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ABSTRACT
In the ongoing evolution of the OceanBase database system, it
is essential to enhance its adaptability to small-scale enterprises.
The OceanBase database system has demonstrated its stability and
effectiveness within the Ant Group and other commercial orga-
nizations, besides through the TPC-C and TPC-H tests. In this
paper, we have designed a stand-alone and distributed integrated
architecture named Paetica to address the overhead caused by the
distributed components in the stand-alonemode, with respect to the
OceanBase system. Paetica enables adaptive configuration of the
database that allows OceanBase to support both serial and parallel
executions in stand-alone and distributed scenarios, thus provid-
ing efficiency and economy. This design has been implemented in
version 4.0 of the OceanBase system, and the experiments show
that Paetica exhibits notable scalability and outperforms alternative
stand-alone or distributed databases. Furthermore, it enables the
transition of OceanBase from primarily serving large enterprises
to truly catering to small and medium enterprises, by employing a
single OceanBase database for the successive stages of enterprise or
business development, without the requirement for migration. Our
experiments confirm that Paetica has achieved linear scalability
with the increasing CPU core number within the stand-alone mode.
It also outperforms MySQL and Greenplum in the Sysbench and
TPC-H evaluations.
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1 INTRODUCTION
Initially, we have designed and developed the OceanBase system in
version 0.5, which utilizes a divided storage and computing layer,
thus resulting in significant scalability. For further improvement
of the performance, we have then implemented version 3.0 of the
system, which features enhancements that enable higher through-
put and lower write latency, thus being capable of supporting the
various business operations within the Ant Group and other com-
mercial organizations. Furthermore, we made the system available
as open-source, and shared the design and technology of the sys-
tem within the open-source community. We have commercialized
OceanBase, for applying its technology and capabilities to the busi-
nesses of numerous large, medium, and small enterprises since
2017. It is worth noting that OceanBase was the only distributed
database that passed the TPC-C benchmark in 2020. However, the
version 3.0 of OceanBase was not that well-suited to medium and
small enterprises, probably owing to the overhead incurred by the
log streams and partition bounds in small-scale machines, besides
the additional overhead resulting from the interaction among the
distributed components during the deployment.

The emergence of distributed databases has resolved the issue
of horizontal scalability, but the stand-alone performance and SQL
functionality are significantly inferior when compared to central-
ized databases, e.g., Oracle [23], MySQL [34], and PostgreSQL [37].
Many distributed databases have emerged during this process, and
some of them are distributed storage systems that only support
simple NoSQL functionality or limited SQL functionality, such as
Amazon Dynamo [19]. Furthermore, certain distributed databases
support both horizontal scalability and complete SQL functionality,
often referred to as NewSQL, such as CockroachDB [42] and Google
Spanner [9]. Citus [17] is an open source distributed PostgreSQL
for data-intensive applications through the PostgreSQL extension
APIs. However, their single-node performance is less than one-third
of that of MySQL.

Therefore, the choice between the stand-alone and distributed
system has become strenuous. Thus the typical decision-making is
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based on the data volume; i.e., if the data volume is relatively small, a
centralized database with complete functionality is chosen. Further,
if the data volume is huge, a distributed database or distributed
storage system is selected, thus sacrificing the functionality and
stand-alone performance in order to address the issue by modifying
the business or adding machines.

We further enhanced OceanBase [47] to version 4.0, expecting
that it would better support small-scale enterprises. The system
integrates several storage shards with a shared log stream and
provides a high-availability service. Owing to the advancement
in technology, contemporary machines have come to feature mul-
tiple cores, large amounts of DRAM, and high-speed storage de-
vices. This highlights the importance of considering both horizontal
and vertical scalability in the design of a distributed database sys-
tem. Accordingly, we have developed Paetica1 as a hybrid shared-
nothing/shared-everything cloud database system capable of sup-
porting both stand-alone and distributed integrated architecture.
We will describe the concept of Paetica in detail with the following
contributions.

• We propose Paetica, a stand-alone and distributed inte-
grated architecture that is implemented in version 4.0 of
the OceanBase system. Paetica features independent SQL,
transaction, and storage engines in both the stand-alone
and distributed systems, which enables the dynamic config-
uration switching by the user. The integrated architecture
design allows OceanBase to operate efficiently without in-
curring the distributed interaction overhead in the stand-
alonemode. Furthermore, while operating in the distributed
mode, the system achieves high performance besides pro-
viding disaster tolerance.

• We have developed a stand-alone and distributed integrated
SQL engine that is capable of processing SQL in diverse
situations. The engine has been designed to execute SQL
both in the serial and parallel manner to fully utilize the
available CPU cores. Furthermore, in distributed execu-
tion scenarios, the engine is capable of parallelism across
multiple machines that allows efficient processing of SQL
commands.

• We have constructed a stand-alone and distributed inte-
grated LSM-Tree storage engine that includes various com-
paction optimizations for both the stand-alone and dis-
tributed modes. These optimizations include the techniques
such as incremental major compaction and staggered round-
robin compaction, which intends to achieve a balance be-
tween the write performance and storage space utilization.

• For the stand-alone and distributed integrated transaction
processing engine, we have proposed an optimized version
of the 2-Phase Commit (2PC) protocol. This optimization
intends to reduce the message processing and log volume,
and subsequently decrease transaction latency. In the stand-
alone mode, Paetica does not require the use of 2PC and
instead utilizes a single log stream to process transactions
without accessing the global time service (GTS). Conse-
quently, the efficiency of the transaction engine is compa-
rable to that of a stand-alone database.

1Paetica is OceanBase version 4.0.

We have conducted scalability experiments to demonstrate the
linear scalability of Paetica. Our OLTP (Online Transaction Pro-
cessing) experiments also demonstrate that Paetica exhibits high
concurrency and low latency in both stand-alone and distributed
modes. We have also compared OceanBase 4.0 with MySQL 8.0 in a
separate experiment and found that OceanBase 4.0 performs better
than MySQL 8.0 in small-scale and stand-alone situations. Further-
more, we have compared Paetica with OceanBase version 3.1 and
Greenplum [31] 6.22.1 on the TPC-H [7] 100GB experiments, and it
is observed that Paetica outperforms OceanBase 3.1 5x on average.
Compared with Greenplum 6.22.1, Paetica demonstrates a superior
performance across all queries.

The paper is organized as follows. §2 presents the OceanBase
evolution. §3 provides an overview of the stand-alone and dis-
tributed architecture. §4 and §5 describe the integrated engine of
SQL and transaction processing. We present the experiments in §6
to prove the efficacy and economy of Paetica. We present discussion
including polymorphisim, dynamism and native multi-tenancy in
§7, and we review the related work in §8. Finally, we give the con-
clusions in §9. OceanBase is an open-source project under Mulan
Public License 2.0 [2] and the source code referenced in this paper
is available on both gitee [3] and GitHub [4].

2 OCEANBASE EVOLUTION
In this section, we illustrate the evolution of OceanBase from ver-
sion 0.5 to version 4.0.

2.1 OceanBase 0.5
OceanBase [4] has been developed since 2010. Figure 1 is the over-
all architecture diagram of OceanBase version 0.5. Concomitantly,
OceanBase has been divided into two layers, viz., storage and com-
puting. The upper layer is a service layer that provides SQL services
statelessly, and the lower layer is a storage cluster composed of two
kinds of servers: ChunkServer and UpdateServer. The ChunkServer
is characterized by the capability for automatic partitioning and
horizontal scalability of storage. TheUpdateServer utilizes the Paxos
protocol [28] to attain strong consistency and availability. However,
the UpdateServer does not possess the capability for distributed
transactions. Such an architecture can enable OceanBase to bet-
ter support businesses similar to Taobao favorites [1]. Further, it
has certain scalability, particularly a relatively strong scalability of
reading, and the SQL layer is stateless and can be scaled freely.

Despite the advantages of this architecture, a major issue is that
theUpdateServer node is a single-point write, multi-point read archi-
tecture, which is similar to PolarDB [13][29] and makes it difficult
to expand when higher levels of concurrency become necessary.
Furthermore, according to Figure 1, splitting the storage and SQL
layers results in a high query delay. It is difficult to control the net-
work jitter, and controlling the jitter of latency can be challenging
under conditions of extremely high latency requirements.

2.2 OceanBase 1.0 ~ 3.0
To address the aforementioned issues, OceanBase has abandoned
its previous architecture and developed the version 1.0 ~ 3.0, which
is characterized by a fully peer-to-peer (P2P) structure as shown
Figure 2. Each OBServer contains SQL, storage, and transaction
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Figure 1: OceanBase 0.5
engines. All the servers are able to process SQL and handle trans-
actions besides simultaneously storing data. As depicted in this
diagram, the vertical direction represents the distributed and scal-
able layer, whereas the horizontal direction represents the repli-
cation layer. The horizontal direction provides high availability
capabilities, whereas the vertical direction is achieved through the
continuous addition of machines to enhance the overall scalabil-
ity of the service. It employs several optimizations to achieve low
latency. In the stand-alone mode, local execution plan, local trans-
action API and the elimination of network overhead in the read
and write operations are the key features that contribute to the
low latency. In the distributed mode, the use of duplicated tables,
parallel execution engines, and multiple partition indexes are the
key factors that enable the low latency performance.
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Figure 2: OceanBase 1.0~3.0

Prior the evolution to OceanBase 4.0, the original architecture
had excellent scalability. Under this scalability, we performed the
TPC-C benchmark [6][16] with OceanBase 3.0. OceanBase is the
only distributed database that passed the TPC-C benchmark at
that time. This also reflects that the OceanBase 3.0 architecture
has exceptional adaptability in terms of horizontal scalability. Ac-
cording to Figure 2, from three nodes to 1,557 nodes OceanBase’s
ranking with a tpmC [6] index of 707 million, as the number of
nodes increases, the entire tpmC indicator has appreciable linear
scalability. While performing the TPC-C evaluation, OceanBase uti-
lizes a large cluster composed of 1,557 machines, and within eight
hours of pressure testing, it has the ability to process twenty million
transactions per second. This result shows that the previous archi-
tecture can support excellent scalability, and almost this scalability
and concurrent processing capabilities can satisfy the requirements
of most current online service systems, globally. Furthermore, by
employing a single zone deployment over a distributed storage
system, OceanBase passed TPC-H benchmark test and gained over
15 million QphH@30,000GB [5] in May 2021.

2.3 OceanBase 4.0
However, with the iteration of business requirements, we developed
the OceanBase 4.0 architecture, as shown in Figure 3. OceanBase
4.0 has the following features.

• More partitions: The architecture of OceanBase 4.0 reduces
the cost of partition maintenance. Furthermore, the opti-
mization of memory should not be underestimated. In the
previous versions, we have maintained one metadata for
every 2MB macroblock, and the ratio of metadata to data
is approximately 1:1000. Therefore, for models with larger
disks, the overhead of metadata would also increase signifi-
cantly. In this iteration, we have made the storage memory
overhead as on-demand loading, thus maintaining only the
root node (very small) in memory. When the user needs
to access the metadata, the leaf node and data node are
then loaded. This method reduces the overhead of the resi-
dent memory and brings the feature of small-size memory
optimization.

• More DDL support: In OceanBase 4.0, Data Definition Lan-
guage (DDL) allows the users to easily modify partitions
and alter primary keys, thereby facilitating existing data-
base usage practices. The implementation of DDL is rela-
tively straightforward. Initially, a hidden table is created,
and the pre-DDL transaction is initiated with attained snap-
shot point. The original table is then locked for reading
and writing. Subsequently, a Data Manipulation Language
(DML) statement is employed to supplement the data in the
hidden table. Finally, the original table is renamed. The pro-
cess involves three key technologies, viz., 1) table locking,
which prevents write operations while the modifications
are being made, 2) Partitioned DML (PDML), which is used
to accelerate the queries and streamline the code, and 3)
direct insertion, which allows for writing directly to static
data, thus avoiding memory overload and providing faster
speeds.

• Less resource consumption: In OceanBase 4.0, the production
specifications have been decreased from 16C/64G to 4C/16G
(CPU/memory), thus improving the user efficiency.We have
primarily optimized the following aspects, viz., 1) thread
stack optimization to reduce thread-local variables and use
of SmartVar to decrease the stack variables, 2) improvement
of metadata overhead from per-partition to per-logstream
storage, thus allowing metadata to be loaded on demand,
and 3) improved stability through the default activation
of input restriction, thus enabling greater stability under
4C/16G.

• Tenant isolation: We have optimized the tenant coupling
logic, primarily in the following three aspects, viz., 1) tenant-
level merging, whereby the default merging behavior is
triggered by tenants instead of cluster-wide, 2) tenant-level
metadata, in which the metadata is adjusted from the sys-
tem tenant to the user tenant and the TableId and TenantId
are decoupled, and 3) tenant I/O isolation, with Clog (Com-
mit log) files being split into tenants and SSTable supporting
the tenant-level I/O restriction.
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For medium and small-scale enterprises, the core change in
the OceanBase 4.0 architecture is the introduction of dynamic log
streams. Originally, we have equated the granularity of transaction
expansion and storage expansion together. However, if the storage
is divided into several shards, the transaction processing and high
availability capabilities are also based on such shards. We have de-
coupled these two concepts in OceanBase 4.0, hence several storage
shards will share a transaction log stream and the high-availability
service corresponding to this log stream.
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Figure 3: OceanBase 4.0
The core idea behind this change is that we hope to support

certain applications on a smaller scale. For example, in large-scale
applications such as Ant Group, the OceanBase 3.0 architecture
will not encounter bottleneck problems, but as OceanBase becomes
common, especially for various small andmedium-sized enterprises,
OceanBase 3.0 is difficult to be applied to such users. However, if
the number of log streams and the number of partitions are bound
together, in multiple scenarios, it cannot be adapted to support
small and medium-sized enterprises. In other words, if there are
too many log streams, the overhead will appear to be greater at a
smaller scale.

3 STAND-ALONE AND DISTRIBUTED
INTEGRATED DATABASE ARCHITECTURE

The architecture of OceanBase 4.0 can use the OceanBase database
in a distributed manner besides the stand-alone mode (similar to
MySQL [34]), for using OceanBase. First, if OceanBase is deployed
on a stand-alone basis, or as a single-container tenant in an Ocean-
Base cluster, it can provide the same efficiency and performance
while using a stand-alone database. Second, if the distributed mode
is employed, there is no need to pay additional costs for its in-
troduction at the tenant level, transaction level, and single SQL
execution level. For this case, we need to employ a stand-alone and
distributed integrated architecture in the design of the SQL layer,
storage layer, and transaction layer to satisfy the requirements of
diverse situations and give consideration of all levels.

3.1 Shared-everything or shared-nothing?
The debate surrounding the database development in regard to
shared-nothing [27][41] and shared-everything [12][21] architec-
tures has been long-standing. Figure 4 elucidates that a physi-
cal cluster is neither entirely shared-nothing nor entirely shared-
everything. A single node on each machine is a multi-processor

structure with a high number of CPUs and strong storage and com-
puting capabilities. These capabilities should not be disregarded,
and should be an area of consideration while performing scale-ups
for the stand-alone and centralized databases. Distributed databases
should consider both the horizontal and vertical expansions.
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Figure 4: Shared-nothing on shared-everything

If we want to take advantage of the hardware vertical expan-
sion capabilities, we should consider the role of database. We can
imagine such a distributed database. The left part of Figure 5 is
the actual architecture diagram of several distributed databases,
such as TiDB [25]. It is similar to the structure of OceanBase 0.5,
with dedicated computing nodes and storage nodes. The computing
node forms one layer, and the storage node is another layer. These
two layers are abstracted separately. Among them, the module that
handles the global affairs through GTM/TSO (global transaction
manager, timestamp oracle) needs to interact with this module
while performing the multi-machine interaction.
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Figure 5: From a Distributed Database to a Stand-alone One

As shown in right part of Figure 5, if this distributed database is
plugged into a node in a very simple way and it runs as a stand-alone
machine, we identify the biggest problem. The interaction between
these components is very expensive when working in a single
machine. This overhead is essentially an additional unnecessary
one for a single-machine database like MySQL, hence obviously
such a simple method is difficult for comparison with a single-
machine database.

3.2 Stand-alone and distributed integration:
taking into account both stand-alone and
distributed scenarios

The system architecture of stand-alone and distributed integrated
databases is illustrated in Figure 6. With a stand-alone machine,
there must be a three-tier system that consists of an independent
SQL engine, transaction engine, and storage system respectively.
For a comparison, a distributed database combines the distributed

3731



SQL engine, distributed transaction engine, and distributed stor-
age engine, thus creating three separate layers. The combination
of the three engines of the stand-alone and distributed systems
is desirable, while utilizing the same code base and allowing for
dynamic interaction and alteration. When converting between the
stand-alone and distributed modes, data migration is required and
performed online. In order to reduce the impact on the business,
the migration is divided into two parts. For the leader replica, the
first step is to switch the leader so that the role of the data replica
to be migrated becomes a follower, so as to ensure that there is no
read and write on it. The second step is to perform data migration
on the follower replica.

A stand-alone and distributed integrated architecture requires
both the scalability of a distributed system, and the functional-
ity and stand-alone performance of a centralized database. The
basic requirements for a database include the ACID (Atomicity,
Consistency, Isolation, Durability) properties of transactions. The
challenge against the distributed databases is the mechanism to
ensure the ACID properties of transactions in exceptional scenarios.
The core issue is the implementation of data recovery based on
redo logs and to ensure the atomicity of distributed transactions in
exceptional scenarios.

The stand-alone database needs to provide various capabilities to
maximize its scalability. At the SQL layer, this requires the parallel
execution capabilities, whereas at the transaction layer, there must
be support for scalable core technologies such as multi-version
concurrency control (MVCC) [11][14]. Furthermore, the utilization
of technologies such as group commit [24] is essential for enabling
concurrent execution of multiple transactions on a single machine.
Finally, at the storage layer, parallel I/O on a single machine must be
supported to make full use of multiple disks and storage bandwidth.

Increasing the distributed scalability is not the only factor that
must be taken into consideration when deploying a stand-alone
database in a distributed cluster. To achieve a satisfactory perfor-
mance, the stand-alone efficiency must be optimized and the data-
base must be capable of efficiently executing serial commands. Fur-
thermore, the distributed transactions must be capable of adaptive
optimization in order to enable successful stand-alone transactions.

OceanBase has implemented a pioneering technology, the stand-
alone and distributed integrated LSM-Tree [36] storage engine, that
can be employed both in the stand-alone and distributed scenarios.
In the former case, merge operations can be conducted without
interference between front and back, whereas a distributed strat-
egy such as staggered round-robin compaction can be employed in
distributed deployments. Both the stand-alone and distributed sce-
narios are taken into account for the SQL, transaction, and storage
layers in its design, with no extra overhead occurring in either of
the cases, thus fulfilling OceanBase’s design goal.

Thus, we require two basic properties: First, while working on
a single machine, OceanBase has no additional components, i.e., a
single process can work without the complex interactions between
the redundant processes. Under the single-process and multi-thread
model, each component can actually complete the interaction using
simple function calls, which is a very critical point. Second, there are
vertical interactions between all components in Figure 6, which are
SQL, transaction, and storage layers. If it is in a stand-alonemachine,
we employ the method of function call to do the interaction; if it is

between nodes, and necessary, then there must be an interaction
between nodes, and then the need to use RPC to interact.

In accordance with the aforementioned shared-nothing and
shared-everything combination architecture, function calls are em-
ployed within each OBServer node to directly enable communica-
tion among the SQL, transaction and storage engines, similar to a
stand-alone database. To enable the communication among mul-
tiple nodes, the layering structure is relaxed to enable an optimal,
suitable, and efficient solution. For instance, when the SQL from
one node sends a message to the SQL layer on another node, the
latter is granted access to its storage nodes. The best choice is con-
tingent upon the desired outcome and can vary based on the load.
OceanBase offers the capability to access remote storage directly.
The concept is also applied at the transaction processing layer to
avoid unnecessary interaction.

4 STAND-ALONE AND DISTRIBUTED
INTEGRATED SQL ENGINE

The OceanBase execution engine has to deal with multiple situ-
ations according to the expectation that it can be adaptive and
optimal for each of them. On a higher level, each SQL execution has
two modes, viz., serial or parallel executions. Figure 7 illustrates
the stand-alone and distributed adaptive execution engine. Serial
execution comprises of local, remote, and distributed execution. For
the parallel execution, there are parallel queries and DML opera-
tions that improve the performance. The detailed descriptions are
given in the following.

4.1 Serial execution, parallel within a single
machine, and distributed parallel

During the serial execution, if the accessed data is on the local
machine, then there is no difference between the remote processing
and the processing of native or stand-alone SQL. For the data located
on another node, there are two ways to access it, viz., remote data
acquisition or remote execution [39]. In the former one, the data
is pulled to the local machine, and in the latter, the transaction
processing and storage access processing is forwarded to the other
node and the entire transaction is returned. If a single SQL accesses
data frommultiple nodes, then the calculation can be pushed to each
node with the intention of achieving the effect of serial execution
with a minimal overhead in the case of a single machine. This also
allows for the distributed execution capabilities. Parallel query is
supported and can be either local or distributed, with parallel DML
write operations also supported.

Serial execution plans are an efficient method for the small-scale
businesses to process the data without context switching or remote
data access. However, introducing parallel capabilities into a stand-
alone OceanBase allows for increased SQL processing capacity and
faster response times, if larger amounts of data need to be accessed.
Although several open-source stand-alone databases may not sup-
port this capability, it is possible to increase the parallelism using
multi-core servers. Distributed execution plans can be employed
to further increase the scale of data processing, thus allowing for
parallelism on multiple machines and the potential to surpass the
limits of single-machine CPUs, up to thousands of cores.
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4.2 Serial execution: DAS execution and
distributed execution

There are two execution modes for the serial execution: direct
access store (DAS) execution [44] and distributed execution. One
of the methods of DAS [35] execution is to pull data. If the data
is located remotely, and it is a simple point query or index access
back to the table query, application of this method consumes the
least of resources. We will pull this data to the local, along with
its execution. There is no difference in form between the plan
and the local execution plan, and this action will be performed
automatically in the executor. However, it is preferable to push
down the calculation than to pull the data, hencewe also support the
distributed execution. This distributed execution does not increase
the consumption of additional resources. We will ensure that its
parallelism and the previous DAS execution are identical.

For certain specific queries or large-scale scans, we will dynam-
ically and adaptively select the two, and evaluate the one with
the better performance based on the cost. OceanBase utilizes an
execution engine to facilitate the Hybrid Transaction/Analytical
Processing (HTAP) workloads. With respect to traditional Online
Transaction Processing (OLTP), OceanBase employs a pull-based
data access methodology and a bottom-up computational execution
approach for the traditional Online Analytics Processing (OLAP).

The parallel execution framework can adaptively process the
parallelism in a single machine and distributed parallelism, since
they are the same framework. All the parallel processing workers
can form multiple threads on the machine or threads on many
nodes. We have a layer of adaptive data transmission layer in the
distributed execution framework. For the parallelism in a single
machine, the transmission layer will automatically convert the data
interaction between the threads into memory copy. Accordingly,
the two different scenarios are completely abstracted by the data
transmission layer. The parallel execution engine has no differ-
ence with respect to implementation of the scheduling layer for
parallelism in a single machine and distributed parallelism.

5 STAND-ALONE AND DISTRIBUTED
INTEGRATED TRANSACTION PROCESSING
ENGINE

Since it is more difficult to achieve scalability in the transaction
processing, we search the reason for considering both the stand-
alone and distributed during the transaction processing. In addition,
we proposed and implemented a fully distributed deadlock detection
and resolution algorithm named LCL (Lock Chain Length) [46],
which is dynamically scalable and applied to OceanBase Paetica.

5.1 Traditional 2PC vs. OceanBase 2PC
Figure 8 is the traditional distributed transaction processing pro-
cess [8][10][22][38], which is categorized into the opening phase
of the transaction and the commit phase of the transaction, and
Figure 9 corresponds to the transaction processing process of Ocean-
Base. Previous works [30, 32, 48] attempt to reduce the overhead of
2PC and synchronous replication. OceanBase transaction commit
protocol proposes a new approach, termed the two-phase commit
protocol for the participants and coordinators.

Global transaction 
managerCoordinator Participant 1 Participant 2 
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Get global ID

Global ID and 
snapshot

Commit 
transaction

Begin success

Prepare response

Prepare request

Commit responseCommit 
success

Commit request

Transaction
begin

Transaction
commit

Figure 8: Traditional 2PC

Compared with traditional 2PC in Figure 8, OceanBase 2PC in
Figure 9 has significantly less message processing and log volume
than traditional 2PC from the instant the transaction is submitted
to the successful commit, which gives it a great advantage in la-
tency. This advantage will also support the transaction-handling
capability of OceanBase in the distributed scenarios, unlike several
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other distributed databases that incur a large overhead. There are
two scenarios to access GTS: 1) Statement snapshot acquisition; 2)
Acquisition of transaction submission version number. For stand-
alone transactions, 1) there is no need to visit GTS, which has been
optimized in OceanBase 4.0. 2) The transaction submission version
number will obtain GTS to meet the external consistency, though
this acquisition is only an interface call, and will not actually send
RPC, hence the efficiency is relatively high.
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commit
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Figure 9: OceanBase 2PC

5.2 Log stream and version number manager
If a single transaction involves only a single log stream, generally
speaking, and if the amount of business data is within the tolerable
granularity of load balancing, the log stream does not need to be
particularly large. There is only one log stream in a high probability,
when deploying in a stand-alone mode, and any transaction in a
log stream does not need to go through the two-phase commit.

OceanBase employes the transaction version number to identify
the order of committed transactions, and determines the visibility
of multi-version data under the snapshot isolation level. Ocean-
Base’s transaction version number service takes into account both
stand-alone and distributed performance. In a distributed scenario,
it obtains the transaction version number through the global times-
tamp service. In a stand-alone deployment scenario, the global
timestamp service and transaction context must be on one node.
It can be configured to use the local timestamp service to obtain
the transaction version number, and obtain the version number
through a function call, thereby avoiding the overhead of context
switching caused by RPC.

The transactions in a distributed database system are not inde-
pendent of one another, and they can involve the synchronization of
single or multiple log streams. In OceanBase, we has developed an
optimization for the single-log stream transactions, which enables
the transactions to fetch a local version number without compromis-
ing the global consistency. If all the transactions and workloads do
not involve distributed transactions, the entire transaction process-
ing is analogous to the same procedures in a stand-alone database.

6 PERFORMANCE EVALUATION
In the evaluation, we perform experiments with different database
systems and configurations.

6.1 Experimental Configuration
We use the following databases: OceanBase 3.1, OceanBase 4.0,
MySQL 8.0, Greenplum 6.22.1, and RDS 8.0 in the performance
evaluation. Firstly, the single-node experiments in §6.2, §6.3, and
§6.4 are performed on a two-way Intel Xeon Platinum 8163 CPU @
2.50 GHz server. Secondly, the single-node experiments in §6.5 and
§6.6 are done on 32 cores Intel(R) Xeon(R) Platinum 8396B CPU,
128GB DRAM, and three 500GB ESSD PL1. Thirdly, the single-node
experiments in §6.7 are performed on ecs.r6.xlarge, ecs.r6.2xlarge,
ecs.r6.4xlarge, and ecs.r6.8xlarge instances, respectively in Alibaba
Cloud (AliCloud).

6.2 Stand-alone performance scalability
The following experiment, as shown in Figure 10, have been run
on a two-way Intel Xeon Platinum 8163 CPU @ 2.50 GHz server.
The Sysbench [26] dataset is 1,000,000, with a stress test of 1,500
concurrency and 30 tables. OceanBase expands the experiment
with the enhancement of hardware performance, from 4 cores to 64
cores, and can achieve basic linear expansion from 9×104, 1.8×105,
3.7 × 105, 6.9 × 105, 1.2 × 106 within the scale of 64 cores.

In the point select and read-only scenarios, an increase in the
number of CPU cores by one-fold resulted in a corresponding one-
time increase in the performance when the number of the server’s
CPU cores was equal to or less than 32 vCPU. However, when the
number of the server’s CPU cores exceeds 32 vCPU, a lack of phys-
ical cores implies that the performance does not scale up linearly.
Furthermore, an upgrade from 32 vCPU to 64 vCPU resulted in a
50% increase in the performance of the two scenarios. In the three
pure write scenarios of insert, update, and write only, when the
number of the server’s CPU cores is below 32 vCPU, a one-fold
increase in the number of CPU cores resulted in an approximate
increase in performance by 1.2 times, thus exhibiting full linearity.
Conversely, when the number of the server’s CPU cores exceeds 32
vCPU, the performance change resembled that of the read scenario
and no longer displayed a linear increase. Thus, we have observed
that OceanBase can provide linear expansion.
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Figure 10: OceanBase Stand-alone Scalability

6.3 High concurrency and low latency OLTP
Originally, a stand-alone database or a centralized database can
support a business with one machine. Following the introduction
of distributed databases, the scalability is excellent. If we intend to
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support the same amount of concurrency in a three-replica-based
distributed database system, we may have to employ three nodes
to provide services together to achieve the same performance and
efficiency as a singlemachine. Figure 11 illustrates high concurrency
and low latency OLTP scenarios.
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Figure 11: Low latency OLTP
This is obviously not the distributed database that users want.

The key issue is with respect to the performance, we should not
only look at the increase in throughput along with the speed of
a single SQL or a single transaction that can be processed from
the perspective of the application. Although we know that the
delay is increasing with the increasing proportion of distributed
transactions, from the perspective of a single part of transaction
processing, there are two key points that should be satisfied, viz.,
1) the delay needs to be low enough even if it is composed of com-
pletely distributed transactions, 2) the system should not produce
extra latency when there are not so many distributed transactions.

The optimization of the SQL, storage, and transaction layers for
the stand-alone granularity transactions and SQL is a priority, even
in a distributed environment. The users are denied a substantial
degree of control after these components are layered independently.
Therefore, providingmethods to reduce the amount of RPC requests
by placing the data on a node would be beneficial. It is important
that the users and DBAs have a control capability with extreme
performance requirements. OceanBase has taken advantage of the
control offered by C++, which allows it to preciselymanagememory
and reduce latency. Furthermore, providing the operators with the
ability to partition the data is also essential, as a table group allows
the users to avoid distributed transaction overheads. A table group
is not a physical object instead of a logical concept that represents a
group or a set of tables. Tables that belong to such a groupmustmeet
some constraints. All tables must have the same locality (including
replica type, number, and location), primary zone (leader location
and priority), and the same partitioning method.

6.4 OceanBase 4.0 vs. MySQL 8.0
According to Figure 12 and Figure 13, if there is no distributed trans-
action scenario and they are deployed in a distributed situation,
the effect of a single machine is to be determined. OceanBase 4.0
and MySQL 8.0 Enterprise Edition have been compared under the
same hardware condition. According to the data, OceanBase 4.0
performs better than MySQL under the same hardware environ-
ment, and even for small-scale scenarios, we can use the OceanBase

distributed database as a stand-alone database with confidence. Fig-
ure 12 compares the TPS experimental results of OceanBase 4.0 and
MySQL 8.0, which shows the performance of the two databases in a
high-concurrency environment. In the insert and update scenarios,
the performance of OceanBase 4.0 is 1.7× and 2.0× that of MySQL
8.0, respectively. In addition, in the read-only scenario, OceanBase
4.0 also has twice in the performance improvement.
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Figure 12: OceanBase 4.0 vs. MySQL 8.0 in throughput

The latency of transaction processing is the most concerned
indicator for users, as shown in Figure 13. Especially in the insert
and update scenarios, OceanBase 4.0 shortens the latency by almost
50% compared to MySQL 8.0. This implies that OceanBase 4.0 can
perform better in scenarios where data is frequently updated, signif-
icantly improving the user experience. The two results illustrated
in Figure 12 and Figure 13 show that even in the single-machine
environment, the comprehensive performance of OceanBase 4.0 in
handling non-distributed transactions is higher than that of MySQL
8.0. Concomitantly, these results fully verify the high concurrency
and low latency features of Paetica in OLTP transactions.
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Figure 13: OceanBase 4.0 vs. MySQL 8.0 in latency

There is an obvious problem with the traditional way of using
MySQL master and backup databases, i.e., the data loss during
disaster recovery. This problem cannot be solved, but OceanBase
must first be able to make three machines highly available. From
4.0 onwards, we will officially recommend a deployment method,
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such that there is an OceanBase node in each zone, which is called
a single-machine three-copy, without much additional overhead.
The OBProxy layer provides the capability of continuous business
connections. If we do not need such a capability, we can achieve
better high availability capabilities than MySQL without deploying
any proxy like MySQL.

For example, at the beginning, it was completely deployed on
a single machine, and it was enough for the business to do some
prototype experiments. With the expansion of business scale, the
requirements for computing and storage are getting higher and
higher. In the process, this node can be expanded vertically. It used
to be 4 cores, though currently it has 16 cores. We can buy it on
ECS (Elastic Compute Service), if on cloud, by directly applying for
the specification upgrades.

In this manner, OceanBase is able to leverage the improved CPUs
to provide better performance. Moreover, if high availability is not
necessary and a three-node cost is not desired, then a primary-
standby database would be sufficient, and OceanBase can also pro-
vide this capacity. This kind of high availability is commensurate
with the traditional databases and the primary-standby database
also remains an option.

6.5 Comparison between OceanBase 3.1 and 4.0
The results presented in Table 1 indicate the execution time of SQL
queries on the TPC-H 100GB experiment. As can be observed, the
OceanBase community edition 4.0 demonstrates a reduced execu-
tion time as compared to the previous version, OceanBase commu-
nity edition 3.1, with an average improvement of 5x. The greatest
performance increase was observed in queryQ6, with a 3086.96% im-
provement. This query assesses the potential revenue gain from the
elimination of specific company-wide discounts within a specified
percentage range for a given year. The enhanced DDL support and
performance optimization implemented in OceanBase 4.0 allows
for more efficient processing of such complex queries.

The data presented in Table 1 indicates that the proposed model,
Paetica, is capable of effectively processing the queries in a com-
prehensive environment. This suggests that Paetica is a promising
approach for addressing this particular problem.

6.6 OceanBase 4.0 vs. Greenplum 6.22.1
Figure 14 presented in this study illustrates the performance com-
parison of OceanBase 4.0 against Greenplum 6.22.1 [31] on the
TPC-H 100GB benchmark, with the system configuration of 32
cores Intel(R) Xeon(R) Platinum 8396B CPU, 128GB DRAM, and
three 500GB ESSD PL1 on each machine. The x-axis depicts the
set of queries employed in the TPC-H benchmark, whereas the
y-axis represents the time required for executing each query. As
depicted in the figure, OceanBase consistently demonstrates a su-
perior performance in comparison to Greenplum across all queries,
with the most significant improvement observed in query Q17. Par-
ticularly, OceanBase achieved an execution time of 0.61s, whereas
Greenplum required 28.29s. Query Q17 evaluates the potential loss
of average yearly revenue resulting from the discontinuation of
orders for small quantities of specific parts and has the potential
to reduce the overhead expenses by focusing on larger shipments.
The newly designed SQL and storage engines in OceanBase 4.0

Table 1: Performance Comparison between OceanBase (OB)
Community Edition (CE) 4.0 and 3.1

Query OB CE 4.0 (s) OB CE 3.1 (s) Improvement
Q1 2.34 14.04 500.00%
Q2 0.14 1.12 700.00%
Q3 0.72 13.57 1784.72%
Q4 0.56 2.51 348.21%
Q5 2.25 12.31 447.11%
Q6 0.23 7.33 3086.96%
Q7 1.52 10.38 582.89%
Q8 0.70 11.42 1531.43%
Q9 5.22 30.99 493.68%
Q10 1.24 6.84 451.61%
Q11 0.23 1.22 430.43%
Q12 1.62 8.64 433.33%
Q13 2.41 7.59 214.94%
Q14 0.36 1.51 319.44%
Q15 0.79 3.01 281.01%
Q16 0.66 2.66 303.03%
Q17 0.63 8.60 1265.08%
Q18 0.93 7.88 747.31%
Q19 0.78 9.36 1100.00%
Q20 1.17 10.95 835.90%
Q21 2.42 12.27 407.02%
Q22 1.24 4.05 226.61%
Total 28.16 188.25 568.50%

enable the efficient processing of this complex query. Furthermore,
it is worth mentioning that in query Q11, they have the minimum
execution time among all queries. This feature owes to Q11 in only
finding the most important subset of suppliers’ stock in a given
notion, which is not a complex query. This observation indicates
that OceanBase 4.0 is capable of efficiently processing an extensive
range of queries, including both the complex and simple ones.
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Figure 14: TPC-H 100GB Performance Results

The data presented in Figure 14 demonstrates that OceanBase is
capable of effectively processing queries and achieving high perfor-
mance on the TPC-H benchmark. This suggests that OceanBase 4.0
is a potential solution for addressing the problem of data manage-
ment and query processing.
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6.7 OceanBase 4.0 vs. RDS 8.0
Alibaba Cloud Database RDS (Relational Database Service) offers
high availability, reliability, security, and scalability of the hosted
database services, with performance equivalent to the commer-
cial databases and a price below that of ECS self-built databases
and self-purchased server-built databases, thereby saving a con-
siderable amount of deployment and maintenance costs. Figure 15
and Figure 16 demonstrate the scalability of the small-scale high-
availability deployment from the perspectives of throughput and
latency, respectively. In Sysbench, there are six operations, which
are simplified as follows: point select (ps), read only (ro), write only
(wo), read write (rw), insert (is), update (up).
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Figure 15: OceanBase 4.0 vs. RDS 8.0 in throughput

As shown in Figure 15, 1) for the insert and update scenarios,
OceanBase’s throughput is over 2x that of RDS 8.0, and 2) for the
other scenarios, OceanBase 4.0 is 20%-50% higher than RDS 8.0 in
throughput, thus highlighting the efficiency of Paetica. As illus-
trated in Figure 15(b), experiments conducted on an ecs.r6.2xlarge
instance with 8 vCPUs, 64GB of DRAM and a cloud disk PL1 shows
that Paetica has outperformed RDS 8.0 across all workloads, even
with the insertion throughput per second of 1675.48% exceeding
that of RDS 8.0. Both Figure 15 and Figure 16 demonstrate that in
each scenario the throughput and latency of OceanBase 4.0 exhibit
the expected linear expansion with the increasing number of CPU
cores, whereas the linear expansion of RDS is relatively poor in the
writing scenario.
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Figure 16: OceanBase 4.0 vs. RDS 8.0 in latency

7 DISCUSSION
7.1 Polymorphism and dynamism
OceanBase has the capacity to structurally arrange the data in a
variety of polymorphic forms. It can be deployed in a stand-alone
form for the small-scale enterprises, with the option to establish a
primary-backup database or multiple replicas. If further availability
is desired, a three-replica configuration can be applied. It is possible
to progress to a fully-distributed OceanBase database in tandem
with the business growth or company expansion.

The conversion or expansion between the varied polymorphic
forms is achievable with the reversals of each arrow as depicted in
Figure 17, with the dynamic efficacy of each arrow transformation

being retained without the need to substitute the OceanBase binary.
The system remains completely functional in all three forms, thus
providing dynamic transformation. This characteristic enhances
the flexibility and reduces the cost for the user.

7.2 Native multi-tenancy
We have considered the issue of discomfort for the users who are
transitioning from MySQL to OceanBase, during the design process
of the OceanBase stand-alone and distributed integrated architec-
ture. Particularly, the implementation of multiple tenants requiring
individual tenant creation upon entry have been considered. Fol-
lowing the thorough discussions with the users and customers, it
has been determined that the multi-tenant feature should be main-
tained, particularly for the instances of private deployment and
public cloud deployment, which coincides with the points in cer-
tain cloud database services [20, 43]. For the private deployment
scenarios, as shown in Table 2, small businesses may not wish to
undergo the complex process of setting up servers. However, owing
to the current availability of hardware featuring numerous cores
and minimal specifications, OceanBase’s native multi-tenant ca-
pability allows for the division of the stand-alone into multiple
databases to be employed without the necessity of any further con-
tainer management systems, provided no additional infrastructure
is required.

OceanBase can be easily vertically scaled for the large-scale de-
ployments. In the distributed scenarios, it has the added capability of
being able to scale in both the vertical and horizontal directions on
a per-tenant basis. One tenant consists of 4 cores and 3 containers,
whereas another machine may choose to operate in the stand-alone
mode and can be allocated 16 cores directly. Alternatively, it may
opt not to be distributed. In such cases, the multi-tenancy offers a
level of granularity that is easily managed.

Deployment on the public cloud or within a large OceanBase
cluster within an enterprise renders it even more valuable. Even for
the small-scale deployments, such as an OceanBase server utilizing
16 cores, though with the need for a smaller tenant, such as a 0.5
core tenant, OceanBase is capable of supporting 0.5 core tenants
internally within the database. This allows the users to precisely
control costs and enables the vertical scaling within the tenants
on the cloud or load balancing among the tenants. Both of these
dimensions can be made elastic and freely scalable. Consequently,
we have maintained all of OceanBase’s functions and the ability to
have multiple tenants in different forms.

8 RELATEDWORK
8.1 Stand-alone and distributed integrated

system
A plethora of stand-alone and distributed integrated database sys-
tems are available, which facilitates the users with the ability to
deploy the databases in an adaptive manner. In this study, we will
examine the current state-of-the-art systems within the industry
and classify their characteristics, as outlined in Table 3.

Apache Cassandra [15] stores the data on multiple nodes in
a cluster and replicates the data across the cluster to ensure high
availability. It has been designed to be highly fault-tolerant, with the
ability to handle failures of individual nodes without affecting the
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Figure 17: OceanBase Multiform On-demand Scalability

Table 2: Characteristics of different deployment

Stand-alone small size Stand-alone large size Distributed

Privatization Deployment Great value Great value Great value
No need for container management Easy to scale-up Resiliency and load balancing

Public Cloud Deployment Selling tenants In-tenant scale-up In-tenant scale-out
Better value for money Inter-tenant load balancing

Table 3: Features of different systems

Feature Cassandra MongoDB HBase Redis MySQL PostgreSQL Paetica
Data
model

Column-
oriented

Document-
oriented

Column-
oriented

Key-value
store

Row-oriented Row-oriented Hybrid row-
column-
oriented

ACID
transac-
tions

No Yes (single doc-
ument)

No No Yes Yes Yes

Scalability Horizontally
scalable

Horizontally
scalable

Horizontally
scalable

Horizontally
scalable

Horizontally
scalable

Horizontally
scalable

Horizontally
scalable& Ver-
tically scalable

Replication Masterless,
peer-to-peer
replication

Master-slave,
automatic
or manual
sharding

Master-slave Master-slave or
masterless

Master-slave
replication

Master-slave,
publisher-
subscribers

Master-slave
& paxos-based
replication

Data con-
sistency

Tunable consis-
tency

Eventual con-
sistency

Strict consis-
tency

NA (not a data-
base)

Tunable consis-
tency

Tunable consis-
tency

Tunable consis-
tency

Indexing Secondary,
composite,
and custom
indexes

Primary, sec-
ondary, and
geospatial
indexes

Row key Primary, sec-
ondary, and
geospatial
indexes

Primary,
unique, full-
text indexes

Primary,
expression,
partial

Local, global,
and unique
indexes

availability of the system. It has also been designed to handle large
volumes of data that are distributed across multiple data centers.
However, it does not support ACID transactions, neither in the
stand-alone nor in the distributed mode.

MongoDB [33] stores the data in JSON-like documents with op-
tional schemas, and it supports horizontal scaling, which allows it
to handle large amounts of data and high levels of read and write

throughput. It is able to deploy a stand-alone instance of MongoDB
for management purposes. However, it is important to note that
stand-alone instances are typically only suitable for testing and
development owing to their lack of replication and high availability.
Whereas, a replica set is a group of MongoDB deployments that
maintain the same data set and provide redundancy and high avail-
ability. Replica sets are typically used as the basis for all production
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deployments. MongoDB only supports eventual consistency and is
not extensively applicable for the industry that mandates strong
data consistency.

Apache HBase [45] has been designed to provide real-time read
and write access to large amounts of data, with low latency and
high throughput. It can be deployed in either the stand-alone or
distributed mode. In the stand-alone mode, HBase operates inde-
pendently and utilizes the local filesystem rather than the Hadoop
Distributed File System (HDFS) [40]. In the distributed mode, HBase
daemons are distributed across all nodes in the cluster, thus allow-
ing it to handle large amounts of data in a distributed environment.
It is limited on inadequate indexing methods.

8.2 High-performance stand-alone database
without distributed functionality

Redis [18] has been known for its high performance and low latency,
making it well-suited for real-time applications that require fast data
access. It supports a wide range of data structures, including strings,
hashes, lists, sets, and sorted sets, thus allowing the users to store
and manipulate data in a multitude of ways. It is scalable and can be
employed in a distributed architecture, thus allowing it to handle
large amounts of data across multiple servers. However, it does not
provide data consistency and transaction, thus not satisfying the
requirement of a robust database.

MySQL [34] is a widely-utilized relational database management
system (RDBMS) known for its high-performance capabilities in
managing and storing the data within various applications. The
system employs an MVCC mechanism to effectively manage the
concurrent access to the database. To optimize the query perfor-
mance, MySQL supports a range of indexing options, including
B-tree and hash indexes. However, it is important to note that
MySQL is not inherently designed as a distributed database like
OceanBase, though it can be configured to operate within a dis-
tributed environment through the implementation of techniques
such as replication and sharding.

Replication, a feature within MySQL, enables the data to be du-
plicated from a primary server to one or more secondary servers,
thereby increasing the availability and scalability. Sharding, on
the other hand, involves the partitioning of a large database into
smaller, more manageable units called “shards”, which can be stored
on separate servers. This approach allows for a greater horizon-
tal scalability as more servers can be included in the system to
accommodate the increasing load.

PostgreSQL [37] is a powerful relational database management
system that is extensively used in academic research and other
fields. One of its key features is its support for MVCC, which al-
lows multiple users to access the same data simultaneously without
mutual interference. Furthermore, PostgreSQL includes the built-in
support for spatial data types and functions, enabling researchers to
efficiently store and query the data with a geographic component.
The system also has the capability for horizontal scalability that
allows for the handling of large volumes of data and a high number
of concurrent users without compromising the performance. Fur-
thermore, PostgreSQL supports advanced indexing options such as
B-Tree, R-Tree, Hash, and GiST, which can be utilized to optimize

performance for specific types of queries. PostgreSQL can be em-
ployed as a distributed database, but it does not natively provide
distributed functionality. However, it does offer mechanisms such
as streaming replication and logical replication, besides the ability
to utilize a foreign data wrapper, which provides access to the data
stored in external databases as if it were stored locally.

8.3 High-performance distributed database
without stand-alone functionality

Google Spanner [9] is a NewSQL database that shards data across
many sets of Paxos state servers in data centers, globally. It has
designed and implemented important database features atop their
distributed-systems infrastructure via managing cross-datacenter
replicated data. Spanner supports distributed transactions and pro-
vides an SQL-based query language. It combines and extends ideas
from 1) the database community: an easy-to-use and semi-relational
interface, transaction processing, and SQL engines, and 2) the sys-
tem community: scalability, fault tolerance, consistent replication,
and wide-area distribution. However, it cannot support good stand-
alone performance owing to its distributed structure.

CockroachDB [42] that is inspired by Google Spanner is a scal-
able SQL-based distributed database to support the global OLTP
workloads while maintaining strong consistency and high avail-
ability. Meanwhile, it is resilient to disasters through replication
and automatic recovery mechanisms. Similar to OceanBase, it also
utilizes a standard distributed shared-nothing architecture, where
all nodes are used for both data storage and computation. Similarly,
its stand-alone performance is not good due to a similar reason to
Google Spanner.

TiDB [25] is a Raft-based HTAP database, which supports multi-
Raft storage and HTAP engines. It has three core components,
viz., 1) a distributed storage layer consisting of a row store (TiKV)
and a columnar store (TiFlash), 2) a Placement Driver for manag-
ing Regions, that provides strictly increasing and globally unique
timestamps, and 3) a computation engine layer that is stateless and
scalable. However, due to its distributed structure, its stand-alone
performance needs to be improved.

9 CONCLUSION
For the users, the stand-alone and distributed integrated capability
of Paetica has two dimensions corresponding to value and meaning.
First, Paetica can be deployed in a stand-alone mode, thus provid-
ing the ability of a stand-alone database. The administrator can
dynamically transform the form, at any time, from a stand-alone
configuration to a distributed configuration or vice versa. Second,
Paetica has a significant performance advantage even in distributed
deployment scenarios, as compared to other layered distributed
databases. With a careful control, the efficiency and performance
of Paetica can be comparable to that of a stand-alone database,
even when the proportion of single-machine transactions increases.
The experiments indicate that our design improves the scalabil-
ity and performance of OceanBase 4.0. In the stand-alone mode,
OceanBase 4.0 performs better than MySQL under the identical
hardware environment. In the distributed mode, the query perfor-
mance of OceanBase 4.0 is 6x that of Greenplum on TPC-H 100GB
experiments.
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