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ABSTRACT
Time series forecasting, that predicts events through a sequence of
time, has received increasing attention in past decades. The diverse
range of time series forecasting models presents a challenge for
selecting the most suitable model for a given dataset. As such, the
Alibaba Cloud database monitoring system must address the issue
of selecting an optimal forecasting model for a single time series
data. While several model selection frameworks, including AutoAI-
TS, have been developed to predict a dataset, their effectiveness
may be limited as they may not adapt well to all types of time series,
resulting in reduced prediction accuracy. Alternatively, models such
as AutoForecast, which train on individual data points, may offer
better adaptability but are limited by longer training time required.

In this paper, we introduce SimpleTS, a versatile framework for
time series forecasting that exhibits high efficiency and accuracy
across all types of time series data. When performing an online
prediction task, SimpleTS first classifies input time series into one
type, and then efficiently selects the most suitable prediction model
for this type. To optimize performance, SimpleTS (i) clusters models
with similar performance to improve the efficiency of classifica-
tion; (ii) uses soft labeling and weighted representation learning to
achieve higher classification accuracy for different time series types.
Extensive experiments on 3 private datasets and 52 public datasets
show that SimpleTS outperforms the state-of-the-art toolkits in
terms of both training time and prediction accuracy.
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1 INTRODUCTION
It is increasingly possible to access and store a vast majority of
time series data, such as retail, supply chain, energy, finance, power,
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etc [11, 23, 25]. These scenarios provide opportunities for time se-
ries data mining [18, 24]. Time series prediction is a widely-used
data mining task, which involves the analysis of historical data to
forecast future events on the assumption that future trends will fol-
low similar patterns and trends observed in the past [20]. Accurate
time series prediction is highly demanded in real-life. For example,
improving the accuracy of consumers’ demand forecast by 10%-20%
can save the inventory of supermarkets by 5% and enhance both
the revenue and service level by 2%-3% [34].

(a) Linear (b) Stationary (c) Seasonal

(d) Step (e) Irregular (f) Multi Mode

Figure 1: Different types of time series data

Time series exhibit different trends over time, as shown in Figure
1. Linear (Fig. 1(a)) and stationary (Fig. 1(b)) indicate that data
fluctuates around a fixed number. Seasonal (Fig. 1(c)) expresses that
data experiences regular and predictable changes. Step (Fig. 1(d))
refers to that data generally drops (or grows) but the variation is not
continuous. Irregular (Fig. 1(e)) and multi-mode (Fig. 1(f)) depict
dynamic variation of data. The performance of the same algorithm
varies greatly when predicting different types of time series data.
For example, some traditional forecast algorithms (e.g., ARIMA
[45], Holt-Winters [4]) for time series perform well on linear or
periodical data but perform poorly on irregular type datasets. As
shown in Figure 2, the time series prediction task is the preceding
task in the database autonomous service (DAS) of Alibaba Cloud
(AliCloud), which plays a very important role. The ability to make
accurate predictions is crucial for identifying and addressing issues
in a timely manner. Motivated by this, we aim to develop effective
time series prediction models that can provide accurate forecasts
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Figure 2: SimpleTS predication task in DAS

for diverse types of time series data, irrespective of their distinct
patterns and characteristics.

The database engines of AliCloud (such as time series database
TSDB) store the business data of massive users. It has been applied
to many fields including retail, e-commerce, finance and supply
chain. As shown in Figure 3, Alibaba Cloud’s DAS runs more than
2 million predictions tasks every two hours from 4am to 2pm every
day, i.e., over 16 thousand tasks per minute. This huge amount of
data implies that efficiency should be taken into account when the
model is iteratively updated. In addition, we also aim to improve
the efficiency of model training, such that better prediction results
can be achieved in less training time.

AutoML [39] can be used to automatically select and create
models [19, 37]. However, AutoML methods still have the following
limitations. First, they need to run the prediction on the whole train-
ing dataset using each candidate model and then identify the one
achieving the highest performance as the best. For example, Google
AutoML [3] and IBM AutoAI-TS [36] employ this strategy, which is
intuitively time-consuming and in-efficient. Second, AutoML does
not take the different types of time series into consideration during
the model selection. For example, AWS forecast framework [1] only
considers local weather and holiday information. However, it is not
sufficient to achieve high prediction accuracy, as there are multiple
types of time series (cf. Figure 1). Third, all the above-mentioned
AutoML methods cannot perform well on the dataset with multiple
types of time series. This is because, such methods always return
a universal model, which is assumed to be able to accommodate
all types of time series. However, as each of time series forecasting
algorithm is only designed for dealing with one or several types of
time series, such an assumption is obviously unreasonable.

Other model selection studies [6, 29, 46] suffer the same problem.
They compare the distribution of the input data with that of the
trained data by different features. Some of them [29, 46] assume
that the trained model can be applied to any input data, which may
be reasonable for the area of computer vision, but is not suitable
for time series data. Unlike training the entire dataset at once,
AutoForecast [6] utilizes meta-learning to extract and train features
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Figure 3: Number of prediction tasks run in DAS over time
(accumulated every two hours)

for each individual data point. However, it can be time-consuming
and cannot guarantee high accuracy. Motivated by these, we aim
to develop an efficient and universal model selection framework
for time series, where three following challenges exist.

Challenge I: How to achieve higher accuracy with less train-
ing time? With the increase in forecast demand and forecast algo-
rithms, it is inefficient to run all the models on the whole training
dataset to find the best algorithm for forecasting. Though methods
are proposed (such as pruning) to accelerate model selection [46],
they still cannot cope with the huge computation costs caused by
performing predictions on the whole training dataset.

To tackle this challenge, we propose to train a classifier with
a small amount of data and then to integrate the classifier into
model selection. First, we perform predictions using all the candi-
date models on small amount of the training data. Next, we cluster
the models by their performance and record the model that achieves
the highest performance on each type of data as the corresponding
optimal model. Finally, we exploit the classifier to divide the train-
ing data sets according to their types, including linear, periodic
and irregular. In this way, whenever new data arrives, we only
need to first identify its type by the classifier, and then apply its
corresponding optimal model for prediction. Obviously, with the
integrated classifier, we can find the model that performs the best
for this type of data to further improve its accuracy.

Challenge II: How to improve the accuracy of the classifier?
The diversity of types of time series tends to increase over time [11].
Also, the accuracy of the classification generally drops when the
number of types of time series increases, as the large number of
labels associated with diversified data types may make the classifier
“confused”. Thus, how to improve the classification accuracy on a
large volume of data is challenging.

To tackle this challenge, we first cluster forecasting algorithms
with similar performance to reduce the number of categories for
the classification. As time series data with the same shape will
behave similarly in the different models, we can cluster models
with similar performance into one category to represent one time
series type. This way, we can decrease the number of time series
types for classification in order to improve the accuracy of the
classifier. Second, for the classification task, hard labeling generally
degrades accuracy because the outputs of the positive and negative
samples vary greatly. On the contrary, soft labeling [17] can avoid
overconfidence in correct labels, and thus prevent over-fitting and
improve the generalization ability of the model.
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Challenge III: How to select the classification features of
source data? There are two ways to capture temporal features,
one is calculating artificial features by expert experience, and the
other is capturing hidden features by representation learning [26].
For time series data, the shape of the data can be represented by
artificial features, such as periodicity [48], stationarity [33], turning
point, maximum, minimum, average, and other statistical variables.
However, these artificial features cannot represent the complex
context information of the time series, especially the time series
with irregular shapes, which degrades the classification accuracy.

To address this challenge, we use TS2Vec [52] that enables a
robust contextual representation for each timestamp and performs
contrastive learning in a hierarchical way over augmented context
views. Based on this, we present a weighted representation learning.
The intuition behind it is to represent the correlation between every
two instances as a weight when calculating the loss function. In-
stances are used to describe time series data from different sources,
such as data from various database machines in DAS or data from
different store locations in the Walmart dataset. Experimental re-
sults on the three private datasets (cf. Section 6.4) verify that the
proposed weight representation learning outperforms the methods
employing artificial features.

We develop a novel framework SimpleTS by integrating the
above techniques (including classification, clustering, soft labels,
and representation learning). SimpleTS is equipped with fourteen
time series forecasting models, including twelve state-of-the-art
models and two newly developed models. Overall, the major con-
tributions of this paper are summarized as follows:
• We develop SimpleTS, an efficient and universal framework that

can identify a good prediction model based on the time series
type. To the best of our knowledge, SimpleTS is the first frame-
work that incorporates a classifier to distinguish time series
types for prediction, which enhances the training efficiency and
accuracy of model selection.

• We incorporate a classifier in SimpleTS to identify the time series
type of the source data, while proposing to exploit clustering,
soft labeling and a weighted representation learning to improve
the accuracy of the classifier.

• We develop a configurable interface that offers high flexibility
in parameter selection for offline model selection tasks. Further-
more, our interface enables users to easily visualize the results
of their model training.

• We conduct extensive experimental evaluations on 3 private
datasets and 52 public datasets, which demonstrates SimpleTS
is able to outperform the state-of-the-art methods by 4-10 times
faster in terms of training time, while able to achieve higher
accuracy than the state-of-the-art methods.
The rest of the paper is as follows. We present preliminaries in

Section 2 and give an overview framework in Section 3. Section
4 and Section 5 detail two main components in our framework
respectively. Section 6 reports the experimental results. Section 7
reviews related work, while Section 8 concludes the paper.

2 PRELIMINARIES
We proceed to define the problem, and introduce existing model
selection methods and a representation learning framework.

2.1 Problem Definition
Definition 2.1 (Time series Data). A time-series data is a se-
quence of numerical data points in time order: 𝑋 = ⟨𝑥1, 𝑥2, ..., 𝑥𝐿⟩,
where 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝐿) is the observation value at time 𝑇𝑖 , and 𝐿 is
the sequence length.

Definition 2.2 (Time series Forecasting). Given the current
time 𝑡 and last 𝑙 observations (𝑥𝑡−𝑙+1, ..., 𝑥𝑡 ) of a time series data 𝑋 ,
time series forecasting aims to predict the future 𝐻 observations
𝑥𝑡+1, ..., 𝑥𝑡+𝐻 of 𝑋 .

Problem Statement. Given a time series dataset 𝑋 that consists
of 𝑛 time series types {𝑇1,𝑇2, ...,𝑇𝑛}, the model selection task is
to select 𝑛 models from a set of 𝑀 forecasting models such that
the chosen 𝑛 models {𝑀1, 𝑀2, ..., 𝑀𝑛} perform optimally on 𝑛 time
series types within this dataset.

2.2 Model Selection
AutoML [39] is a general term that refers to the process of find-
ing the optimal model among the possible choices of models and
their parameters. Earlier proposed AutoML is mainly composed of
three parts: feature engineering, model selection, and algorithm
selection. The model selection consists of two steps: selecting a
model and setting its parameters [12, 13]. AutoML automatically
selects an optimization model to achieve a balance between effi-
ciency and accuracy. However, choosing the model and parameter
values that perform the best on the given data requires trying all the
possibilities, which is time-consuming. Although there are several
acceleration methods, such as sampling and pruning [38], they only
find a single model that performs well on all types of time series
data within a dataset containing diverse types.

IBM proposes AutoAI-TS [36] for time series forecasting, which
provides a zero-configuration system to effectively train, optimize
and select the best model for a given time series data set. For a given
data set, AutoAI-TS leverages a range of models, such as traditional
statistical models, machine learning models, hybrid models that
combine statistics and machine learning, and deep learning models
to generate predictive pipelines for a given dataset. It evaluates
and ranks the pipelines using the suggested T-Daub mechanism to
select the best one.

AutoForecast [6] supports fast automatic selection of the best
forecasting model for a new unseen time-series dataset, which
does not need to train (or evaluate) all the models on the whole
training dataset before selecting the best one. To effectively capture
dataset similarity, AutoForecast performs feature extraction on
each piece of time series data, and then traverses the time series
forecasting algorithm to find the relationship between the features
and the predicted results in order to train two meta learners. One
is the general meta-learner, mapping the meta-features vector to
the corresponding best-model; The other is the time-series meta-
learner, capturing the relation between the models’ performances
in time with the meta-features.

2.3 Representation Learning
Feature extraction is the basis of the classification task. It can be
done manually or automatically with the help of specific algorithms.
The former is feature engineering, and the latter is representation
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Figure 4: Overall architecture of SimpleTS

learning. If the amount of data is small, we can artificially design
appropriate features based on our experience and prior knowledge
for downstream tasks, such as classification. However, artificial
feature engineering relies on expert experience and cannot capture
the correlation between instances. Hence, the information that arti-
ficial feature engineering can express is very limited, particularly
in complex data scenarios such as DAS. Hence, automated repre-
sentation learning is required. Representation learning can well
capture the features from the complex data. Motivated by this, we
use representation learning to extract the features.

Different from feature engineering, representation learning auto-
matically extracts features to best reflect the essence of the problem
from the dataset [26]. TS2Vec [52] is a general framework for learn-
ing representations at arbitrary semantic levels for time series data.
TS2Vec proposes a hierarchical contrast loss that forces the encoder
to learn representations at different scales. It uses instance-wise
loss and temporal contrastive loss to encode the distribution of time
series. An instance represents an object that generates a sequence
of time series data. For example, each store in the Walmart dataset
represents an instance, which contains sales data over a period of
time. Let 𝑖 be the instance index of the input time series sample 𝑥
and 𝑡 be the timestamp; while let 𝑟𝑖,𝑡 and 𝑟

′
𝑖,𝑡

denote the represen-
tations for the same timestamp 𝑡 but from two augmentations of 𝑥𝑖 .
The temporal contrastive loss for the 𝑖-th time series at timestamp
𝑡 can be formulated as:

ℓ
(𝑖,𝑡 )
𝑡𝑒𝑚𝑝 = − log

exp
(
𝑟𝑖,𝑡 · 𝑟 ′𝑖,𝑡

)
∑
𝑡 ′∈Ω

(
exp

(
𝑟𝑖,𝑡 · 𝑟 ′𝑖,𝑡 ′

)
+ ⊮[𝑡≠𝑡 ′ ] exp

(
𝑟𝑖,𝑡 · 𝑟𝑖,𝑡 ′

) )
(1)

where Ω is the set of timestamps within the overlap of the two sub-
series, and ⊮ is the indicator function (i.e., ⊮[𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛] = 1 when
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = true, ⊮[𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛] = 0 when 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = false).

The instance-wise contrastive loss can be computed as:

ℓ
(𝑖,𝑡 )
𝑖𝑛𝑠𝑡

= − log
exp

(
𝑟𝑖,𝑡 · 𝑟 ′𝑖,𝑡

)
∑𝐵
𝑗=1

(
exp

(
𝑟𝑖,𝑡 · 𝑟 ′𝑗,𝑡

)
+ ⊮[𝑖≠𝑗 ] exp

(
𝑟𝑖,𝑡 · 𝑟 𝑗,𝑡

) ) (2)

where 𝐵 denotes the batch size. It uses representations of other
time series at timestamp 𝑡 in the same batch as negative samples.

The two loss functions are complementary to each other. For
example, given a set of electricity consumption data from multiple
users, instance-wise contrastive loss learns the user-specific charac-
teristics, while temporal contrastive loss aims to mine the dynamic
trends over time. Hence, the overall loss is defined as:

L𝑑𝑢𝑎𝑙 =
1
𝑁𝑇

∑︁
𝑖

∑︁
𝑡

(
ℓ
(𝑖,𝑡 )
𝑡𝑒𝑚𝑝 + ℓ

(𝑖,𝑡 )
𝑖𝑛𝑠𝑡

)
(3)

TS2Vec applies max pooling on the learned representations along
the time axis and computes Equation 3 recursively, where 𝑁𝑇 de-
notes the number of iterations until 𝑙𝑒𝑛(𝑟 ) ≤ 0. In the hierarchical
contrast model, the loss function is applied at all levels of granu-
larity. TS2Vec demonstrates its universality and effectiveness on
three time-series-related tasks, including time series classification,
forecasting and anomaly detection.

3 SYSTEM ARCHITECTURE
The overall architecture of SimpleTS is shown in Figure 4, including
offline training and online forecasting. The offline training includes
four main components, i.e., data pre-processing and model train-
ing, AutoML label-tagging, soft label and clustering, and pipeline
method classifier.
• The main task of data pre-processing is to transform source data

into the data in the required format for training, and then use
these processed data to train the weighted TS2Vec [52] model
and deep learning forecasting methods. Note that, the trained
models/methods will be used in the following.
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• In the AutoML label-tagging component, all the time series meth-
ods do prediction tasks on each training data, annotating the
forecasting result, accuracy, precision, SMAPE, and other de-
tailed information of each method automatically.

• After that, we use the clustering method to cluster these fore-
casting methods according to the annotated information, where
soft and hard labels are used. Note that, we also record the best-
performing model of each type in the configuration file based
on the clustering result.

• Finally, we use the trained weighted TS2Vec model to encode
the data, capturing the context information on the source data
and the relation information between instances, and also classify
the encoded data using the labels of the clustering results. To
sum up, the main task of offline training is to train a classifier
for online prediction.
For the online forecasting, when a piece of new data comes, we

first encode the data via trained weighted TS2Vec model, and then
classify it into a time series type using the trained classifier. Note
that, weighted TS2Vec model and the classifier can be obtained in
the offline training. According to the classification results, we search
the configuration file to view the best-performingmodel of this type
to execute the prediction. In general, once the classifier is trained,
SimpleTS framework typically uses the most appropriate model for
performing prediction tasks. In the following two sections, we will
detail the two main components, respectively.

4 OFFLINE TRAINING
In this section, we introduce the offline training system and corre-
sponding techniques.

4.1 Offline Training System
We have developed an offline training system for the DAS, which
enables users to adjust various parameters for training. The re-
lationship between the configurable training parameters and the
business logic is depicted in Figure 5, where the blue rectangles
denote the configurable training parameters. Table 1 provides the
detailed parameter descriptions.

First, users can input the name of the database metric they
want to analyze. The DAS system supports 63 database metrics1,
such as Mysql.cpu_usage, Mysql.disk_usage, Mysql.iops_usage,
slow_queries, mem_usage, and so on. Additionally, as there are
tens of millions of time series data in the AliCloud database, users
can choose a certain scale of data for training, such as 10%, 20%,

1https://help.aliyun.com/document_detail/128379.html

30%, etc. Based on the input of the metric name and data size, the
system will retrieve the data observed in the past 10 days for the
specified metric from the AliCloud database.

Then, the system offers two types of models for training con-
figuration: deep learning models and machine learning models.
The deep learning models include LSTM [21], Transformer [49],
DeepAR [14], DeepFactor [9], DeepState [35], GPForecaster [8],
NBeats [32], while the machine learning models include ETS [2],
Prophet [43], NPTS [5], ARIMA [45], Holt-Winters [4] and two self-
developed methods (i.e., Period, Linear). Period method predicts by
analyzing the periodicity of data, i.e., it makes the forecast based
on the previous periodic data. Therefore, Period method will not
be effective when the data do not have any periodicity. Linear is
an optimization algorithm based on ETS. It prevents outliers or
spikes from affecting the prediction results by truncating the data
according to the points of change, and makes predictions based on
the effective trend. Users can choose single or multiple models of
each type. For deep learning models, the system provides automatic
parameter tuning services, which can enhance model training ac-
curacy to some extent. However, parameter tuning will result in
longer training time. Hence, users can select this option based on
their specific needs. The system also offers the option to choose
the prediction window length (i.e., a percentage of window length
w.r.t. the time series length) for prediction, such as 2%, 3%, 5%, 10%.
Additionally, the number of clusters for each dataset varies as they
contain different types of data. Users can choose the number of
clustering centers for the clustering task, with options of 3, 5, 7
or 14 based on the number of models. The most common practice
is to cluster the data into three classes (i.e., irregular, linear and
periodic), which is set as the default.

Finally, in the model selection task, the user can select the speci-
fied classifier, such as SVM [42], XGBoost [50], RandomForest [40],
LightGbm [27], KNN [41] and CNN [31]. In addition, the system
provides configuration options for the model selection strategy, in-
cluding efficiency priority and accuracy priority. The corresponding
ranked top-K models based on the selected strategy can be written
into the configuration file.

Offline training trains a classifier and records the best-performing
model for each type of time series data. In the following, we will
introduce each part of the offline training.

4.2 Data processing and model training
We proceed to provide the details of the data pre-processing steps
and model training. Here, we optimize the TS2Vec model and set
up the deep learning model in preparation for the subsequent steps.
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Table 1: Parameters setting on the system page

Paramaters Descriptions Values

Metric_Name The metric name of AliCloud database monitoring metrics Mysql.cpu_usage, Mysql.disk_usage, Mysql.iops_usage,
slow_queries, mem_usage, ...

Train_Data_Size Size of training sample set (proportion in total sample size) 10%, 20%, 30%, 50%, 70%, 100%

Train_ML_Models_List Machine learning models involved in training ETS, Prophet, NPTS, ARIMA,
Holt-Winters, Period, Linear

Train_DL_Models_List Deep learning models involved in training LSTM, Transformer, DeepAR, DeepFactor,
DeepState, GPForecaster, NBeats

Auto_Tune_Paramaters
Whether to enable the automatic parameter setting

function of the training models True, False

Predict_Window_Len
Window size setting for time series prediction task

(proportion in total time series length) 2%, 3%, 5%, 10%

N_Clusters The number of clustering centers for a clustering task 3, 5, 7, 14

Classifier A classifier that performs a sorting task SVM, XGBoost, RandomForest,
LightGbm, KNN and CNN

Selection_Strategy A selection strategy of model selection task Efficiency, Accuracy
Top-K The Number of models selected 1, 2, 3

Data pre-processing. To prepare the source data for training,
particularly for long time series data, we split it into shorter seg-
ments. This is because long time series data may contain invalid
information that can negatively impact model accuracy. For exam-
ple, if a piece of time series data contains one year’s information, it
is too long for the time series forecast task to achieve high accu-
racy. We can cut the piece of time series data across one year into
twelve pieces (i.e., time series data across months) for training. In
addition, beforing the time series forecasting task, some common
pre-processing operations should be carried out, such as filling in
the blank values and then smoothing the data. In SimpleTS frame-
work, before executing self-developed linear and period algorithms,
we use Kalman filtering [22] to smooth the source data in order to
prevent outliers from affecting the shape of the source data and
avoid leading to wrong prediction results.

TS2Vec model training. After data pre-processing, we prepare
a TS2Vec [52] model for the following data classification. When
training TS2Vec model, we found that different data sets have dif-
ferent relationships between instances. The original TS2Vec frame-
work calculates loss function using the sum of temporal contrastive
loss and instance-wise contrastive loss, which is not appropriate for
all the datasets. On the contrary, for datasets with stronger relation-
ships between instances, increasing the weight of the instance-wise
contrastive loss function can improve the accuracy of prediction.
Otherwise, it can be decreased. Motivated by this, we propose the
weighted representation learning. The overall loss is redefined as:

L𝑑𝑢𝑎𝑙 =
1
𝑁𝑇

∑︁
𝑖

∑︁
𝑡

(
(1 −𝑤)ℓ (𝑖,𝑡 )𝑡𝑒𝑚𝑝 +𝑤ℓ

(𝑖,𝑡 )
𝑖𝑛𝑠𝑡

)
(4)

where 𝑤 represents the weight of instance-wise contrastive loss,
while ℓ (𝑖,𝑡 )𝑡𝑒𝑚𝑝 and ℓ (𝑖,𝑡 )

𝑖𝑛𝑠𝑡
are computed via Eqs. 1 and 2 respectively.

Note that, the weight 𝑤 is manually set, the larger association
between instances, the larger value of 𝑤 will be set. We evaluate
the influence of𝑤 in Section 6.3.

Deep learning (DL) model Training. Next, we pre-train deep
learningmodels based on user-selected parameters, including ‘Train

_Data_Size’, ‘Train_DL_Models_List’, ‘Train_ML_Models_List’, ‘Pre-
dict_Window_Len’ and ‘Auto_Tune_Parameters’. Given the auto-
matic parameter tuning function enabled(‘Auto_Tune_Parameters’
is true), the parameters of each model are tuned according to the
configurations shown in Table 2. Otherwise, the models are trained
using the default parameters (indicated in bold in the table).

4.3 AutoML Label-Tagging
We proceed to present a comprehensive overview of the AutoML
Label-Tagging.

Given a ‘Train_Data_Size’ (e.g., 10%), we randomly sample the
training set to feed into different models. SimpleTS utilizes the
selected ‘Train_ML_Model_List’ and ‘Train_DL_Model_List’ for
label-tagging. Algorithm 1 presents the pseudo-code of offline train-
ing, which takes four parameters as inputs, including time series
data 𝑇𝑆_𝑙 , the target variable of prediction 𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑎𝑟 (i.e., ‘Met-
ric_Name’), the window of prediction𝑤𝑖𝑛𝑑𝑜𝑤 , and the granularity
of prediction 𝑔𝑟𝑎𝑛. For example, for the prediction task of a data-
base metric Mysql.cpu_usage, DAS has millions of Mysql.cpu_usage
data. Thus, we randomly sample ‘Train_Data_Size’ pieces of data
as the training set. As the indicator data of the database has strong
timeliness, we select the data of the recent 10 days (i.e., 240 hours).
The window of historical data for prediction is 240*0.9, and the
prediction window is 240*0.1 (i.e., Predict_Window_Len is 10%).
All of these windows are with the granularity of hours. The target
variable for prediction is set to Mysql.cpu _usage. After that, we
perform a prediction task on all models for each piece of data in
the training set (lines 5–16). When a piece of data has performed
the prediction task on all the models, the name, accuracy, precision,
and SMAPE of the best model, prediction results, and the execu-
tion time of each model are recorded and stored in the database
(lines 17–21). In order to facilitate the comparison between artifi-
cial feature extraction and representation learning, we also extract
artificial features and save them in the database, including turning
point, variance, periodicity, stationarity, max, min, mean, absolute
variance, etc.
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Table 2: Hyperparameters for various algorithms from GluonTS

Pipeline Methods Hyperparameter 1 Hyperparameter 2
DeepAR num_cells = [20, 30, 40, 50, 60] num_layers = [1, 2, 3, 4, 5]
LSTM num_cells = [20, 30, 40, 50, 60] num_layers = [1, 2, 3, 4, 5]

Transformer inner_ff_dim_scale = [2, 4, 6, 8, 10] num_heads = [4, 6, 8, 10, 12]
Prophet changepoint_prior_scale = [0.003, 0.03, 0.1, 0.2, 0.5] changepoint_range = [0.3, 0.4, 0.5, 0.6, 0.7]

DeepFactor cell_type = [‘lstm’, ‘gru’] num_factors = [6, 8, 10, 12, 14]
DeepState num_cells = [20, 30, 40, 50, 60] num_layers = [1, 2, 3, 4, 5]

GPForecaster max_iter_jitter = [5, 10, 15, 20, 25] N/A
NBeats loss_function = [‘SMAPE’, ‘MASE’, ‘MAPE’] N/A
ARIMA information_criterion = [‘aic’, ‘bic’, ‘hqic’,‘oob’] seasonal_test = [‘ocsb’, ‘ch’]

Holt-Winters seasonal_periods = [2, 4, 6, 8, 10] seasonal = [‘add’, ‘mul’, ‘additive’, ‘multiplicative’, None]

Table 3: Metrics used for model clustering features

Features Formula Descriptions

Std
∑(𝑌𝑖−𝑌𝑖 )

𝑁
Absolute Standard Deviation

Var

√︄∑(
(𝑌𝑖−𝑌𝑖 )−𝑆𝑡𝑑

)2
𝑁−1 Absolute Variance

Med 𝑀𝐸𝐷𝐼𝐴𝑁 (𝑌𝑖 − 𝑌𝑖 ) Absolute Median
25-quartile 𝑃𝐸𝑅𝐶𝐸𝑁𝑇𝐼𝐿𝐸 (𝑌𝑖 − 𝑌𝑖 , 25) First Quartile Deviation
75-quartile 𝑃𝐸𝑅𝐶𝐸𝑁𝑇𝐼𝐿𝐸 (𝑌𝑖 − 𝑌𝑖 , 75) Third Quartile Deviation

MAE
∑��𝑌𝑖−𝑌𝑖 ��

𝑁
Mean Absolute Error

MAPE 1
𝑁
·∑ ��𝑌𝑖−𝑌𝑖 ��

𝑌
Mean Absolute Percentage Error

SMAPE 100%
𝑛

∑ ��𝑌𝑖−𝑌𝑖 ��(��𝑌𝑖 ��+|𝑌𝑖 |)/2 Symmetric Mean Absolute Percentage Error

WMAPE
∑(𝑌∗𝑀𝐴𝑃𝐸 )∑

𝑌
Weighted Mean Absolute Percentage Error

4.4 Soft Labeling and Clustering
As the number of prediction methods for time series data increases,
many of them have similar performance on the same type of time
series, which degrades the performance of the classifier. Hence,
to avoid it, we introduce smoothed labels. Soft Labeling combines
the information of the label distribution and replaces traditional
one-hot encoded label vectors with weighted vectors, which further
improves the classification quality.

The smoothed distribution of the labels is equivalent to adding
noise to the real distribution, preventing the model from being over-
confident in the correct labels, so that the difference between the
output values of the predicted positive and negative samples is small.
Studies [17, 30] show that soft labels encourage the representations
of training examples from the same class to groups in tight clusters,
thus avoiding over-fitting and making the model more robust.

We propose a new weighted soft labeling as an enhanced com-
ponent of the classifier, and redesign the loss function, which takes
the relevance of labels into account. The loss function is defined as:

ysoft𝑖 =

{
1 − 𝜔i

(
𝐾−1
K

)
, if 𝑦hot𝑖 = target

𝜔𝑖
𝐾
, o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

where 𝐾 is the number of labels, 𝜔𝑖 =
precision𝑖∑𝐾
𝑗=1 precision𝑗

, 𝑖 denotes the

index of 𝑦ℎ𝑜𝑡 encoded by one-hot, target denotes the encoding of
the target classification type.

Additionally, clustering is an effective solution to further improve
the accuracy of classification. This is because the time series data

Algorithm 1: AutoML Label-Tagging
Input: Time series data 𝑇𝑆_𝑙 , target_variable 𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑎𝑟 ,

granularity 𝑔𝑟𝑎𝑛, prediction window𝑤𝑖𝑛𝑑𝑜𝑤

Output: the status of whether saving to the database
1 𝑇ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← Len(𝑇𝑆_𝑙 ) *𝑤𝑖𝑛𝑑𝑜𝑤 ;
2 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ← Len(𝑇𝑆_𝑙 ) * (1-𝑤𝑖𝑛𝑑𝑜𝑤 ) ;
3 method_list←[lstm,..., hot-winters];
4 results, detail_acc, detail_precision, detail_smape = ∅
5 foreach method in method_list do
6 predict_results = invoke_method(method);
7 accuracy = cal_accuracy(predict_results, T𝑝𝑟𝑒𝑑𝑖𝑐𝑡 );
8 precision= cal_precision(predict_results, T𝑝𝑟𝑒𝑑𝑖𝑐𝑡 );
9 smape = cal_smape(predict_results, T𝑝𝑟𝑒𝑑𝑖𝑐𝑡 );

10 detail_acc← detail_acc.add(method, accuracy);
11 detail_precision← detail_precision.add(method,

precision);
12 detail_smape← detail_smape.add(method, smape);
13 if compare manual feature then
14 cal_manual_feature(𝑇𝑆_𝑙 )
15 end
16 end
17 best_𝑚𝑜𝑑𝑒𝑙 = max(detail_accuracy.values()).key();
18 best_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = max(detail_accuracy.values());
19 best_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = max(detail_precision.values());
20 best_𝑠𝑚𝑎𝑝𝑒 = min(detail_smape.values());
21 return save_to_database(instance_id, ...,detail_smape)

of the same type behave similarly in different models. For example,
when dealing with periodic time series data, Transformer [49] and
DeepAR [14] models tend to yield poor results, while Prophet [43]
and Holt-Winters [4] models demonstrate superior performance.
Based on the prediction results, accuracy, and precision of each
model stored in the database, several metrics are calculated for
the clustering task as shown in Table 3, where 𝑌 is the predicted
value, 𝑌 represents the actual value, and 𝑁 is the size of the predic-
tion window. In this way, we can group models that have similar
performance into clusters, where the number of clusters can be con-
figured (i.e., ‘N-Clusters’). For instance, SimpleTS leverages expert
knowledge to split all the models into three types: irregular, linear,
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Figure 6: Time series shapes of three private datasets

(a) Rossmann (b) Walmart

4000

8000

12000

16000

0 20 40 60 80 100

Timestamp

T
S

 v
al

u
e

4000

8000

12000

16000

0 20 40 60 80 100

T
S

 v
al

u
e

Timestamp

0 0

Figure 7: Time series shapes of Rossmann and Walmart

and periodic, by setting the number of clusters to three. According
to the configured ‘Selection_Strategy’, we search for the highest
accurate model or the model with the least training time for each
time series type, and record this model’s name in the configuration
file. When performing online forecasting, we can search the con-
figuration file for the best model in terms of accuracy or efficiency
based on the time series type.

4.5 Pipeline Method Classifier
Finally, we continue to train a classifier. We use the pre-trained
weighted representation learning model to encode the original data
and feed the encoded data into the classifier. As TS2Vec [52] model
is already trained to encode the training data into 320 dimensions,
we are able to represent the target variable in the high-dimension
space. We replace the source label that represents the best perfor-
mance model with the clustered labels. For example, assume the
model with the best performance in a piece of time series data is
Transformer [49]. After clustering, it is found that Transformer
belongs to the ‘irregular’ cluster, thus we will use ‘irregular’ as the
label of this data for classification. In order to balance samples, we
up-sample the training data according to the number of samples in
each label to ensure that the number of each label is similar. After
that, the encoded source data and the clustered labels are fed to
train a classifier (i.e., ‘Classifier’). This classifier will be further used
for online forecasting.

5 ONLINE FORECASTING
For the online prediction task, we first identify the type of the new
time series data, and then find the corresponding model for the
prediction task. In general, we divide online forecasting into three
steps as below:
• First, when a piece of new data arrives, we load the pre-trained

weighted representation learning model and encode the source
data to obtain its high-dimensional representation.

• Second, we classify this encoded data into a certain type by
loading the offline-trained classifier model. After obtaining the
result of the classification, we can choose the method with the
best accuracy or the least execution time from the configuration
file according to the user’s configuration.

• Third, according to the method selected from the configuration
file, we invoke the corresponding time series forecasting model
to perform the prediction task.
In addition, in order to support large-scale data prediction tasks,

we execute the online prediction tasks in a parallel manner to
improve its efficiency.

6 EXPERIMENTS
In this section, we aim to evaluate the performance of SimpleTS
compared with the state-of-the-art methods based on 55 datasets.

6.1 Experimental Setting
Datasets. We use 55 datasets, three private datasets from DAS,
Rossmann dataset2 and Walmart dataset3 from Kaggle, and 50 UCR
datasets4.
• Alibaba datasets. The private datasets come from the DAS in
AliCloud. DAS needs to monitor the usage of various types of
databases (e.g., Mysql and PostSql) from millions of machines
(instances) every day. For Mysql database, DAS needs to monitor
over 60 indicators, including the usage of cpu, disk, and iops
usage (Mysql.cpu_usage, Mysql.disk_usage, Mysql.iops_usage),
which indicate the running status of the database. In the follow-
ing experiments, we use the datasets of these three indicators as
the private datasets for experimental verification. Due to time
constraints in the experiments, we restrict the test dataset for
each metric to 50,000 instances (each instance has dimension of
240). Figure 6 depicts the shapes of three private datasets.

• Public datasets. They are from Walmart, Rossmann, and UCR,
and Figure 7 depicts the shapes of the first two.
– Walmart. The dataset includes 421,570 sales records from 45

Walmart stores, covering the period from February 5th 2010
to November 1st 2012. It has eight columns, of which we only
use ‘Weekly_sales’ column to do the prediction task.

– Rossmann. This dataset provides 1,017,209 historical sales
data of 1,115 Rossmann stores from January 1st 2013 to July
1st 2015. Each data contains 27 columns, but we only utilize
the ‘Sales’ column for performing predictions.

– UCR. It contains 128 univariate time series (UTS) datasets,
which are collected from different domains such as finance,
commerce, power, picture, hydrology, agriculture, etc. We
choose 50 time series datasets with obvious time series shapes,
excluding picture data. The number of data samples in each
UCR dataset varies from 108 to 5,314.

Prepocessing. Some of the experimental datasets do not con-
tain timestamps. To impute the timestamps, we re-generate the
timestamps in terms of hour granularity if less than 1,000 pieces of
time series data exist; otherwise, the timestamps are generated in
terms of 1-day granularity. For public datasets, we set the history

2https://www.kaggle.com/c/rossmann-store-sales/data
3https://www.kaggle.com/datasets/yasserh/walmart-dataset?resource=download
4http://www.timeseriesclassification.com/index.php
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Table 4: Comparisons of baselines and SimpleTS

(a) Mysql.cpu_usage
Method ARIMA DA ETS HW Linear LSTM NPTS Period Prophet TF DS DF GPF NB GB AF AutoAI-TS SimpleTS

train_time(s) / 29.612 / / / 33.083 / / / 25.842 829.165 10.812 8.221 61.889 5872.903 184123.754 16241.737 3407.086
predict_time(s) 0.501 0.504 0.457 0.236 0.492 0.496 0.124 0.368 0.518 0.512 0.813 0.102 0.182 0.205 0.283 0.495 0.414 0.193

accuracy 0.623 0.306 0.741 0.622 0.722 0.613 0.768 0.687 0.661 0.729 0.697 0.215 0.174 0.646 0.762 0.770 0.764 0.793
precision 0.487 0.437 0.634 0.479 0.616 0.248 0.672 0.554 0.525 0.598 0.666 0.102 0.023 0.553 0.573 0.739 0.632 0.773
SMAPE 0.399 1.139 0.301 0.419 0.317 0.535 0.237 0.341 0.381 0.271 0.316 1.117 1.438 0.447 0.276 0.359 0.283 0.217

(b) Mysql.disk_usage
Method ARIMA DA ETS HW Linear LSTM NPTS Period Prophet TF DS DF GPF NB GB AF AutoAI-TS SimpleTS

train_time(s) / 30.572 / / / 32.267 / / / 23.194 836.665 11.501 9.494 70.898 6297.091 190823.349 16400.331 4013.729
predict_time(s) 0.488 0.501 0.487 0.220 0.493 0.497 0.125 0.419 0.584 0.495 0.743 0.133 0.182 0.201 0.479 0.513 0.694 0.471

accuracy 0.956 0.914 0.995 0.978 0.995 0.902 0.988 0.987 0.992 0.959 0.962 0.346 0.569 0.963 0.995 0.992 0.979 0.996
precision 0.960 0.996 0.999 0.982 0.999 0.996 0.991 0.988 0.996 0.998 0.987 0.121 0.643 0.995 0.999 0.991 0.982 0.999
SMAPE 0.084 0.090 0.005 0.022 0.005 0.093 0.012 0.013 0.008 0.041 0.037 0.931 0.551 0.037 0.004 0.060 0.019 0.003

(c) Mysql.iops_usage
Method ARIMA DA ETS HW Linear LSTM NPTS Period Prophet TF DS DF GPF NB GB AF AutoAI-TS SimpleTS

train_time(s) / 30.390 / / / 32.072 / / / 23.490 902.634 13.274 9.015 78.731 5735.913 180970.143 11500.701 3988.554
predict_time(s) 0.488 0.500 0.463 0.229 0.499 0.499 0.123 0.281 0.514 0.494 0.539 0.149 0.093 0.129 0.283 0.473 0.414 0.231

accuracy 0.385 0.464 0.488 0.409 0.488 0.456 0.501 0.491 0.422 0.490 0.466 0.118 0.174 0.239 0.532 0.511 0.552 0.576
precision 0.264 0.281 0.366 0.287 0.365 0.240 0.424 0.340 0.295 0.322 0.412 0.059 0.044 0.132 0.473 0.485 0.392 0.518
SMAPE 0.825 0.847 0.683 0.845 0.667 0.853 0.557 0.672 0.825 0.794 0.716 1.453 1.434 1.302 0.476 0.386 0.296 0.224

(d) Walmart
Method ARIMA DA ETS HW Linear LSTM NPTS Period Prophet TF DS DF GPF NB GB AF AutoAI-TS SimpleTS

train_time(s) / 10.959 / / / 10.451 / / / 11.101 86.333 4.992 3.956 62.373 583.836 1145.751 991.408 327.126
predict_time(s) 0.301 0.074 0.366 0.075 0.733 0.076 0.016 0.394 0.428 0.105 1.785 0.381 0.044 0.153 0.298 0.311 0.058 0.372

accuracy 0.924 0.882 0.923 0.883 0.919 0.886 0.887 0.912 0.889 0.900 0.886 0.746 0.235 0.903 0.915 0.908 0.888 0.922
precision 0.949 0.823 0.958 0.854 0.938 0.853 0.864 0.909 0.858 0.873 0.956 0.804 0.006 0.981 0.939 0.981 0.851 0.965
SMAPE 0.074 0.109 0.075 0.110 0.080 0.106 0.108 0.086 0.107 0.097 0.111 0.428 1.311 0.101 0.082 0.089 0.112 0.103

(e) Rossmann
Method ARIMA DA ETS HW Linear LSTM NPTS Period Prophet TF DS DF GPF NB GB AF AutoAI-TS SimpleTS

train_time(s) / 15.628 / / / 16.163 / / / 16.006 88.735 6.716 5.438 62.634 1951.223 14260.034 1085.087 662.483
predict_time(s) 0.511 0.080 0.398 0.090 0.355 0.080 0.026 0.663 0.415 0.106 21.851 0.516 0.592 1.477 0.149 0.158 0.145 0.238

accuracy 0.594 0.660 0.616 0.521 0.580 0.687 0.626 0.649 0.655 0.701 0.676 0.422 0.461 0.763 0.682 0.541 0.741 0.737
precision 0.435 0.621 0.480 0.440 0.426 0.667 0.499 0.580 0.584 0.681 0.414 0.380 0.264 0.643 0.581 0.624 0.423 0.793
SMAPE 0.618 0.522 0.575 0.811 0.639 0.487 0.565 0.538 0.524 0.466 0.396 0.813 0.766 0.278 0.476 0.531 0.317 0.375

window and the prediction window at 9:1 ratio of the original data.
In particular, for datasets with less than 1,000 pieces of time series
data, we split a time series data into multiple sub-series data to
expand the number of training data.

Performance metrics. For the time series forecasting task,
we use the accuracy, precision, symmetric mean absolute percent-
age error (SMAPE), the prediction of each data (denoted as pre-
dict_time), and the total training time of 50,000 training data (de-
noted as train_time) as the performance metrics. When calculating
the precision, we set the tolerance as 3%, considering it is correct if
the fluctuation between the predicted result and the ground truth is
within the range of [−1.5%, 1.5%]. For the classification task, we use
accuracy and precision as the performance metrics. All the exper-
iments were conducted on a machine with Intel(R) Xeon(R) CPU
E5-2682 with 24 cores and 96GB of memory. The AutoML-label
tagging was conducted via the AliCloud Function Compute5.

Parameter Setting. For offline training tasks, we can customize
the training parameters through the interface shown in Figure
8. In the following experiments, we set ‘Train_Data_Size’ to 20%,
‘Train_ML_Moldels_List’ to {ETS [2], Prophet [43], NPTS [5], Holt-
Winters [4], ARIMA [45], Period and Linear}, ‘Train_DL_Moldels_
5https://help.aliyun.com/product/50980.html

List’ to {LSTM [21], Transformer [49], DeepAR [14], DeepFactor [9],
DeepState [35], GPForecaster [8], NBeats [32]}, ‘Auto_Tune_ Para-
maters’ to false, ‘N_Clusters’ to 3, ‘Classifier’ to lightGBM, ‘Selec-
tion_Strategy’ to accuracy, ‘Top-K’ to 1.

Comparison Algorithms. For the time series forecasting task,
we compare our framework SimpleTS with selected fourteen al-
gorithms including LSTM, Transformer (TF), DeepAR (DA), ETS,
Prophet, NPTS, ARIMA, Holt-Winters (HW), DeepState (DS), Deep-
Factor (DF), GPForecaster (GPF), NBeats (NB), Period and Linear, as
well as three frameworks, namely Global Best (GB), AutoForecast
(AF) [6] and AutoAI-TS [36]. Here, ‘Global Best’ trained fourteen
pipeline methods to get the best model for online prediction. Ex-
cept for the self-developed methods and three baseline frameworks,
other methods are implemented through the gluonTS package6.
When training the models in ‘Train_DL_Models_List’, we set the
number of epochs to 5, learning_rate to 0.001, num_batches_per
_epoch to 100, and use other default hyper-parameters in Table 2. To
ensure a fair comparison benchmark for non-experts, we refrained
from optimizing any parameters of deep learning algorithms when
running three baseline frameworks or SimpleTS. We believe that

6https://ts.gluon.ai/stable/api/gluonts/gluonts.html
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Figure 8: Experimental interface parameter configuration

with the improvement of each algorithm’s accuracy, the overall
predictive performance will correspondingly enhance.

6.2 Performance of SimpleTS and Competitors
We compare the forecasting performance of SimpleTS and all the
competitors on private and public datasets. Table 4 reports the
results on three private datasets and two public datasets, while the
results of 50 UCR datasets are provided in Figure 9.

Compared with fourteen pipeline methods. As shown in
Figures 6 and 7, Mysql.cpu_usage, Mysql.iops_usage and Rossmann
are more complex, while Mysql.disk_usage and Walmart are sim-
ple in terms of shape. Therefore, all of the models perform well
in Mysql.disk_usage and Walmart, but perform worse on other
datasets. SimpleTS performs better than fourteen single prediction
models in most cases in terms of accuracy, precision, and SMAPE.
This is because, SimpleTS can choose the best model with optimal
parameters among various prediction models. However, deep learn-
ing models (i.e., DeepAR, LSTM, Transformer, DeepState, Deep-
Factor, GPForecaster, NBeats) have less training time compared to
SimpleTS, while others require training online. This is because these
deep learning methods are trained by gluonTS that is especially
developed for speeding up model building. Note that, although all
the single prediction models have less training time and some of
them (e.g., NPTS) have less prediction time, their prediction results
are much poor compared with our SimpleTS, especially for complex
time series types.

Compared with three baseline frameworks. First, SimpleTS
has the least training time compared with Global Best, AutoFore-
cast, and AutoTS. ‘Global Best’ is a simple method to train the
entire training dataset on all the single prediction models, thus, it
takes more training time than SimpleTS. AutoAI-TS takes multiple
sampling, training, and ranking iterations to find the best model,
which leads to a long training time than ‘Global Best’ and SimpleTS.
AutoForecast takes the longest training time. It trains the model
via feature extraction of every data. Among them, more than 800
meta-features are extracted, but its effect is not as good as SimpleTS,
which also explains the limitations of artificial features.
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Figure 9: Forecasting accuracy based ranking of SimpleTS
and SOTA toolkits for 50 UCR datasets

Second, although the training time for SimpleTS is the least, its
performance in terms of accuracy, precision and SMAPE is better
than Global Best, AutoForecast, and AutoTS in most cases. The
main reason is that SimpleTS considers the effect of different time
series types on selecting the best model, while the others ignore it.
However, on Rossman, AutoAI-TS performs better than SimpleTS
in terms of accuracy and SMAPE. This is because, when a dataset
contains a large number of irregular timing data, the deep models
can well capture the relationship between these irregular timing
data. On Walmart dataset, AutoForecast outperforms SimpleTS in
terms of precision and SMAPE. This is because AutoForecast is
capable of effectively capturing information by extracting artificial
features on datasets with simple rules. However, when there are a
large number of periodic or linear time series data in the training set,
the prediction accuracy of the deep learning model is not as good
as that of the machine learning prediction models (e.g., ARIMA
and Prophet specifically designed for periodic or linear time series
data). Hence, SimpleTS is more suitable for the dataset with mixed
time series types. In general, compared with the three baseline
frameworks, SimpleTS not only greatly reduces the training time,
but also achieves high prediction quality.

Due to the limited space, we only report the accuracy results for
50 public UCR dataset in Figure 9; we have similar observations for
the other performance metrics. The ranking of SimpleTS across 50
datasets is shown at the bottom, with the numbers 24, 11, and 8
indicating the number of times it ranked 1, 2, and 3, respectively.
As expected SimpleTS ranks 1 in most cases. Besides, SimpleTS
consumes less training time than Global Best, AutoForecast and
AutoAI-TS, as confirmed in Table 4.

6.3 Parameter Study
In this subsection, we evaluate the effect of parameter 𝑤 on the
effectiveness of weighted representation learning.

Based on Equation 4, we adjust the parameter 𝑤 to calculate
the loss function to train the TS2Vec [52] model. The performance
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Figure 10: Performance vs. instances loss weight

of the data encoded by the trained TS2Vec model on the classifier
is used to evaluate whether the weighted representation learning
is effective. We do comparative experiments on Mysql.cpu_usage,
Rossmann, and Walmart datasets, which have different relations
between instances. We vary the instances loss weight from 0 to 0.8.
Figure 10 depicts the corresponding results. On Mysql.cpu_usage
dataset, the accuracy and precision reach the peak when the weight
of instances loss is set to 0.5. However, on Rossmann and Wal-
mart datasets, the accuracy and precision reach the peak when the
weight is set to 0.7. As shown in Figures 6 and 7, the shapes of
different instances on Mysql.cpu_usage differ, but are similar on
Rossmann and Walmart datasets. That is the reason why the best
loss wight of Rossmann and Walmart datasets is higher than the
Mysql.cpu_usage. Besides, on Walmart dataset, we find that when
the weight is 0, the accuracy and precision are much lower than
others. This is because, the shape of Walmart is irregular, and it is
difficult for the model to capture all the information only using the
timestamp loss. However, as the weight of instances loss increases,
the performance first improves and then drops. That also explains
the necessity of combining the timestamp loss and instances loss,
and a too-large weight will weaken the effect of timestamp loss
resulting in performance degradation.

6.4 Ablation Study
In this subsection, we evaluate each technique (including represen-
tation learning, soft labeling, and clustering) used in SimpleTS in
terms of the accuracy and precision of the classifier.

Representation learning evaluation. For comparing the per-
formance of artificial feature engineering and representation learn-
ing, we calculate the artificial feature engineering based on expert
experience during offline training (shown in Fig. 3). We then use

Table 5: Comparison of artificial feature engineering and
representation learning

dataset_name N_Clusters artificial feature representation learning
accuracy precision accuracy precision

Mysql.cpu_usage
3 53.12% 41.35% 64.49% 65.24%
7 40.72% 31.24% 47.24% 37.28%
14 36.62% 26.12% 36.62% 30.06%

Mysql.iops_usage
3 53.23% 37.28% 62.43% 57.34%
7 42.19% 26.12% 47.02% 49.14%
14 35.69% 30.06% 40.20% 38.91%

Mysql.disk_usage
3 72.68% 73.42% 76.83% 74.67%
7 64.09% 63.56% 64.60% 69.13%
14 54.39% 47.29% 59.68% 56.84%

Table 6: Comparisons of ‘with cluster’ and ‘without cluster’

Mysql.cpu_usage Mysql.disk_usage Mysql.iops_usage

cluster (w/o) w o w o w o
predict_time (s) 0.193 0.434 0.471 0.661 0.231 0.615

accuracy 0.793 0.736 0.996 0.992 0.576 0.489
precision 0.773 0.714 0.999 0.936 0.518 0.549
SMAPE 0.217 0.291 0.003 0.007 0.224 0.391

these artificial features to train the classifier with the labels of
clustering results.

We compare the accuracy and precision of architecture fea-
tures and representation learning on the classifier for three private
datasets. Besides, we evaluate their performance on both three-
classification, seven-classification and fourteen-classification prob-
lems. The experimental results are reported in Table 5.

As observed, representation learning outperforms artificial fea-
ture engineering in all three classification problems. When the
shape of the time series is complex to be represented by artifi-
cial features, the advantage of representation learning is more ob-
vious. Specifically, on Mysql.cpu_usage (shown in Fig. 6(a)) and
Mysql.iops_usage (shown in Fig. 6(c)) datasets, the accuracy and pre-
cision of representation learning is about 10%-20% better. However,
the performance on Mysql.disk_usage dataset is not outstanding
because the dataset is almost linear (shown in Fig. 6(b)), which is
much easier for artificial feature engineering to capture the features.

Soft labeling evaluation. To evaluate soft labeling, we apply
Equation 5 on the one-hot expression results output by various
classifiers, including both deep neural network classifiers (such
as CNN [31]) and traditional machine learning classifiers (such as
LightGbm [27]). We use private and public benchmark datasets
(DAS and Rossmann) with multi-class classification tasks. Figure
11 provides the corresponding results on classifiers (including pre-
cision and accuracy). As observed, our optimization technique (i.e.,
soft labeling) works for different classifiers and different datasets,
especially for data sets where labels are associated with each other.
This is because hard labels could ignore the similarity between
true-positives labels and other labels, thus omitting a lot of use-
ful information, and a multi-class classifier can often be improved
significantly by using weighted soft labels.

Clustering evaluation. During offline training, we use clus-
tering to improve the accuracy of classification. To evaluate the
effective of clustering, we set the number of clusters 𝑁 to three,
and we classify the encoded data based on the clustered labels. If
clustering is not used, we will directly classify the encoded data
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into fourteen categories according to the number of models. We do
comparative experiments on Mysql.cpu_usgae, Mysql.disk_usage,
Mysql.iops_usage datasets. At the same time, we use four metrics
(predict_time, accuracy, precision, SMAPE) to evaluate their pre-
diction performance. Table 6 depicts the corresponding results. As
observed, the classifier performs better in terms of most of perfor-
mance metrics after using clustering. The prediction time of ‘with
cluster’ is less than ‘without cluster’, as we use clustering to reduce
the number of labels. Simultaneously, when the number of labels is
reduced, the classifier quality also improves a lot.
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Figure 11: Performances of Soft labeling

7 RELATEDWORK
7.1 Model selection
There are mainly two categories of model selection. The first cat-
egory is to generate an optimal sub-model of a specified type of
model, by selecting parameters or neural network structures of
deep learning models [1, 3]. Google AutoML [3] develops two deep
learning models: Wave-Net and Transformer, which enable users
to automatically search the optimal combination of models’ compo-
nents as well as core hyperparameters. AWS forecast framework [1]
considers local weather and holiday information to improve pre-
diction accuracy. The second category is to identify the best model
among all the candidate models. The mainstream of the category
is AutoML based frameworks [37]. IBM presents AutoAI-TS [36],
which encompasses three steps: sampling, training, and ranking.
Mahdi et al. [7] address conditional hierarchical forecasting using
machine learning based classification methods, which explore time
series features to select the reconciliationmethod for each hierarchy.
AutoForecast [6] takes statistical features, information-theoretic
features, spectral features, and landmarker features of the source
data into account. Hence, it can effectively capture the similarities
between datasets and identify the corresponding optimal model by
projecting meta-feature vectors.

The methods mentioned above, which belong to the second cat-
egory, are subject to certain limitations. First, they cannot adapt
to all kinds of time series data, and thus the accuracy may be low
in some cases. Second, the process of using complex algorithms
to calculate the similarity of the dataset is time-consuming during
online prediction, which is infeasible for predicting a large amount
of data. However, SimpleTS, which fits the second category, distin-
guishes time series by their types and identifies the optimal model
according to the specific type. Hence, SimpleTS is able to select the
optimal model efficiently and to achieve high prediction accuracy.

7.2 Representation learning
Unsupervised representation learning has been widely used in
computer vision [47], natural language processing [16], speech
recognition [51], time series analyzing [10, 15, 28, 44, 52, 53], etc.
We review the studies of representation learning of time series.

SOM-VAE [15] presents a novel strategy to overcome the non-
differentiability in discrete representation learning and a gradient-
based version of the traditional self-organizing map algorithm.
However, the information learned by SOM-VAE via representa-
tion learning is limited. A transformer-based framework [53] learns
multivariate time series representation based on transformer en-
coder and applies the representation to time series regression and
classification. TimeNet [28] trains an encoder jointly with a de-
coder that reconstructs the input signal according to its learned
representations.

However, the above methods either cannot scale up to large time
series or fail to model complex time series. To tackle these issues,
TNC [44] proposes a self-supervised framework for exploring local
smoothness of the signal to learn the generalized representation of
time series. Eldele et al. [10] develop an unsupervised time series
representation learning framework (TCC) based on time and con-
text comparison. It facilitates the consistency of different data aug-
mentations. However, both TNC and TCC can learn representations
only at a certain semantic level and assume data has transformation-
invariance, which limits them from being adapted to other scenarios.
TS2Vec [52] proposes a robust contextual representation for each
timestamp. However, TS2Vec ignores the weights of the instances
and timestamps. Our weighted representation learning improves
TS2Vec by taking the correlation between the instances into account
when calculating the loss function.

8 CONCLUSION
This paper proposes an efficient and general model selection frame-
work for time series forecasting. To the best of our knowledge,
SimpleTS is the first framework that incorporates a classifier to
distinguish types of time series for prediction. SimpleTS employs
clustering and self-developed soft labeling. This way, the predic-
tion accuracy is almost independent of the number of candidate
prediction models. Moreover, we propose a weighted representa-
tion learning strategy for further improving the accuracy of the
classifier. Finally, extensive experiments on 55 datasets show that
SimpleTS outperforms seventeen baselines in terms of training
time, accuracy, precision and SMAPE in most cases. Moreover, we
validate the effectiveness of each component/technique enclosed
in SimpleTS, including clustering, soft labeling and weighted repre-
sentation learning. Specifically, compared with AutoForecast and
AutoAI-TS, the training time is reduced by approximately 4-10
times. The accuracy of model prediction is improved on most of the
training sets compared with the state-of-the-art methods. In future,
we plan to adapt SimpleTS framework to other fields, including but
not limited to anomaly detection and root cause localization.
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