit global
transaction performance. (3) Local transactions, which only go to
one database, can naturally go to the database directly without
coordinating with global transactions because global transactions
use the concurrency control mechanism of underlying databases.

On the other hand, the approach has some disadvantages: (1) The
approach could force underlying databases to meet strict require-
ments. For example, XA requires underlying databases to be ACID
compliant with some specific implementation for concurrency con-
trol. This constraint makes it hard to support various databases,
such as NoSQL databases, that do not guarantee ACID. (2) The ap-
proach is invasive. Specifically, it forces underlying databases to be
modified or enhanced to follow the specification of a coordination
protocol. Therefore, the approach could be less attractive or too
much of a burden for some databases. In our research, we found
that many recent distributed databases [21, 31, 63, 69] are ACID
compliant but not XA compliant.
Single-level transaction management. The single-level trans-
action management (SingleTM) approach (Figure 1(b)) achieves
global transactions by managing and coordinating transactions
only at the coordinator and does not rely on the concurrency con-
trol mechanism of underlying databases. The approach typically
and necessarily abstracts underlying databases in the coordinator
layer to achieve global transactions. Examples of systems that fol-
low this approach are Deuteronomy [40, 41] and Cherry Garcia
[12].

The advantages of the approach are as follows: (1) The approach
requires underlying databases to meet weaker requirements than
the ones (i.e., ACID compliance) for the MultiTM approach. For ex-
ample, Deuteronomy andCherryGarcia require underlying databases
to support atomic (linearizable [30]) single-record operation and
durability, which are naturally achieved in single-instance relational
databases and supported by most productized NoSQL databases
(e.g., Cassandra, HBase, MongoDB, Redis, DynamoDB, and Cos-
mos DB). Therefore, the approach could support various types of
databases. (2) The approach is non-invasive, making it possible to
add support for new databases without modifying them at all.

There are also some disadvantages: (1) There are no existing real-
world products; thus, there would not be enough lessons learned
to productize the approach for real-world applications. Although
several research prototypes using this approach exist, they provide
a limited isolation guarantee. For example, the Cherry Garcia proto-
col depends on a reliable clock (e.g., TrueTime [10]) and guarantees
only Snapshot Isolation [3]. Deuteronomy guarantees serializable
isolation but only in a limited way. This is because having multi-
ple transaction managers to achieve better performance requires a

dataset to be partitioned disjointly for each transactionmanager; i.e.,
each transaction manager cannot span multiple partitions in such
a case. (2) It is not straightforward to optimize transaction perfor-
mance globally because the approach achieves global transactions
on the database abstraction. Particularly, the detailed information
(e.g., data location, data layout) of underlying databases is abstracted
away, so the transaction protocol cannot utilize such information
to optimize performance. (3) Local transactions always need to
pass the coordinator even though a target database is transactional
because the coordinator achieves global transactions.
Our approach with ScalarDB. After a careful study of the differ-
ent design choices, we decided to go with the SingleTM approach
and try to address the disadvantages of the approach as much as
possible. Specifically, we chose the Cherry Garcia protocol as one
of the SingleTM approaches and extended the protocol.

The main reason for this design choice is that the requirements
for theMultiTM approach are too strict for underlying databases. Be-
cause of this, it is essentially difficult to achieve a database-agnostic
property, which is our key design goal. Moreover, although the
SingleTM approach has several disadvantages, we believe we could
develop solutions to mitigate them.

2.3 Challenges
Our challenge with ScalarDB is achieving the aforementioned de-
sign goals by using the SingleTM approach, which achieves an
excellent database-agnostic property. Therefore, we address the
following specific challenges to meet the rest of the design goals:
• Provide a strict serializability guarantee without depending on a

reliable clock or assuming how data is partitioned.
• Enhance transaction performance without sacrificing correct-

ness.
• Achieve high scalability and high availability while providing

strong correctness.
Moreover, we clarify and fill the critical missing pieces of the Sin-
gleTM approach for productization to make ScalarDB production
ready for real-world applications and use cases. For example, the
research work based on the SingleTM approach has neither ex-
plored nor devised a clear and correct way to take transactionally
consistent backups over multiple databases. For the limitation of
local transactions, we leave it as an open challenge.

3 SCALARDB OVERVIEW
This section describes an overview of ScalarDB. It first describes
the architecture and then the basic transaction protocol, which
employs the Cherry Garcia protocol [12]. ScalarDB is written in
Java, and its core components are open-sourced under the Apache
2.0 License [51].

3.1 Architecture
Figure 2 shows the architecture of ScalarDB. The core components
of ScalarDB consist of four layers: a user interfaces layer, trans-
action manager layer, database abstraction layer, and shim layer.
The user interfaces layer defines several interfaces for users. The
transaction manager layer realizes global transactions in a database-
agnostic way using the database abstraction layer. The database
abstraction layer abstracts underlying databases with a data model
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Figure 2: ScalarDB architecture.

and interfaces. The shim layer implements database-specific shims
based on the abstraction. We describe more details in each layer
later in this section.

ScalarDB is provided in two ways, as described in Figure 2. One
way is called client mode (Figure 2(a)). Client mode provides a client
library, which holds the core components. The client library is usu-
ally integrated with application servers, where business logic is
defined. The other way is called server mode (Figure 2(b)(c)). Server
mode provides a server component called ScalarDB server and a
client library for the server. In this case, the server holds the core
components. ScalarDB servers are implemented with gRPC [26] so
that many programming languages can potentially interact with
ScalarDB servers. One important thing to note is that although
client mode is the architecture that the original Cherry Garcia em-
ploys, we use only server mode in production since it is essentially
difficult to implement some critical mechanisms for productization
in client mode. We discuss more details about the mechanisms for
productization in Section 6.
Database Abstraction and Shim. The database abstraction layer
abstracts an underlying database as a multi-dimensional map, an
extended key-value model similar to the Bigtable [8] data model. In
the abstraction, a record (i.e., ScalarDB record) comprises partition
keys, clustering keys, and a set of columns. The combination of
partition and clustering keys form a primary key, and a primary
key uniquely maps a record. Records with the same partition keys
form a partition and are assumed to be sorted by clustering keys.
In addition, the partitions are assumed to be distributed by hashing.
We chose the abstraction to achieve broad applicability for various
databases.3 ScalarDB manages one multi-dimensional map as a
table and a set of tables with a namespace.

The database abstraction requires each underlying database to
provide at least the following capabilities:
• Linearizable read and conditional mutations (write and delete)

on a single database record.
• Durability of written database records.
• Ability to store arbitrary data in addition to application data in

each database record.

3If we chose a more expressive data model for the ScalarDB abstraction, we could
not properly implement a shim for a database based on a simpler data model due
to the capability gap. Similarly, if we chose range partitioning as the abstraction for
data distribution, we could not practically implement a shim for a database based on
hash-partitioning because the database cannot efficiently support range queries.

The requirements are the same as the ones of the Cherry Garcia
protocol [12] because the transaction protocol of ScalarDB extends
it. Although the requirements may seem strong, most databases
meet them. ScalarDB currently provides shims for major relational
database systems such as MySQL, MariaDB, PostgreSQL, Oracle
Database, Microsoft SQL Server, and SQLite and NoSQL databases
such as Apache Cassandra, Amazon DynamoDB, and Azure Cos-
mos DB. We implemented these shims by using database-specific
libraries or query languages. We plan to create new shims for a
wider range of data management systems such as MongoDB and
Redis.
Transaction Manager. The transaction manager layer coordi-
nates global transactions by using the database abstraction. Since
ScalarDB takes the SingleTM approach as described in Section 2.2,
ScalarDB does not depend on the concurrency control capability
of underlying databases. Therefore, it achieves transactions out-
side of databases. We will describe more details about the protocol
in Section 3.2 and how we have extended the protocol to address
some of the aforementioned challenges of the SingleTM approach
in Section 4 and 5. Note that ScalarDB transactions do not support
constraints such as referential integrity, but we plan to implement
them in future work.
User Interfaces. The user interfaces layer provides a CRUD in-
terface to users; applications create and update a record with a
put operation, read a record with a get operation, read a partition
with a scan operation,4 and delete a record with a delete operation.
ScalarDB employs an interactive transaction model, where users
issue an arbitrary number of operations interactively between begin
and commit commands.

The default interface provides a single commit method, which
internally executes several methods, such as prepareRecord and
commitState, as described in Algorithm 1. ScalarDB also provides
a fine-grained interface (Figure 2(c)) that makes users explicitly
call such internal methods. With the proper use of the fine-grained
interface, users can run a transaction that makes multiple transac-
tion managers interact through applications, which is useful for
some use cases, such as microservice-oriented applications with
the database-per-service pattern [7, 38].

4For the currently supported shims, ScalarDB realizes scan by exploiting underlying
databases’ partitions or transactions that achieve multi-record linearizable read, but
ScalarDB could realize a partition with a single database record by constructing multi-
ple ScalarDB records in the database record. ScalarDB also provides scan that scans
the whole database for testing purposes, but the operation does not provide the same
isolation guarantee as the other operations.
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ScalarDB also provides a SQL interface and a GraphQL interface,
built on top of the CRUD interface, for those familiar with such
query interfaces. The current SQL interface is incompatible with the
SQL standards (e.g., SQL-92) and does not offer join and aggregation
queries, but supporting those queries is our future work.

3.2 Transaction Protocol Overview
Two-Phase Commit over Records. The basic principle of run-
ning global transactions in ScalarDB is treating each record of each
database as a small separate database and doing two-phase commits
over multiple records. Since we assume databases are abstracted
in the same way and provide the required capabilities described in
Section 3.1, there is no distinction between a record in one database
and a record in another, different kind of database. Thus, the trans-
action protocol can execute transactions in the same way without
regard for the differences between multiple databases.

Algorithm 1 shows the two-phase commit protocol of ScalarDB.
Assuming we are using server mode; a client accesses a ScalarDB
server, and the ScalarDB server, as a transaction coordinator, ac-
cesses the underlying databases. When a client begins a transaction,
it first generates a transaction ID (TxID). We create TxIDs with
UUID version 4 since they only need to be unique and do not have
to be globally ordered IDs or timestamps. Then, when the client is
ready to commit the transaction after performing operations such
as get and put for reading and writing records, it calls commit (line
1) to request a ScalarDB server to commit the transaction. Note
that ScalarDB uses a single-version optimistic concurrency control;
thus, the ScalarDB server holds the read set (readSet) and write set
(writeSet) of the transaction in its local memory space at the time
of committing.5 The ScalarDB server first prepares the records of
the write set by propagating the records with PREPARED states
to the underlying databases (lines 3-8). Here we assume a write
set maintains updated records composed of the original records
and updated columns. ScalarDB checks conflicting preparations
by using linearizable conditional writes; a transaction updates a
record if the record has not been updated by another transaction
since the transaction read it by checking if the TxID of the record
has not been changed. If any preparation fails, it aborts the trans-
action by writing an ABORTED state record to a coordinator table
(line 6), where all the transactions’ final states are determined and
managed. We explain the coordinator table in more detail later in
this section. Otherwise, it commits the transaction by writing a
COMMITTED state record to the coordinator table (line 19). Note
that writing to the coordinator table is also done using linearizable
conditional writes to coordinate concurrent writes; creating a state
record with a TxID if there is no record for the TxID. Once the
COMMITTED state is properly written to the coordinator table, the
transaction is regarded as committed. Then, the ScalarDB server
(asynchronously) commits all the prepared records by changing
the states of the records to COMMITTED (lines 21-23). Note that
we skipped the explanation of a validate-record phase (lines 10-17),
which is for making transactions strict serializable. We discuss the
details of this in Section 4.

5ScalarDB also manages a scan set and a delete set for each transaction, but they are
omitted from the algorithm for simplicity.

Algorithm 1 Two-phase commit over records

1: function commit(𝑇𝑥𝐼𝐷 , 𝑟𝑒𝑎𝑑𝑆𝑒𝑡 ,𝑤𝑟𝑖𝑡𝑒𝑆𝑒𝑡 )
2: // Prepare-record phase
3: for all (𝑘𝑒𝑦,𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑) ← 𝑤𝑟𝑖𝑡𝑒𝑆𝑒𝑡 do
4: prepareRecord(𝑘𝑒𝑦, 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑)
5: if prepareRecord fails then
6: abortState(𝑇𝑥𝐼𝐷) ⊲ Rollback and return
7: end if
8: end for
9: // Validate-record phase
10: if Extra-read is enabled then ⊲ For strict serializability
11: for all (𝑘𝑒𝑦, 𝑟𝑒𝑐𝑜𝑟𝑑) ← 𝑟𝑒𝑎𝑑𝑆𝑒𝑡 do
12: validateRecord(𝑘𝑒𝑦, 𝑟𝑒𝑐𝑜𝑟𝑑) ⊲ Re-read records
13: if validateRecord fails then
14: abortState(𝑇𝑥𝐼𝐷) ⊲ Rollback and return
15: end if
16: end for
17: end if
18: // Commit-state phase
19: commitState(𝑇𝑥𝐼𝐷) ⊲ Regarded as committed here
20: // Commit-record phase
21: for all (𝑘𝑒𝑦,−) ← 𝑤𝑟𝑖𝑡𝑒𝑆𝑒𝑡 do
22: commitRecord(𝑘𝑒𝑦)
23: end for
24: end function
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Version
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TxID

User-defined Table:

TxID Metadata

Coordinator Table:
Before Image

Application data 
managed by users

Transaction metadata 
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TxState

TxState

Before
TxStateCol-1PK

After Image

Figure 3: Example of ScalarDB schema.

Disaggregated WAL (DWAL). To make each record work as a
database, ScalarDB manages write-ahead logging (WAL) informa-
tion separately for each record, which we call disaggregated WAL
(DWAL). Specifically, as shown in Figure 3, ScalarDB adds transac-
tion metadata to a record in addition to the columns that an appli-
cation manages. The transaction metadata comprises, for example,
an ID (TxID) of a transaction that has updated the corresponding
record most recently, a record version number (Version), a record
state (TxState) (e.g., COMMITTED or PREPARED), timestamps (not
shown in the diagram), and a before image that comprises the
previous version’s application data and its metadata.

ScalarDB also manages transaction states separately from the
application records in the coordinator table. The coordinator table
determines and manages transaction states as a single source of
truth. The coordinator table can be collocated with application-
managed tables or located in a separate dedicated database.

One important thing to note is that the coordinator table can be
replicated for high availability by using the replication and consen-
sus capabilities of underlying databases. For example, if we manage
the coordinator table using Cassandra with replication factor three,
we can make the transaction coordination of ScalarDB tolerate one
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replica crash. Hence, we can make the two-phase commit protocol
of ScalarDB perform like Paxos Commit protocol [23]; it could miti-
gate the liveness issues (e.g., blocking problems) without sacrificing
safety.
Lazy Recovery. Transactions can crash at any time and could
leave records uncommitted states. ScalarDB recovers uncommitted
records lazily when it reads them, depending on the transaction
states of the coordinator table. Specifically, if a record is in the
PREPARED state, but the transaction that updated the record is
expired or aborted, the record will be rolled back. If a record is in
the PREPARED state and the transaction that updated the record is
committed, the record will be rolled forward.

A transaction expires after an expiration time (15 seconds by
default). When ScalarDB observes a record that has been prepared
by an expired transaction, ScalarDB writes the ABORTED state for
the transaction to the coordinator table (with retries). If ScalarDB
successfully writes the ABORTED state to the coordinator table, the
transaction is aborted. Otherwise, the transaction will be committed
by the original process that is slow but still alive for some reason
or remains in the UNKNOWN state until it is either aborted or
committed.

4 GUARANTEEING STRONG CORRECTNESS
This section explains how ScalarDB extends the concurrency con-
trol protocol described in Section 3.2 to guarantee strict serializ-
ability without depending on reliable clocks or sacrificing the high
scalability and high availability properties of the protocol.

4.1 Removing Reliable Clock Dependency
The original Cherry Garcia protocol provides a snapshot isolation
(SI) [3] guarantee based on TrueTime [10] or other reliable clock
alternatives, such as a timestamp oracle. However, we decided to
make ScalarDB not depend on such reliable clocks for the following
reasons. First, TrueTime is not always available; thus, depending
on it in a concurrency control protocol could limit the applicability
of the protocol. Second, a timestamp oracle could be a single point
of failure; thus, it could limit the availability of a system. Man-
aging multiple servers using replication could mitigate the issue,
but managing strictly-increasing timestamps while providing high
availability is hard to scale, especially in a multi-datacenter envi-
ronment, and could limit the performance of a system. This design
choice leads us to modify the protocol to depend only on lineariz-
able operations to validate conflicting transactions. The modified
protocol uses a single-version optimistic concurrency control in-
stead of the original protocol’s two-version concurrency control
because, without reliable clocks, a transaction cannot guarantee to
identify if the previous version (the before image) of a record has
been committed before the transaction starts. Therefore, ScalarDB
guarantees weaker isolation than SI, which we call read-committed
snapshot isolation (RCSI). RCSI could cause a read-skew anom-
aly in addition to the anomalies caused by SI, such as write-skew
and read-only anomalies. We offer RCSI for applications that are
sufficient with it.

ScalarDB could use a hybrid-logical clock (HLC) [37] to provide
an SI guarantee. HLC provides timestamps that are a combination
of a physical clock based on a node’s coarsely synchronized system

clock and Lamport’s logical clock [39]. However, ScalarDB with
HLC would introduce an additional database write for each record
read to keep track of happened-before relation since there is no
message passing between transaction managers. This approach
would make ScalarDB issue the same number of reads and writes
as one of the serializable techniques (an extra-write strategy) we
describe in Section 4.2. Therefore, we decided not to employ HLC
in ScalarDB.

4.2 Making Transactions Strict Serializable
One of the common approaches for making SI-based concurrency
control serializable is the serializable SI (SSI) concurrency control
protocol [6], which keeps track of two consecutive anti-dependency
(read-write dependency) edges in the serialization graph, the root
cause of non-serializable transactions in SI-based concurrency con-
trol [17]. However, we realized that achieving SSI efficiently with
the ScalarDB approach (i.e., SingleTM approach) is not straight-
forward. Specifically, ScalarDB coordinates transactions outside of
databases, and the ScalarDB components (i.e., ScalarDB servers) do
not communicate directly to share information; they need to com-
municate through database records. Thus, ScalarDB would need
to use database records to realize a corresponding data structure
to the shared lock table, which SSI expects a database to have. Im-
plementing such a data structure with ScalarDB would cause the
number of database reads and writes to be more than tripled; each
record read requires at least additional database write and read
(to take a SIREAD lock and check if there is a WRITE lock), and
each record write requires at least additional database write and
read (to take a WRITE lock and check if there is a SIREAD lock).
Alternatively, we could use the serial safety net (SSN) [67] to make
SI-based concurrency control serializable. Although SSN is more
efficient than SSI from a concurrency perspective, it essentially re-
quires similar anti-dependency tracking to SSI; implementing SSN
with ScalarDB also causes many reads and writes for databases.

As a current design choice, we decided to take a different ap-
proach in ScalarDB. ScalarDB offers two strategies to achieve strict
serializable transactions: extra-write and extra-read, which avoid
anti-dependencies without explicitly tracking them. Our approach
requires fewer numbers of database reads and writes than SSI and
SSN, but it is more conservative than those; i.e., it could cause more
aborts due to false positives.
Extra-Write Strategy. The extra-write strategy converts reads
into writes to avoid anti-dependencies.6 Thus, the strategy basically
writes the records of a read set (with updated TxIDs and version
numbers) to a database in addition to writing the records of a
write set to the database. It works as above when handling existing
records but requires extra care when handling non-existing records
and scanning a partition.

When reading a non-existing record, there is no way to utilize
the non-existing record to detect conflicts. This situation causes
anomalies like write skew. For example, T1 reads record A and
writes record B based on the read value (e.g., T1 writes A+1 to B,
where A is 0 if empty) and T2 reads record B and writes record
A based on the read value (e.g., T2 writes B+1 to A, where B is

6The thesis [11] that describes the Cherry Garcia protocol in details briefly touches the
approach; however, it does not provide enough information to implement it properly.
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0 if empty). In this case, if there are no records and both trans-
actions come to the system simultaneously, both can go through
successfully, which causes a non-serializable result (i.e., A=1, B=1).
To avoid the issue, the extra-write strategy converts a read for a
non-existing record into a write of a new record with a DELETED
state in the prepare-record phase. Then, the record is deleted in
the commit-record phase by utilizing the roll-forward mechanism
described in Section 3.2. With the above way, reading a non-existing
record and creating the record by a different transaction cause a
write-write dependency, which will be handled properly even with
the RCSI-based concurrency control protocol.

A similar issue would happen when scanning a partition be-
cause there could be conflicting writes in the scan range. Although
ScalarDB currently throws an error if there are a scan and another
operation in a transaction, ScalarDB could lock a partition by in-
troducing a simple lock table to avoid the issue, which we leave as
future work.
Extra-Read Strategy. The extra-read strategy implicitly tracks
anti-dependencies by re-reading a read set before the commit-state
phase. This strategy is inspired by the method applied in recent
in-memory database engines [13, 65]. Specifically, the extra-read
strategy adds one more phase called a validate-record phase to the
protocol and executes the phase after the prepare-record phase, as
shown in Algorithm 1. The validate-record phase takes the read and
scan sets of a transaction and re-reads all the records in the read
and scan sets to see if other transactions have written the records
that the transaction has read before.7 If the read and scan sets
have not been changed, the transaction can go to the commit-state
phase since there are no anti-dependencies; otherwise, it aborts
the transaction. Another conflicting transaction (T2) could come
after the validate-record phase and before the commit-state phase
of the first transaction (T1) and could write the record that T1 has
read, but T2 cannot be dependent on the PREPARED records of T1.
Therefore, the resulting schedule will be equivalent to T1→ T2
even in such a case.

We could also informally discuss its serializability by reduction to
strict two-phase locking (S2PL). Specifically, writing records in the
prepare-record phase by using a write set is regarded as taking write
locks, and re-reading records in the validate-record phase to check if
the records have not been changed is equivalent to taking read locks.
Moreover, all the writes and reads are conducted with linearizable
operations; thus, the protocol achieves strict serializability.

Note that the extra-read is not starvation-free. Thus, conflicting
transactions that do not share the same keys in their write sets
could all enter the prepare-record phase simultaneously, but they
could all be aborted in the validate-record phase. Instead, the extra-
write still follows the first-writer-wins rule; thus, either transaction
wins in such a case.

ScalarDB uses the extra-read strategy as the default serializable
strategy because it works well in most workloads based on our
experiments. However, the extra-write strategy can be effective for
read-heavy workloads since the re-reading cost of the extra-read
strategy becomes high in such a case.

7Note that the scan set holds predicates, which are used for re-reading of the scan set.

4.3 Correctness Verification
The correctness of transaction protocol has been empirically ver-
ified with Elle [35, 36], a transaction anomaly checker based on
Jepsen [33]. Elle can detect every anomaly in Adya et al.’s formal-
ism [1] (except for predicates), discriminate between them, and
provide concise explanations of each. ScalarDB uses two consis-
tency models to verify the correctness: cursor-stability for RCSI and
strict-serializable for strict serializable isolation. The tests can be
found in our GitHub repository [50]. We have found several bugs
in ScalarDB with Elle, but ScalarDB currently passes the Elle tests
stably and has done so for a few years.

Since Elle and existing verification tools cannot detect anomalies
around predicate-based operations (e.g., scan in ScalarDB), we also
created in-house verification tests to cover the case. A sensor test is
one of the tests and checks if predicate-based write skew [17] would
not happen in ScalarDB with strict serializable isolation. In the test,
a client issues a transaction that first scans a partition specified
with a current timestamp rounded by seconds. The partition can be
empty or composed of multiple records, which respectively have a
revision number. Then, the client identifies the maximum revision
number (𝑟𝑚𝑎𝑥 ) from the partition and creates a new record with
a revision number 𝑟𝑚𝑎𝑥 + 1 in the partition. So, the sensor test
does not expect duplicate revision numbers in each partition as
long as a transaction manager that conducts the test guarantees
serializability. The test is available in our GitHub repository [53].

5 PERFORMANCE OPTIMIZATION
Although the SingleTM approach has difficulties optimizing trans-
action performance as discussed in Section 2.2, ScalarDB employs
several performance optimizations to increase intra- and inter-
transaction parallelism as much as possible. This section introduces
some of the performance optimizations derived from our extensive
and intensive benchmark experiments.

5.1 Parallel Commit and One-Phase Commit
As Cherry Garcia, ScalarDB employs parallel commit and one-phase
commit optimizations. With parallel commit, ScalarDB commits
records in parallel and asynchronously in the commit-record phase.
With one-phase commit, ScalarDB omits the prepare-record and
commit-state phases without sacrificing correctness if a transaction
updates only one record by exploiting the single-record linearizable
operations of the underlying databases.

5.2 Parallel Preparation and Validation
ScalarDB employs more aggressive parallel execution than Cherry
Garcia, executing the prepare-record and validate-record phases
respectively in parallel to further increase intra-transaction paral-
lelism without violating correctness.

Parallel preparation brings some performance trade-offs. Sequen-
tial preparation prepares records in a deterministic order, following
the first-writer-wins rule. Thus, one transaction wins even among
conflicting transactions, that is, sequential preparation provides
starvation-free property. However, parallel preparation does not
guarantee the property; all conflicting transactions might fail. Al-
though parallel preparation has the downside, throughout our ex-
periments, we concluded that the benefit outweighs the downside.
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5.3 Commit Spin-Waiting
ScalarDB also employs an optimization to execute more transac-
tions concurrently by refining the lazy read recovery mechanism,
which could cause unnecessary aborts in the case of contended
workloads like TPC-C. For example, suppose there is a transaction
T1 that prepares several records. After that, T2 tries to read some
of the records that T1 prepared and finds out the records are not in
the COMMITTED states. In this situation, T2 cannot recover the
uncommitted records since T1 is probably not expired yet; thus, T2
cannot proceed with its processing. Consequently, ScalarDB aborts
T2, throwing away whatever work T2 has done and retrying the
same transaction. Aborting a transaction causes a lot of waste of
work and resources, especially when a transaction is large.

To avoid such an issue, ScalarDB employs commit spin-waiting.
Specifically, when ScalarDB sees an uncommitted record that has
been updated recently enough, ScalarDB assumes that the transac-
tion that updated the record will be committed soon and spin-waits
with some sleep until the transaction becomes committed.

ScalarDB further optimizes the spin-waiting mechanism. When
a transaction T1 spin-waits until other transactions (dependent
transactions) are committed, it only waits until the coordinator
table’s states of the dependent transactions are committed instead
of waiting until all the records that T1 uses are committed. Specif-
ically, once ScalarDB identifies the coordinator table’s states of
the dependent transactions as committed, it makes T1 proceed by
treating the records that T1 uses as COMMITTED states.

This optimization is not a speculative execution because PRE-
PARED state records of committed transactions will be eventually
committed; thus, it is always safe. Although it adds additional reads
for checking the coordinator table, it achieves more concurrency.

6 PRODUCTIZATION
This section describes several critical mechanisms of ScalarDB for
productization, especially those that make ScalarDB cloud-native
and practically usable in real-world applications.

6.1 Taking Transactionally Consistent Backups
As discussed in Section 3.2, ScalarDB employs DWAL to achieve
global transactions. However, unlike the conventional sequential
WAL method, DWAL does not preserve the order of transactions
once they are committed, which makes it challenging to take back-
ups from multiple databases in a transactionally-consistent manner.
In short, if we take backups from multiple databases separately, the
resulting backups cannot guarantee to produce serializable states
when restored.

To overcome the problem, ScalarDB servers provide a quiescing
mechanism to take transactionally consistent backups over multi-
ple databases. The quiescing mechanism makes a set of ScalarDB
servers start queueing incoming transactions while draining in-
flight transactions to create a state where there are no active trans-
actions for a very short period. Then, we can create transaction-
ally consistent backups from databases by using database-specific
backup mechanisms such as point-in-time snapshots and restore.

There is another challenge for taking backups correctly. In pro-
duction environments, users usually use ScalarDB through ScalarDB

server containers and manage them with the de-facto standard con-
tainer orchestration system Kubernetes. Our customers (and most
Kubernetes users) use managed Kubernetes services provided and
managed by cloud vendors for ease of maintenance and operation.
The problem is that such managed Kubernetes services do not pro-
vide a guaranteed way to fix a set of containers.8 For example,
when accessing a cluster the first time, we see A, B, and C con-
tainers for ScalarDB servers, but we could see A, B, and D right
after that; in this case, container C had crashed, and container D
was automatically created by using the auto-healing mechanism of
Kubernetes. This situation causes critical issues for taking backups.
That is because, even if we quiesce A, B, and C containers with the
mechanism to create a quiesced state, container D could still run
transactions, which breaks the quiesced state.

To address the challenge, ScalarDB applies an optimistic concur-
rency control technique to the backup mechanism. More concretely,
the backup mechanism tries to quiesce a set of ScalarDB server
containers assuming the containers’ states will not be changed and
re-checks the states at the end of the backup process to verify if the
containers’ states have not been changed.

A backup tool based on the mechanism works as follows. First,
a client runs the backup tool for quiescing. Then, the tool identifies
a set of ScalarDB server containers by accessing the master node
(control plane) of a Kubernetes cluster and quiesces the containers
by using the quiescing mechanism. Once all the containers are in
quiesced states, the tool takes the current time, keeping that time
as the quiesce start time, and then asks the client to take backups
or wait for a short while (a few seconds) for point-in-time restore
(PITR). Then, the tool takes the current time again, keeping the
time as the quiesce end time. Before returning a successful status
to a client, the tool again identifies a set of containers to see if the
containers’ states have not been changed. If the containers’ states
have been changed, the tool returns a failure status and asks the
client to retry. If the containers’ states have not been changed, the
tool returns a successful status and the quiesced duration. Later,
users can use the backups if taken or specify a time within the
quiesced duration for PITR.

6.2 Context-Aware Request Forwarding
ScalarDB takes the SingleTM approach to manage transactions
as described in Section 2.2; each ScalarDB server holds the read
and write sets of the transactions it manages outside underlying
databases. Therefore, each ScalarDB server has transaction contexts
and is stateful. When multiple applications or services interact
with each other multiple times to complete a transaction, which is
commonly seen in microservice use cases, we need to guarantee
that the multiple applications communicate while taking care of
which ScalarDB servers have which read and write sets.

For example, consider a case where an application consists of two
internal microservices (e.g., order service and customer service) and
requires several interactions between the microservices to complete
an application-level request (i.e., transaction). Each microservice
manages its database and communicates with the other service to
access the other service’s database. In this case, within a transaction,

8Managed Kubernetes services in clouds do not allow users to directly write to the
master node (etcd) for security reasons.
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a ScalarDB server in one microservice has to always communicate
with the same ScalarDB server in the other microservice since
both the ScalarDB servers manage the read and write set of the
transaction for their respective databases separately. Also, each
microservice will likely consist of several processes (e.g., containers
or Pods) for high availability. The architecture makes it tricky for
each microservice to manage a mapping table that tells which
ScalarDB servers to talk to because each microservice is not likely
to share the mapping table between the processes for simplicity
and scalability. Application developers could use streaming (e.g.,
the bi-directional streaming of gRPC) or set up sticky sessions to
manage such communications between microservices, but it is a
burden to application developers and error-prone.

To deal with transaction contexts properly, ScalarDB provides a
clustering mechanism called ScalarDB Cluster. ScalarDB Cluster
groups a set of ScalarDB servers as a cluster and forwards an inter-
nal request between the servers while being aware of transaction
contexts. With ScalarDB Cluster, one process in each microservice
can communicate with any processes of another microservice, and
one process of each microservice can talk to any ScalarDB servers
of the microservice.

ScalarDB Cluster uses consistent hashing [34] for managing the
mapping table between transactions (TxIDs) and the locations of
ScalarDB servers that manage the transactions. It manages themem-
bership information (i.e., locations) of ScalarDB servers by itself
or automatically takes the information from a Kubernetes cluster
when available. As an optimization, the client (e.g., a process of a
microservice) of ScalarDB Cluster can also obtain the membership
information automatically from a Kubernetes cluster to directly
forward a request to a target server.

6.3 Handling Read-Only Analytical Queries
Although ScalarDB initially focused on transaction management
over multiple disparate databases, we have heard a strong de-
mand from our customers for handling analytical queries over
the databases managed by ScalarDB transactions. To respond to the
demand, we provide a PostgreSQL-based analytical engine called
ScalarDB Analytics with PostgreSQL.

ScalarDB Analytics with PostgreSQL is based on PostgreSQL
foreign data wrappers (FDW), providing a unified read-committed
view of underlying databases. Thus, for example, users can run ana-
lytical join queries over multiple databases without interacting with
the databases separately. ScalarDB Analytics reads records from
underlying databases through community-provided data wrappers
or ScalarDB Data Wrapper, select committed records from before
or after images by checking the states of the records with a pre-
defined view, and executes a given query in PostgreSQL with the
committed records. ScalarDB Data Wrapper is our-developed data
wrapper that uses ScalarDB abstraction to access all the ScalarDB-
supported databases naturally. Since community-provided data
wrappers could realize aggressive optimizations, such as push-
ing down database-local joins and aggregations, ScalarDB Ana-
lytics uses community-provided data wrappers if possible and uses
ScalarDB Data Wrapper otherwise.

We are also currently working on a Spark-based analytical engine
called ScalarDB Analytics with Spark for more scalable analytical

processing. ScalarDB Analytics with Spark has a similar design
to ScalarDB Analytics with PostgreSQL, using community-based
connectors or ScalarDB Connector to read records from databases,
selecting committed records, and executing a given query in Spark.

7 EVALUATION
This section evaluates ScalarDB. We show (1) ScalarDB achieves
global transactions with reasonable performance while providing a
database-agnostic property, (2) ScalarDB achieves strict serializabil-
ity with acceptable performance overhead, (3) the optimizations
employed in ScalarDB work effectively, and (4) ScalarDB scales
near-linearly as long as the underlying database is scalable.

7.1 Experimental Setup
Compared Systems.We compared ScalarDB with Atomikos [2]
and Seata [54] for global transactions. We used ScalarDB version
3.7.0 with strict serializable isolation using the extra-read strategy.
We also set 500 jdbc.connection_pool.max_total for the JDBC
shim interacting with relational databases.

Atomikos is a transactionmanager based on XA. Atomikos is also
used as the default XA transaction manager of ShardingSphere [42].
We used the open-source version, TransactionsEssentials, which
manages coordinator logs separately for each client.9 We used ver-
sion 5.0.9 and configured Atomikos with 500 max_actives, 20,000
checkpoint_interval, and 10ms oltp_retry_interval.

Seata is an open source distributed transaction solution that
delivers high performance distributed transactions across multiple
databases. We used the XA mode to run ACID transactions. We
used version 1.5.2 and the default configurations since they worked
best for the experiments.
Workloads. The evaluation uses two standard workloads: YCSB
and TPC-C. YCSB [9] is a benchmark commonly used for key-
value store evaluation and is also adopted in transactional database
evaluation by accessing multiple records in a single transaction.
We used Workload F (read-modify-write workload) with uniform
request distribution and 1,000 bytes payload. We used YCSB to
clarify the basic performance of global transactions. TPC-C [64]
is a benchmark for OLTP databases. We used TPC-C to clarify
the concurrency control protocol overhead for strict serializability,
optimization effectiveness, and scalability of ScalarDB.
Environments. All experiments were conducted with AWS EC2
instances that run Amazon Linux 2. For global transactions experi-
ments with YCSB, we used a c5d.9xlarge instance (18 CPU cores,
72 GB memory, 900 GB NVMe SSD) for each database or database
replica and a c5d.4xlarge instance for the coordinator of Seata and
ScalarDB. We also used four c5d.2xlarge instances (4 CPU cores,
16 GB memory, 200 GB NVMe SSD) for the clients of Seata and
ScalarDB, and used eight c5d.2xlarge instances for the clients of
Atomikos. We used more clients for Atomikos to avoid clients’ IO
bottleneck. For other experiments with TPC-C, we used the same
settings as the YCSB experiments, except we used four c5d.2xlarge
instances for the clients.

We used three types of databases, MariaDB, PostgreSQL, and Cas-
sandra, and their versions are 10.8.3, 14.5, and 3.11.11, respectively.
We configured MariaDB with 2,000 max_connections, 16 GB inno

9Its enterprise version manages a centralized logging service for high availability.
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Figure 4: Performance of global transactions over two database instances with YCSB.

db_buffer_pool_size, 96 MB innodb_log_file_size (default),
O_DIRECT innodb_flush_method, and 0 innodb_flush_neigh
bors. We set the isolation to read-committed for ScalarDB and
serializable for the others. ScalarDB only requires read-committed
for MariaDB because ScalarDB manages transactions outside the
database. Note that we used the default innodb_log_file_size
because MariaDB with the setting works best for all the compared
systems under the hardware environment described previously.
We configured PostgreSQL with 3,000 max_connections, 16 GB
shared_buffers, 16 GB max_wal_size, and 512 max_locks_pe
r_transaction. We also set the isolation to read-committed for
ScalarDB and serializable for the others. We configured a Cassandra
cluster with batch commitlog_sync, 512 concurrent_reads, and
512 concurrent_writes. The Cassandra shim for ScalarDB uses
lightweight transactions (Paxos) to achieve linearizable operations.

7.2 Performance of Global Transactions
This section evaluates the throughput and latency of global trans-
actions in ScalarDB, Seata, and Atomikos with YCSB.

First, we deployed two different instances of a single database to
two different nodes to clarify the global transaction performance
of each system without the performance being affected by data-
base differences. We used two database implementations, MariaDB
and PostgreSQL, for the experiments. In the experiments, each
transaction goes to both databases; each transaction first goes to
one database and does a read-modify-write, and then goes to the
other database and does a read-modify-write. We loaded 100 million
records to each database before the experiments. We also increased
the number of client threads to clarify how each system handles
concurrent transactions.

Figure 4(a) and 4(b) show the results in the MariaDB environ-
ment. We observed that ScalarDB was slower than Atomikos, but

the differences in performance were not significant. Specifically,
ScalarDB was at most 29% slower than Atomikos at 512 threads.
The differences in performance mainly came from two factors. First,
ScalarDB wrote more data for each transaction than Atomikos
due to DWAL for each record. Second, Atomikos only wrote co-
ordination logs to each client locally and independently, which
is not appropriate for production systems, while ScalarDB wrote
coordination logs to the centralized (yet scalable) coordinator table
through a network. If Atomikos wrote logs to centralized storage
as its enterprise version does, we would expect these differences in
performance to be smaller. Seata was overall slower than Atomikos
and ScalarDB. One reason was Seata sent coordination logs to a
centralized Seata server. We could not clarify any other reasons,
but we suspect the root cause was the Seata server because the
MariaDB XA implementation worked well with Atomikos.

Figure 4(c) and 4(d) show the results in the PostgreSQL envi-
ronment. Note that we could not run experiments with Seata on
PostgreSQL because Seata did not support PostgreSQL and could
not run transactions properly. ScalarDB was slower than Atom-
ikos when the number of client threads was 128 or less, but the
differences in performance were again not significant. However, the
performance of Atomikos dropped suddenly after 128 client threads.
We could not clarify the root cause, but we suspect the performance
degradation was caused by the PostgreSQL XA implementation.
In particular, PostgreSQL synchronously flushed WAL buffers for
each XA prepare, which seemed to limit the number of transactions
prepared in each flush. We actually observed that the number of
fsync operations increased significantly as the number of client
threads exceeded 128.

Next, we deployed two different databases to two different nodes.
We tested two cases; one used MariaDB and PostgreSQL, and the
other used PostgreSQL and Cassandra. We used the same workload
as the previous experiments.
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Figure 5: Overhead of the extended concurrency control for strict serializability in ScalarDB with TPC-C.

Figure 4(e) and 4(f) show the results of the MariaDB and Post-
greSQL case. We did not conduct the experiments with Seata be-
cause Seata could not run transactions on PostgreSQL, as discussed
previously. As can be seen, we observed similar results to the previ-
ous results; ScalarDB was slower than Atomikos, but the differences
in performance were again not very significant even though global
transactions spanned different databases. Specifically, ScalarDB was
at most 17% slower than Atomikos at 128 threads.

Figure 4(g) and 4(h) show the results of the PostgreSQL and
Cassandra case. We used nine nodes (with replication factor three)
for Cassandra. Note that we conducted the experiments only with
ScalarDB because ScalarDB was the only system that could span
transactions between PostgreSQL and Cassandra. As can be seen,
ScalarDB again performed stably well even in this case.

Overall, ScalarDB showed superior stability and applicability
compared to the XA-based systems because ScalarDB realized trans-
actions consistently in its transaction management layer without
depending on a specific XA implementation for each database.More-
over, ScalarDB achieved performance close to Atomikos in most
cases. We believe the benefits of ScalarDB would outweigh the
performance loss.

7.3 Overhead of Strict Serializability
This section evaluates the overhead of ScalarDB’s approaches for
strict serializability. We compared ScalarDB transactions with RCSI
and strict serializable isolation (with the extra-read strategy) us-
ing MariaDB and PostgreSQL as underlying databases. Note that
although ScalarDB is specifically designed for running distributed
transactions across multiple disparate databases, we used a single
database instance to clarify the overhead of our approach. We used
TPC-C workload and 1,000 warehouses for the evaluation.

Figure 5(a) and 5(b) show the throughput and latency in the
MariaDB environment. ScalarDB with strict serializable (SS) iso-
lation performed a little slower than ScalarDB with RCSI, but the
differences in performance were small; at most 15% slowdown in
throughput and 17% slowdown in latency at 128 client threads. Fig-
ure 5(c) and 5(d) show the throughput and latency in the PostgreSQL
environment, and we also observed similar (but even smaller) dif-
ferences in performance to the ones of the MariaDB experiments; at
most 11% slowdown in throughput and 11% slowdown in latency at
128 client threads. Throughout the experiments, we concluded that
our approach to making transactions strict serializable is practical
enough.
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Figure 6: Effectiveness of parallel commit optimization.
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Figure 7: Scalability of ScalarDB with TPC-C.

7.4 Effectiveness of Optimizations
This section evaluates the effectiveness of the optimizations. Due
to space limitation, we only show the effectiveness of the parallel
commit optimization described in Section 5.1. Figure 6 shows the
results in the TPC-C workload. It shows that the performance
improvements were greater when the number of client threads
was in the middle range (around 4 to 64). This is because there
was more parallelism to exploit when the number of client threads
was not high enough. But, when the number of client threads was
high (e.g., more than 64 client threads), the overall parallelism was
high enough, so increasing the intra-transaction parallelism did not
improve performance. We observed that the optimization improved
the performance by up to 87% in MariaDB and 48% in PostgreSQL.

7.5 Scalability
This section evaluates the scalability of ScalarDB with TPC-C work-
load. We used Cassandra as the underlying database to clarify the
scalability of ScalarDB transaction protocol. We increased the num-
ber of Cassandra nodes from 3 to 15 while keeping the number
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of replicas to three. We also increased the number of warehouses
proportionally from 200 to 1,000.

Figure 7 shows the results. The throughput of ScalarDB increased
near-linearly as the number of Cassandra nodes increased. Specifi-
cally, the throughput of ScalarDB in a 15-node environment was
4.6 times higher than the one in a 3-node environment; thus, it
achieved 92% scalability compared with the ideal performance.

8 CASE STUDIES
ScalarDB has been used by several customers. In this section, we
outline two specific case studies of ScalarDB usage.
Video metadata management system. A Japan-based broad-
casting company wanted to fix an inconsistent metadata issue and
reduce the cost of its video metadata management system. The in-
consistency was caused by separate data management between a re-
lational database and operating system files. The companymigrated
data into a new system based on ScalarDB and put the overview
of video metadata on an Amazon RDS (Aurora) and detailed infor-
mation on an Amazon DynamoDB. The company chose the hybrid
database architecture to put large and infrequently-accessed data
into the auto-scalable DynamoDB while serving frequent querying
on the RDS. The company successfully fixed the inconsistency issue
by using ScalarDB universal transaction manager and reduced costs
by scaling down DynamoDB in off-peak times.
ScalarDL. ScalarDL [52, 68] is Byzantine fault detection (tamper
detection) middleware for transactional database systems. ScalarDL
utilizes ScalarDB to achieve database-agnostic and cloud-agnostic
properties, providing its Byzantine fault detection capability on
various databases. ScalarDL has been used by several customers
on several platforms, ranging from relational databases to NoSQL
databases, such as Amazon DynamoDB and Azure Cosmos DB.

9 LESSONS LEARNED AND FUTUREWORK
While ScalarDB is still at an early stage of product adoption, we have
learned some important lessons from the experiences of building
ScalarDB over the last five years and our production experiences.
In this section, we share some of the lessons learned. We also share
some future work to improve the product further.
Single Abstraction. The database abstraction of ScalarDB is one of
the keys to achieving database-agnostic transactions. At the same
time, it limits the capabilities of underlying databases. For example,
suppose there is a MySQL (InnoDB) table, which is a clustered index
and can do a prefix search with a primary key. In this case, ScalarDB
onMySQL cannot fully utilize the prefix search capability of MySQL
since the ScalarDB abstraction supports only partition-level prefix
search; a partition key must always be provided. To mitigate such
issues, we plan to introduce other abstractions, such as relational
abstraction, which abstracts the relational data model and the ca-
pabilities of relational databases. We also need to explore how we
can extend the transaction manager to handle multiple abstractions
without overcomplicating the transaction management.

Similarly, a single abstractionmakes it challenging to run ScalarDB
on existing databases; i.e., it is not always possible to run ScalarDB
on existing databases without data rebuild due to differences in
data models. If an existing database’s data model and schema are
compatible with the ScalarDB abstraction, ScalarDB can mostly

run on the database without data rebuild. That is because most
databases can instantly add new null columns for the ScalarDB
metadata without rebuilding the databases, and ScalarDB can treat
null state records as COMMITTED. If an existing database’s data
model and schema are incompatible with the ScalarDB abstraction,
ScalarDB is less likely to run on the database. This limitation could
also be mitigated by introducing multiple abstractions.
Backups. As discussed in Section 6.1, DWAL does not preserve
the order of transactions once they are committed, which makes it
hard to take backups from multiple databases in a transactionally
consistent manner. ScalarDB provides the quiescing mechanism
to resolve the issue, but it needs to suspend transactions for a few
seconds, which may not be acceptable in future use cases. In future
work, we plan to introduce a mechanism to log transactions in a
serializable and replayable manner to avoid such suspension. One
prospective way is sending the read and write sets of transactions
to a remote location and replaying the transactions based on the
dependencies derived from the given read and write sets.
Lazy Recovery. The lazy recovery discussed in Section 3.2 is a scal-
able approach, especially in a distributed environment. However,
the lazy recovery makes it challenging to manage an append-only
table where an application only does blind writes and does not read
data. For example, suppose an application manages append-only
logs in a table, and a transaction crashes after preparing a record
in the table. In this case, the application will not read the prepared
record; thus, the record will be left unrecovered. If the applica-
tion always writes a log with a unique primary key, it just creates
unrecovered garbage. Otherwise, the application cannot proceed
with the process since the log record has already been prepared.
We could fix the issue by making a blind write operation always
come with a pre-read behind the scene; however, the solution badly
affects the performance because it causes an additional read for
each blind write. We currently require applications to deal with the
issue, but we plan to fix the issue in a better way in the future.

10 CONCLUSION
This paper presented ScalarDB, a universal transaction manager
that achieves a database-agnostic federation of multiple disparate
databases from a transactional perspective. ScalarDB extends pre-
vious research works to provide a strong correctness guarantee
(i.e., strict serializability), further performance optimizations, and
several critical mechanisms for productization. Throughout the
evaluations, we showed that ScalarDB achieved database-spanning
transactions with reasonable performance and near-linear scalabil-
ity while providing database-agnostic property and guaranteeing
strong correctness.

ScalarDB is still an early-stage product. We continue to inno-
vate with improvements and enhancements to its performance,
capabilities, and usability to take the product to the next level.
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