
Big Data Analytic Toolkit: A general-purpose, modular, and
heterogeneous acceleration toolkit for data analytical engines

Jiang Li, Qi Xie, Yan Ma, Jian Ma, Kunshang Ji, Yizhong Zhang, Chaojun Zhang, Yixiu Chen,
Gangsheng Wu, Jie Zhang, Kaidi Yang, Xinyi He, Qiuyang Shen, Yanting Tao, Haiwei Zhao, Penghui

Jiao, Chengfei Zhu, David Qian, Cheng Xu∗

Intel Corporation

{jiang1.li,qi.xie,yan.ma,jian1.ma,kunshang.ji,yizhong.zhang,chaojun.zhang,aia.bdf.moif,david.qian,cheng.a.xu}@intel.com

ABSTRACT

Query compilation and hardware acceleration are important tech-

nologies for optimizing the performance of data processing engines.

There have been many works on the exploration and adoption of

these techniques in recent years. However, a number of engines

still refrain from adopting them because of some reasons. One of

the common reasons claims that the intricacies of these techniques

make engines too complex to maintain. Another major barrier is

the lack of widely accepted architectures and libraries of these tech-

niques, which leads to the adoption often starting from scratch

with lots of effort. In this paper, we propose Intel Big Data Analytic

Toolkit (BDTK), an open-source C++ acceleration toolkit library

for analytical data processing engines. BDTK provides lightweight,

easy-to-connect, reusable components with interoperable inter-

faces to support query compilation and hardware accelerators. The

query compilation in BDTK leverages vectorized execution and

data-centric code generation to achieve high performance. BDTK

could be integrated into different engines and helps them to adapt

query compilation and hardware accelerators to optimize perfor-

mance bottlenecks with less engineering effort.

PVLDB Reference Format:

Jiang Li, Qi Xie, Yan Ma, Jian Ma, Kunshang Ji, Yizhong Zhang, Chaojun

Zhang, Yixiu Chen, Gangsheng Wu, Jie Zhang, Kaidi Yang, Xinyi He,

Qiuyang Shen, Yanting Tao, Haiwei Zhao, Penghui Jiao, Chengfei Zhu,

David Qian, Cheng Xu. Big Data Analytic Toolkit: A general-purpose,

modular, and heterogeneous acceleration toolkit for data analytical engines.

PVLDB, 16(12): 3702 - 3714, 2023.

doi:10.14778/3611540.3611558

PVLDB Artifact Availability:

Intel Big Data Analytic Toolkit is an open-source project and the code is

available at https://github.com/intel/BDTK.

1 INTRODUCTION

With the increase in data volume and diversity of analytical work-

loads, many data processing engines were developed over the years

for high-performance data processing under various scenarios and

requirements. The huge demand for engine performance is driving

∗Cheng Xu is the corresponding author, cheng.a.xu@intel.com

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611558

unparalleled investments in software (e.g., vectorization[5], query

compilation[21], etc.) and hardware (e.g., GPUs, FPGAs, DSPs, and

various accelerators). In recent years, the industry[1, 4, 6, 19, 29]

and academia[14ś16, 23] have made many explorations to use the

query compilation and hardware acceleration techniques for the

performance improvement. However, adapting these techniques

still is a non-trivial task because of the lack of widely accepted ar-

chitectures and libraries[15, 18, 26]. As a result, engine developers

may inevitably build them from scratch and interact with low-level

compiler frameworks, hardware drivers, etc., which leads to many

duplicate works and unnecessary costs.

The similar issue also affects the vectorized execution. There

are lots of vectorized execution engines that were developed in

decades, and most of them usually need to reinvent solutions for

basic components and features such as operators, expression eval-

uation, runtime components, SIMD instructions, etc. As a way to

address this problem, some reusable, extensible vectorized execu-

tion engines[9, 24, 25] were proposed in recent years. These engines

are available to be connected to different data processing systems

and play a role as the execution backend, providing the same op-

timization features to different systems. The rise of such modular

query processing components means developers can create a new

data processing system by composing and extending the pre-built

components, rather than starting from scratch or modifying exist-

ing systems laboriously.

Inspired by such reusable components, we address the above

issue by proposing a lightweight, easy-to-connect, reusable C++

acceleration toolkit library named Intel Big Data Analytic Toolkit

(BDTK) to provide optimization techniques like native query plan

compilation, expression compilation, and hardware accelerators

support for analytical execution engines. With interoperable in-

terfaces, BDTK is available to be integrated into different engines

to reduce the effort of leveraging these techniques, which allows

developers to focus on some more specialized requirements. For

example, integrating the BDTK into the interpretation-based en-

gines for leveraging the benefits of the interpretation-based and the

compilation-based execution at the same time. We carefully design

and implement the BDTK with the following key considerations:

Lightweight, easy-to-connect implementation. BDTK is de-

signed as a toolkit for more flexible usage compared with the mod-

ular execution engines, especially when integrated with some exist-

ing systems. Because of fewer dependencies on the runtime compo-

nents (e.g., task scheduler), it could be integrated into target systems

with low invasion, rather than replacing the entire execution engine

of the target systems, which is sometimes unacceptable.

3702

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Interoperable representation of data and plan. BDTK uses

the Apache Arrow[10] columnar format as the standard data for-

mat of the interfaces, a widely used in-memory data representation

format. Apache Arrow project defines language-independent data

formats to support efficient analytic operations on modern hard-

ware and provide good interoperability between different analytic

engines. Similar to the Apache Arrow, Substrait[28] project aims to

create a well-defined specification for data processing operations

and provide good interoperability between different systems, en-

gines, and libraries. With the Apache Arrow and Substrait, BDTK

is expected to achieve good compatibility and reusability with most

execution engines.

Query plan compiler with good performance. BDTK gen-

erates executable code for the plan fragments and expressions at

runtime by compiler infrastructure frameworks like LLVM[12]. The

compilation-based execution allows the BDTK to keep the flexi-

bility to combine the vectorized execution and the data-centric

code generation for better performance. We also created JITLib, a

library that provides unified code generation interfaces and better

abstraction based on the compiler frameworks, to reduce the devel-

opment efforts of the query compilation. The details are discussed

in subsection 2.3.

Hardware accelerator support. BDTK offloads some heavy

workloads to hardware accelerators for better performance and

saving computation resources. For example, based on Intel Codec

Library (ICL), BDTK achieves good performance improvement in

data decompression by leveraging some hardware accelerators such

as Intel QuickAssist Technology (QAT). The details are discussed

in section 5.

We are attempting to integrate the BDTK with multiple data

processing engines such as Velox[24]. In our experiments, BDTK

demonstrates significant data processing performance improve-

ment in some scenarios. To the best of our knowledge, BDTK is

the first reusable execution engine acceleration toolkit library that

provides native query compilation, expression compilation, and

hardware acceleration support. It is open-sourced and we anticipate

it could be a helpful choice for the developers.

In the rest of this paper, we first briefly introduce the projects

and technologies that BDTK depends on, then present the overall

architecture of the BDTK and the inside implementation of the

query compilation and hardware accelerator support. We discuss

the optimization effect of the BDTK by some micro-benchmarks

and provide performance results compared with other systems like

Velox. Finally, we discuss some open questions and future works of

the BDTK.

2 BACKGROUND

2.1 Apache Arrow

ApacheArrow[10] is a popular development platform for in-memory

data analytics. It provides a collection of technologies that help big

data systems process and exchange data efficiently. It specifies a

standardized language-independent columnar memory format for

flat and hierarchical data representation. The format has some im-

portant features[11]:

• Adjacency of data for sequential access.

• Random access with constant time complexity.

• SIMD and vectorization-friendly.

• Enabling true zero-copy access in shared memory.

Arrow columnar format is very popular and compatible with

many analytic engines. BDTK uses the Apache Arrow C data inter-

face as the standard data protocol. Arrow C data interface defines a

very small, stable set of C definitions that could be easily copied

into any project and used for columnar data exchange in the Arrow

format. Some data analytic frameworks already use the Arrow for-

mat as the default data representation format or provide utility for

the conversion between their internal data format and the Arrow

format, which provides good interoperability.

2.2 Substrait

Substrait[28] is a new project that aims to create a well-defined,

cross-language specification for data computation operations. It

primarily consists of a formal specification, a human-readable text

representation, and a compact cross-language binary representation.

One of the typical use cases is serializing a query plan fragment

and keeping consistent semantics in different query engines (e.g.

Apache Spark[32] plan in Trino[13] or Velox[24]).

The structured query language (SQL) does not provide enough

detailed information for query execution and is represented in a

human-readable format, making it difficult for execution engines to

directly execute queries based on SQL. Therefore, most analytical

engines usually parse SQL into query plan trees as some internal

representations for further optimization and execution firstly, such

as the logical plan and physical plan in Apache Spark. These in-

ternal plan representations are specialized for different engines,

which leads to incompatibility between different data processing

systems. With a primary motivation to resolve this issue, Substrait

was created to provide a standard, open representation format for

logical plans and physical plans and keep the consistency of data

computation operations between different data processing systems.

For example, the Join relation operation takes two inputs fields

named left and right, which is represented in the human-readable

text representation (JSON) of Substrait as:

" j o i n " : {

" l e f t " : {

" f i l t e r " : {

" i npu t " : {

" r ead " : { . . . } ,

. . .

} ,

} ,

} ,

" r i g h t " : { . . . }

}

As proven by the practice, the Substrait representation makes

good interoperability between different systems effectively, which

is adopted by more and more data processing systems such as the

Velox[24], DuckDB, and DataFusion, etc. BDTK uses the Substrait

as a standard interface to achieve good compatibility with different

engines.

3703

2.3 Query Compilation

Because of the rapid increase of main memory capacity, the perfor-

mance of modern data processing engines is dominated by mem-

ory access and CPU usage instead of disk access. The traditional

volcano-style iterator execution model, which performs well with

disk-based engines, has significant interpretation overhead and

works ineffectively with modern hardware[17].

Listing 1: Example query to demonstrate the execution mod-

els.

SELECT f 1 (a) , f 2 (a , b) FROM tab le WHERE a=c ;

To reduce the interpretation overhead, the vectorized execution

model and query compilation were developed over the years. Both

of the methods are widely applied to a number of execution engines.

Listing 2 and Listing 3 demonstrate the execution procedures of

the methods respectively based on the query shown in Listing 1,

which contains a filter operator (𝑎 = 𝑐) and a projection operator

(𝑓 1(𝑎), 𝑓 2(𝑎, 𝑏)).

Listing 2: Example of the vectorized execution.

1 vec to r < in t > a _ co l = . . . ;

2 ve c to r < in t > b_ co l = . . . ;

3 ve c to r < in t > c _ c o l = . . . ;

4

5 vec to r < in t > s e l e c t e d _ i n d e x = . . . ; # F i l t e r

6 e q _ i n t (a_co l , c_ co l , s e l e c t e d _ i n d e x) ;

7

8 vec to r < in t > ou t pu t _ c o l 1 = . . . ; # P r o j e c t i o n

9 vec to r < in t > ou t pu t _ c o l 2 = . . . ;

10 f 1 _ve c (a_co l , ou tpu t _ co l 1 , s e l e c t e d _ i n d e x) ;

11 f 2 _ve c (a_co l , b_co l , ou tpu t _ co l 2 , s e l e c t e d _ i n d e x) ;

The vectorized execution model uses pull-based iteration, in

which operators produce results by a next()-like interface. For ex-

ample, the next() call of the root operator of a query tree will call the

next() interfaces of its precursor operators recursively to fetch the re-

sults until reaching leaf operators. Each next() call of the vectorized

model produces a vector containing multiple result tuples rather

than a single one, which amortizes the interpretation overhead such

as virtual function calls. The operations in the vectorized model

are performed by a number of type-specialized primitives (like

eq_int(), f1_vec(), and f2_vec() in Listing 2), usually implemented

as the tight loops execute simple operations(e.g., eq(), fun1(), and

fun2()) for multiple tuples. Such implementation allows the vec-

torized model to take advantage of modern CPUs easily, like the

SIMD instructions, out-of-order execution, and deep instructions

pipeline[20].

The query compilation eliminates the interpretation overhead

by generating efficient executable code for given query plans at

runtime. The data-centric code generation[21] is a popular query

compilation method and is widely applied in multiple execution

engines[14, 16, 23]. In this method, each operator typically has

interfaces like produce() and consume(), which generate the cor-

responding code for data processing. The code will be compiled

into executable machine code via some compiler frameworks like

LLVM[12]. The data-centric code generation procedure could be

seen as a depth-first traverse of query plan trees, where produce()

is called on the first visit to collect operators in the same pipeline

and consume() on the second visit to generate the code of the plan

nodes[17]. Pipelines are the plan fragments that match the source/in-

termediate/sink pattern, in which only the sink operator (e.g. Join or

Aggregation operator) needs to materialize the results to memory.

Listing 3: Example of the data-centric code generation.

1 vec to r < in t > a _ co l = . . . ;

2 ve c to r < in t > b_ co l = . . . ;

3 ve c to r < in t > c _ c o l = . . . ;

4

5 vec to r < in t > ou t pu t _ c o l 1 = . . . ;

6 ve c to r < in t > ou t pu t _ c o l 2 = . . . ;

7 i n t ou tpu t _ index = 0 ;

8 f o r (i n t index =0 ; index < a_ co l . s i z e () ; ++ index) {

9 i n t a = a_ co l [index] ;

10 i n t b = b_ co l [index] ;

11 i n t c = c _ c o l [index] ;

12 # F i l t e r

13 i f (a == c) {

14 # P r o j e c t i o n

15 ou t pu t _ c o l 1 [ou tpu t _ index] = f 1 (a) ;

16 ou t pu t _ c o l 2 [ou tpu t _ index] = f 2 (a , b) ;

17 }

18 }

Different from the vectorized execution, the operator boundaries in

a pipeline are broken in the data-centric code generation, and the

operators are fused in a single tight loop as the demonstration in

Listing 3. This gives the data-centric code generation more oppor-

tunities for performance optimization, such as primitive function

inline, loop fusion, instruction combination, etc., which reduces

instruction number and allows data to stay at registers as long

as possible to minimize memory access[21]. Despite the fact that

query compilation has a number of advanced benefits, some engines

still refrain from adapting it due to its complexity (e.g., interaction

with underlying compiler frameworks), which makes the devel-

opment, maintenance, and profiling challenging[3]. Some recent

query compilation engines[15, 18] tackle this problem by introduc-

ing well-designed and implemented abstraction layers between the

relational operators and underlying compiler frameworks, which

improves extensibility and reduced the complexity significantly.

Some engines[19] that based on the vectorized execution use the

data-centric code generation partially to improve the performance

bottlenecks. Conversely, some compilation-based engines introduce

the vectorized execution partially[16, 20] or generate code with

the vectorized-sytle[27] to take advantages like SIMD instructions

simultaneously. We believe the query compilation is superior be-

cause it leverages the vectorized execution and the data-centric

code generation cleverly to achieve better execution performance.

On the other head, with proper abstraction layers and tools, the

building of a query compiler can become more tractable[22].

3 OVERVIEW OF BDTK

In this section, we introduce the usage of the BDTK and describe

how BDTK is integrated with typical execution engines.

3704

Aggregation

Join

Projection

Scan

Scan

Filter

FilterP2
P1

Figure 1: An illustration of the plan fragment optimization

using the BDTK. The query tree consists of two plan frag-

ments that use the BDTK in different ways respectively. The

use of BDTK is indicated by the red color.

3.1 Overview

BDTK is a reusable, lightweight acceleration toolkit library for

analytical execution engines. It provides query compilation, expres-

sion compilation, and hardware accelerator support for engines

to optimize some performance bottlenecks. BDTK is designed and

implemented using a lightweight paradigm to allow easy integra-

tion with various engines. Furthermore, to achieve good reusability,

BDTK uses the Apache Arrow[10] and the Subtriait[28] to repre-

sent the data and the physical query plan fragments respectively,

which provides good interoperability with different engines.

Most of the execution engines from the industry prefer to use

the interpreted vectorized execution model in recent years, which

is easier to develop, profile, debug, and adapt to various data[3].

Nevertheless, some of these engines also implemented the query

compilation because of the advantage of cleverly combining the

query compilation and the vectorized execution[17, 27]. For exam-

ple, Clickhouse developed CHJIT[19] to improve the performance

of the expression evaluation. BDTK provides a solution for engines

to leverage the advantages of query compilation and hardware ac-

celerators easily and avoid building from scratch, which will reduce

the development effort significantly.

As shown in Figure 1, a query plan consists of two plan frag-

ments 𝑃1 and 𝑃2, and each plan fragment utilizes the BDTK in

different ways respectively. BDTK fuses all the operators in the 𝑃2

as a compound operator and generates an executable function at

runtime to boost the data processing performance by leveraging

the vectorized execution and the data-centric code generation. In

addition to the query plan compilation, some components in the

BDTK are available to be embedded into the original execution

without replacing the operators. For instance, the Filter and Scan

in the 𝑃1 apply the expression evaluator and hardware accelerator

library of the BDTK respectively.

3.2 Integration with Execution Engines

A typical integration and execution of the BDTK are illustrated in

Figure 2. The applications submit a query (e.g., SQL, DataFrame)

to the data processing system, where the query is transformed

into the logical plans and the physical plans by the parser and

the optimizer respectively. The physical plan consists of multiple

plan fragments as pipelines, which are executed in order to satisfy

the data dependencies. Then, the execution engine analyzes the

plan and creates execution tasks for each plan fragment. Finally,

the engine submits the tasks to the executor for scheduling and

execution.

To compile and execute the selected plan fragment, the engine

transforms the plan fragment to the Substrait representation and

generates the corresponding BatchProcessor by the BDTK. The

BatchProcessor is a unified execution kernel, which is responsi-

ble for the code generation, compilation, and execution of a plan

fragment. The processor provides interfaces like processNextBatch()

and getResult() to input data and get results batch-by-batch. It could

be embedded into the task execution easily by extending new com-

pound operators and replacing pipeline operators with them. For

relational algebra operators, there are two types of the processors

such as stateless ones (like Filter, Projection) and stateful ones (like

Join, Aggregation). The stateful processors need to maintain the

data processing states (e.g., hash tables) and export the results from

the states in the Arrow format.

In addition to the query compilation, BDTK also provides hard-

ware accelerator support to offload some CPU-intensive tasks to

specific accelerators, which can reduce the CPU workload and

improve the overall performance. For example, BDTK provides a li-

brary to support high-performance compression/decompression for

the Scan operation by leveraging the Intel QAT accelerator, which

is discussed in section 5.

The construction of the processor depends on several compo-

nents in the BDTK, such as the Substrait plan parser, codegen

translator planner, code generation toolkit, hardware accelerator li-

brary, and memory management. The details of them are discussed

in the following sections.

4 QUERY COMPILATION IN THE BDTK

As shown in Figure 2, the basic workflow of BDTK’s query compi-

lation is:

• Firstly, the plan fragment in the Substrait representation is

parsed by the Substrait plan parser to an internal representa-

tion structure. The structure describes detailed information

about the plan fragment such as input data types, operators,

and expressions (e.g., projection targets, filter conditions,

group-by keys, aggregation values, etc.).

• Based on the structure, the codegen translator planner gen-

erates a translator list to generate code of the plan fragment

via a Produce/Consume-like[21] pattern. The translators are

responsible for generating code for different operators (e.g.,

Filter translator, Projection translator).

• Next, the translator list is triggered in the batch processor

builder and generates code (e.g., LLVM IR) for different op-

erators and expressions by using a code generation toolkit

library named JITLib. The toolkit library provides unified

code generation interfaces and better abstraction between

the relational algebra operations and the compiler frame-

works.

3705

Join

Filter

Task Schedular

Code Generation
Toolkit

Plan Fragment

Plan Adaptor

Codegen Translator
Planner

Batch Processer
Builder

Substrait Plan
Parser

Resource Management

Hardware
Accelerator

Task Executor

Source Operator

Sink Operators

Data Adaptor

Data Adaptor

BatchProcesser

Task

Parser &
Optimizer

Physical Plan

Substrait Plan

Execution Engine
Runtime

BDTK
Components

DataFrame API

SQL Query

Aggregation

Scan Operator

Task

Figure 2: An illustration of how the BDTK integrates with a typical query execution engine. BDTK builds BatchProcessors

based on the given query plan fragments and embeds them into the execution tasks for data processing.

• Finally, the generated code is optimized and compiled to an

executable function, which is used by the batch processor

for data processing.

The details of the components related are described in the fol-

lowing sections.

4.1 Substrait Plan Parser

The internal plan fragment representation structure in the BDTK

comes from [29] and consists of operator fields. Each operator

field contains some expression translators, which are organized as

tree structures and used for expression code generation (e.g., filter

condition). The Substrait plan parser first translates the expressions

in the given Substrait plan fragment into the expression translators,

then constructs an internal representation structure by grouping

the expression translators to the corresponding operator fields.

For example, a binary expression translator represents a binary

operation between two expressions typically including:

• Op Type: indicates the operation type of the binary expres-

sion, including logical operations, arithmetic operations,

comparison operations, etc.

• Left Right Operands: indicates the argument translators

to generate the left and the right operands respectively.

• SQL Type: defines the return type of the expression (e.g.,

Bool for the comparison operation).

Currently, the supported expression translations from the Sub-

strait to the BDTK are described in Table 1.

The Substrait plan parser should validate the given plan frag-

ments before the translation, to ensure all of the functions in the

plan fragments are supported in the BDTK. The plan parser im-

plements a mechanism to check the plan fragments and trigger

fallback if the validation failed. When offloading a plan fragment

to the BDTK, the execution engines use the plan parser to detect

whether the plan fragment is supported. The plan fragment valida-

tion mainly includes the following aspects:

• Function support validation. The Substrait plan parser

leverages the function lookup engine provided by the Sub-

strait project to check the plan fragments. The function in-

formation of the different execution engines and the BDTK

are all defined in YAML files respectively. The function

signatures used in the given plan fragments are also rep-

resented in the Substrait protocol. Based on the function

signatures, the detailed information could be retrieved from

the corresponding YAML files by the lookup engine. Then,

the plan parser searches the YAML file of the BDTK to

Table 1: Mapping between the Substrait representation and

the BDTK internal plan representation

Substrait BDTK

Expression_Literal ConstantExpr

Expression_Selection ColumnExpr

Expression_ScalarFunction
UnaryExpr, BinaryExpr,

StringOper, etc.

Expression_Cast CastExpr

Expression_IfThen CaseExpr

AggregationFunction AggExpr

3706

get the function with the same semantics and triggers the

fallback if there is no function match.

• Operator support validation. In addition to the function

validation, the plan parser also supports the operator vali-

dation. The physical plan fragment contains all execution

details such as data types, operator types (e.g., Join types),

etc. The plan parser validates such information and triggers

the fallback if something is unsupported in the BDTK.

• Rule-based validation. The plan parser also supports

defining some fine-grained rules to validate special cases

for some intricate scenarios.

Based on the Substrait plan parser, the given plan fragments from

the execution engines are validated and translated to the internal

plan representation structures of the BDTK, which will be processed

further to generate the executable code.

4.2 Codegen Translator Planner

The codegen translator planner is a component that transforms the

internal plan representation structures of the BDTK into the transla-

tor lists. The translator list generates the code for the corresponding

plan fragments via the Produce-Consume paradigm. For each given

plan fragment, there are data processing functions defined as void

query_func(RuntimeContext* ctx, ArrowArray* input) compiled from

the generated code. The ctx represents a RuntimeContext that is

responsible for the memory management inside the function, which

is described in subsection 4.6.

Firstly, the planner builds the translators of the relational alge-

bra operators according to the fields in the internal structure. For

example, the selected plan fragment in Figure 2 will be transformed

into a translator list like FilterTranslator→ JoinTranslator

→AggregationTranslator. The operator translators generate the

code of the internal expressions by the expression translators they

contained. The details are discussed in subsection 4.5 and subsec-

tion 4.4 respectively.

To make the generated code executable, the planner also inserts

some helper translators into the translator list to generate some

additional helper code. The planner inserts a special translator

named QueryFuncInitializer at the head of the list to generate

some initialization code that loads the data column from the input

and allocates output ArrowArray in the ctx.

In the BDTK, there are two kinds of input/output types for the

operator translators, Row and Batch. It will generate code with the

data-centric pattern if both of the adjacent translators have the

output and the input as the Row type. Based on this way, multiple

such successive translators are fused into a single data process-

ing pipeline to reduce the materialization overhead until the last

operator translator or the translators with the Batch output. If

the input type of the pipeline is Row, the planner will insert a spe-

cial translator ColumnToRowTranslator at the head of the pipeline

that builds the loop control flow and generate data loading code

inside it. Similarly, the planner will insert another special translator

RowToColumnTranslator at the tail of the pipeline to materialize

the pipeline results to the memory. After the insertion of these

helper translators, the translator list is available to generate the

code that will be compiled into an executable query_func().

Furthermore, to improve the performance of the generated code,

the planner also analyzes operators and expressions inside the

pipeline and transforms the translator list. The planner moves some

vectorizable expressions from the projectionfilter translators and

builds vectorized projectionfilter translators, which generate multi-

ple independent tight loops for facilitating the compiler framework

to generate the code optimized with the SIMD instructions (e.g.,

SSE, AVX2, AVX512) and leveraging the advantages of the modern

CPUs. The detailed implementation is discussed in subsection 4.5

The codegen translator planner constructs the translator lists

that generate code by leveraging the data-centric code generation

and the vectorized execution to achieve good performance. The

details of the code generation procedure of the translator lists are

discussed in the following sections.

4.3 JITLib

JITLib is a toolkit library for translators to generate the code for

data processing at runtime. It provides friendly interfaces to build

the data processing code including primitive data types, primitive

operations, and control flow.

4.3.1 Motivation. The motivation for developing the JITLib is the

gap between the low-level compiler framework and the relational

algebra operators. The code representations in these compiler frame-

works (e.g., LLVM IR) are similar to the assembly language and

have some properties significantly different from the high-level

programming languages (e.g., C/C++, Java), such as the single static

assignment (SSA)[7], etc. Therefore, it will be very tough to de-

velop the operator and expression translators using the low-level

compiler frameworks directly for most of the developers. Shaikka

et al.[26] proposed a layered query compiler architecture, which

progressively translates the query plans from high-level represen-

tation to low-level representation through multiple intermediate

representations (IR). The architecture splits the translation process

into multiple steps, which reduces the development difficulty and

provides more flexibility for optimization. Based on this architec-

ture, JITLib could be seen as one of the IR between the relational

algebra operators and the compiler frameworks. It provides a code

representation similar to the C language, which not only reduces

the effort of the development but also can support new compiler

frameworks without modifying the existing translators.

4.3.2 Implementation. JITLib consists of three abstract compo-

nents as JITModule, JITFunction, and JITValue, each of them

defined some unified interfaces and implemented for the different

compiler frameworks respectively. Currently, JITLib has provided

LLVM-based implementation.

JITModule is a compilation unit that contains several JITFuncti-

ons and provides interfaces like function declaration and compila-

tion. The module is also responsible to manage optimization con-

figurations (e.g., auto-vectorization[31]), and compilation options

(e.g., enabling AVX2, AVX512). The LLVM-based implementation

of the module leverages a number of compiler passes in the LLVM

to optimize the code sufficiently, such as auto-vectorization pro-

vided by the LoopVectorizePass to apply the SIMD instructions.

Besides, the module is available to link with the other modules to

import the pre-build or the pre-compiled functions for reducing

3707

auto a_col = func ->getArgument (0);

Initializing other JITValue.

...

auto output_index =

func ->createVariable(JITTypeTag ::INT32 , "output_index", 0);

auto loop_builder = func ->createLoopBuilder ();

auto index = func ->createVariable(JITTypeTag ::INT32 , "index", 0);

loop_builder ->condition ([&index , &len]() { return index < len; })

->loop ([&](LoopBuilder *) {

auto a = a_col[index];

auto b = b_col[index];

auto c = c_col[index];

auto if_builder = func ->createIfBuilder ();

Filter

if_builder ->condition ([&]() { return a == c; })

->ifTrue ([&]() {

Projection: f1(a)

output_col1[output_index] = func ->emitRuntimeFunctionCall(

"f1",

JITFunctionEmitDescriptor {. ret_type = JITTypeTag ::INT32 ,

.params_vector = {a}});

Projection: f2(a,b)

output_col2[output_index] = func ->emitRuntimeFunctionCall(

"f2",

JITFunctionEmitDescriptor {. ret_type = JITTypeTag ::INT32 ,

.params_vector = {a, b}});

output_index = output_index + 1;

})

->build ();

})

->update ([& index]() { index = index + 1; })

->build ();

func ->createReturn(output_index);

(a) Code generation procedure using JITLib.

...

.For_Condition:

%index.0 = phi i32 [0, %.Start], [%4, %.Loop_Update]

%output_index.0 = phi i32 [0, %.Start], [%output_index.1 , %.Loop_Update]

%0 = icmp slt i32 %index.0 , %len

br i1 %0, label %.Loop_Body , label %.After_Loop

.Loop_Body:

%1 = getelementptr i32 , i32* %a_col , i32 %index.0

%2 = getelementptr i32 , i32* %b_col , i32 %index.0

%3 = getelementptr i32 , i32* %c_col , i32 %index.0

br label %.If_Condition

.Loop_Update:

%4 = add i32 %index.0 , 1

br label %.For_Condition

.After_Loop:

ret i32 %output_index.0

.If_Condition:

%5 = load i32 , i32* %3

%6 = load i32 , i32* %1

%7 = icmp eq i32 %6, %5

br i1 %7, label %.If_True , label %.If_False

.If_True:

%8 = load i32 , i32* %1

%9 = call i32 @f1(i32 %8)

%10 = getelementptr i32 , i32* %output_col1 , i32 %output_index.0

store i32 %9, i32* %10

%11 = load i32 , i32* %1

%12 = load i32 , i32* %2

%13 = call i32 @f2(i32 %11, i32 %12)

%14 = getelementptr i32 , i32* %output_col2 , i32 %output_index.0

store i32 %13, i32* %14

%15 = add i32 %output_index.0 , 1

br label %.After_If

.If_False:

br label %.After_If

.After_If:

%output_index.1 = phi i32 [%15, %.If_True], [%output_index.0 , %.If_False]

br label %.Loop_Update

(b) Generated LLVM IR optimized with the Mem2Reg pass.

Figure 3: Example of the code generation procedure for the query SELECT f1(a),f2(a,b) FROM table WHERE a=c.

the effort of generating complex operations (e.g., some operations

of string, and hash functions).

JITFunction includes some code blocks that share the same

context, initially containing two blocks: local variable block and

start block. The local variable block is used to initialize all of the

local variables of the function, it is the first code block to execute

to ensure the variables are accessible within the whole function.

The start block is executed later and contains the main procedure

of the function. The function is responsible for building JITValue

(variable values and literal values) and maintaining the control flow

(the loop and the branch). In the LLVM-based implementation, the

functions that are not time-consuming but frequently used should

be labeled as AlwaysInline. When calling such functions, their

definition code will be copied into the module and inline them at

the calling point by AlwaysInlinerPass for reducing the function

calling overhead and better code optimization.

JITValue is the basic unit to represent the data and the oper-

ations in the JITLib. There are several primitive data types and

operations defined as Table 2 shown. Most of the operations are

Table 2: Primitive Types and Operations in JITLib

Types Operations

Int[8-128] +, -, *, /, %, =, ≠, <, ≤, >, ≥, static_cast, bitwise

Bool &&, ||, not, =, ≠, static_cast, bitwise

Float +, -, *, /, =, ≠, <, ≤, >, ≥, static_cast

Double +, -, *, /, =, ≠, <, ≤, >, ≥, static_cast

Pointer<T> +, [], dereference, reinterpret_cast

overloaded as the C++ operators for programming convenience.

Each of the operations generates the corresponding code and re-

turns the result as the new JITValues, which makes the code gen-

eration very clear and comprehensible. For example, 𝑟 = 𝑣1 + 𝑣2,

in which the 𝑟 , the 𝑣1, and the 𝑣2 are all the JITValues, generates

an add instruction of the 𝑣1 and the 𝑣2 and produces the result

represented by the 𝑟 . The result values are not assignable in the

LLVM-based implementation because of the SSA form. However,

this form is awkward to use for building the data processing code in

which the values may be assigned multiple times. For this problem,

the JITValue can be built as a variable that allows overwriting,

typically implemented by allocating a piece of memory in the stack

to store the value. The LLVM provides the Mem2Reg pass to trans-

form such variables to the SSA form efficiently. JITLib also supports

the pointer type as a primitive type and related operations like in-

dexing, dereference, and type-casting, which greatly facilitates the

load/save operations. Based on the JITValue with these primitive

types, the data types in the Apache Arrow[10] data format can be

represented by composing the values easily.

The implementation of the control flows in the JITLib is based

on the Builder Pattern, such as IfBuilder and LoopBuilder. The

IfBuilder needs three functors to build an if-else control flow.

The first functor should return a JITValue with Bool type as the

condition, the others are used to generate code in the different

branches respectively. The LoopBuilder is used to build a for-loop

control flow. Similar to the IfBuilder, the LoopBuilder needs a

functor to check the loop condition. It also needs two functors to

generate code in the loop body and update the condition respec-

tively. Typically, the implementations of these control flows depend

on leveraging the code blocks and the jump instructions provided

3708

Expression 2

Expression 1

Expression 3

Constant Input 2Input 1

codegen(context) JITValues

Caller

Figure 4: An illustration of the expression evaluation code

generation in the BDTK.

by the compiler frameworks, which is very intractable. Based on

these builders, the control flow building in the plan fragment code

generation is simplified significantly.

4.3.3 Example. To demonstrate the usage of the JITLibmore clearly,

a code generation procedure is shown in Figure 3 that produces the

data processing operations of Listing 3.

By using the JITLib, the code generation procedure shown in

Figure 3a is similar to the code in Listing 2 written with C++. The

generated LLVM IR is shown in Figure 3b. Based on our practice,

the JITLib provides a set of very easy-to-use interfaces to interact

with the underlying compiler frameworks, which makes it easier

for the developers to build, optimize, and extend the operator and

expression translators.

4.4 Expression Evaluation

BDTK builds an expression translator framework to generate the

expression evaluation code by using the JITLib. The framework

includes various expression types such as arithmetic, logical, com-

parison, string operations, etc. The code generation procedure of

the expression tree is shown in Figure 4. This section describes the

implementation details of the expression translators.

Expression evaluation code generation: In Figure 4, the ex-

pressions are organized as a tree structure and each of themprovides

a codegen() interface to generate the code. The implementation de-

pends on the JITLib. The root translator will call the interfaces of

its child translators recursively and get their results as the argu-

ments. Each expression translator will cache the generated results

to reduce the code generation time consumption. The leaves of

the trees are the input column expressions or the constant expres-

sions. The values of the input expressions are generated by the

ColumnToRowTranslator, which builds the loop control flows and

generates the data loading code described in subsection 4.2.

Runtime evaluation optimization: The optimization of the

expression evaluation in the BDTK mostly depends on the compiler

framework when compiling the code at runtime. For example, the

common sub-expression elimination and constant folding for the

scalar data are applied by the compiler frameworks. Besides, for the

data types like the string type that are not handled efficiently by the

compiler framework, the optimizations are applied by the BDTK’s

expression evaluation. The expression translators can identify the

sub-expression trees that only have constant inputs, and compute

the expression results at the compilation time. Before the code

generation, the translator planner traverses the expression trees

and merges the same sub-trees to eliminate the computation of the

common sub-expressions. For example, the input expressions 𝑎 of

the f1(a) and f2(a,b) in Listing 1 can be merged, which makes the

input only needs to be loaded once for each iteration.

Vectorized evaluation propagation: The expression transla-

tors generate scalar operations code inside the loop control flows

built by the ColumnToRowTranslator normally. To transform the

scalar operations into vector operations using the SIMD instruc-

tions for performance, the expressions need to provide information

to the translator planner to construct vectorized operator transla-

tors described in subsection 4.2. The expression trees generate the

information from the leaves to the root progressively. An expression

supporting the vectorized evaluation requires the following condi-

tions: (a) the operations could be auto-vectorized by the compiler

frameworks or have self-defined vectorized evaluation functions.

(b) all of the children support the vectorized evaluation. Following

the rules, each expression in the tree is labeled to indicate whether

it supports the vectorized evaluation for the planner.

Null value handling: The arrow format represents null val-

ues as the bitmap, which is very efficient for vectorized execution.

However, the operations of the bitmap (e.g., loading or storing 1 bit)

violate the auto-vectorization when they are mixed with the other

operations in a loop. For this problem, the null value computation

code is separated into another loop to avoid the violation, which

only contains the bitwise operations and takes advantage of the

data-centric code generation and the SIMD. The bool type in the

arrow format is also represented as the bitmap and also handled in

the same way as the null value. The more detailed implementation

is described in subsubsection 4.5.1.

External function integration: The expression translators of

the complex operations (e.g., regular expressions) require the pre-

build or the pre-compiled functions. The operations are defined

with C++ and transformed to the LLVM IR by using the Clang

compiler. The pre-build functions are transformed to the LLVM IR

with the complete definition for the JITLib to inline the functions.

The pre-compiled functions are compiled as executable binary and

export the declarations as the LLVM IR only, to reduce the time

consumption of the query compilation. These methods allow the

expression evaluation of BDTK to have good flexibility to extend

the functions and achieve good performance.

4.5 Operators

The relational algebra operator supported in the BDTK include

Filter, Projection, Aggregation, and Join. BDTK provides operator

translators to generate the corresponding code for the operators via

Produce-Consume[21] paradigm. Some important implementation

and optimization details of the operator translators are described

in this section.

4.5.1 Filter and Projection. FilterTranslator and ProjectTran-

slator are used to generate code for the Filter and the Projection

operator respectively. The project translator has the input and the

3709

output type as the Row, which contains several expression transla-

tors to generate the projection target expressions. Similar to the

project translator, the filter translator also has the Row typed input

and output. It contains an expression translator to generate the

value of the filter condition and an if-else control flow. The subse-

quent translators will generate their code inside the true branch of

the control flow.

The basic operator translators described above generate code in

the data-centric style, which fuses all operators in the same pipeline

into a loop body to keep the data inside the registers as long as

possible. However, as the operations become complex, fusing all

operations into a single loop may obstruct the application of auto-

vectorization. The auto-vectorization prefers to work with the tight

loops, as the complex loops aremore likely to contain the operations

that cannot be vectorized, e.g., function calls and bitwise operations.

To leverage the SIMD instructions by the auto-vectorization,

BDTK implements VectorizedProjectTranslator. The transla-

tor divides the target expressions into different expression groups

and generates independent tight loops for each group respectively.

The vectorized translator accepts some vectorizable expression

trees from the translator planner. These expression trees are sepa-

rated into sub-expression trees by the expressions with the bitwise

bool-typed inputs or outputs. Commonly, there are three types

of sub-expression trees: bool input and bool output (BIBO), nor-

mal input and bool output (NIBO), and normal input and normal

output (NINO). The sub-expression trees with the same type and

shared input expressions are grouped into the same expression

group. The vectorized translator generates the tight loops for each

group sequentially based on their dependency relationship.

The vectorized translator generates different loops for the dif-

ferent expression group types. The loop for the BIBO is only used

for the bitwise bool operations (e.g., logical operations), in which

the null value operations and the other bitwise operations can be

applied on each byte of the input bool bitmaps to avoid violating

the auto-vectorization. The outputs of the NIBO expression trees

(e.g., comparison operations) need to be saved into the bool bitmaps

from bytes to bits, which is hardly handled by auto-vectorization.

Therefore, in the loop of the NIBO, the outputs are first saved as

byte arrays. After the loop, the byte arrays are converted to the

bitmaps by the SIMD instructions.

4.5.2 Aggregate and Join. BDTK supports Aggregation and Join op-

erators via HashAggregationTranslator and HashJoinTransla-

tor respectively, both of them have the input type as the Row type.

The translators basically generate data processing procedures with

the paradigm that combines the runtime-generated code and the

pre-compiled hash tables.

The hash aggregation translator contains the group key expres-

sion translators and the aggregation target expression translators.

For the global aggregation, the translator first generates code that

allocates a piece of memory to hold the aggregation results. For

the group aggregation, the translator first generates code to pack

the group keys and get the corresponding slot by calling the probe

interface of the hash table. Then the translator generates the corre-

sponding aggregation functions (e.g., sum(), avg(), count(), min(),

max(), etc.).

For the Join operator, BDTK only supports the equal-inner Join

currently, which is implemented by the hash Join. The hash join

translator generates code for the join probe side and contains ex-

pression translators of the join condition. The translator generates

code to pack the key values and get the index of the matched values

in the hash table generated by the join build side. Then, the transla-

tor builds a loop control flow to load the matched values from the

hash table, and the subsequent translators will generate their code

inside the join loop body.

Clearly, the performance of the hash tables is very critical for

these translators. BDTK implements a set of well-designed hash

tables for the join and aggregation. The hash tables are selected by

an adaptive strategy that mainly considers the data types, ranges,

and cardinality of the keys, which provides good performance for

different scenarios. For example, if a hash table has the key type as

int8, the range of the key will be in [−128, 127] and the maximum

size of the table is 256. Therefore, the table allocates 256 slots in

advance and the input keys can be mapped to the corresponding

slots directly without the hash lookup. For the string-typed hash

key, BDTK uses a hash method similar to [33] which designed an

efficient hash lookup method.

In addition to the adaptive selection, the hash tables also design

some operations to leverage the SIMD instructions. For example,

the operations of the key hashing and the key probing both are op-

timized by the SIMD instructions, which improves the performance

significantly.

4.6 Memory Management

The memory in the BDTK consists of the memory used by the host

library and the memory used by the runtime-generated code. The

overall memory management depends on allocators that are orga-

nized as a hierarchical structure. Meanwhile, based on the allocators,

the memory in the runtime code is managed by CodegenContext,

RuntimeContext, and StringHeap. This section describes the de-

tails of these components.

4.6.1 Hierarchical Allocator. Most of the BDTK host objects with

small memory consumption are allocated at C++ stack and heap

directly. For the data buffers containing lots of items, hash tables for

Join and Aggregation, etc., BDTK provides the allocators to manage

their large memory consumption. The allocator has interfaces like

allocate(), deallocate(), reallocate(), and getCapacity(). The users of

BDTK could overload these interfaces and assign the root alloca-

tors to the batch processors, which makes it possible to track and

manage the memory usage in the BDTK. Each of the objects that

use large memory in the BDTK is assigned a child allocator derived

from the root, such hierarchical work style is similar to [23].

4.6.2 Context. The memory and objects related to the runtime-

generated code aremanaged by CodegenContext and RuntimeCont-

ext. The codegen context is used to maintain the objects repre-

sented in the JITValue at the code generation phase, such as the

memory buffers for the intermediate results, hash tables, etc. During

the code generation phase, the translators register the construction

parameters of the required objects into the codegen context, and

the context generates the corresponding JITValues to represent

3710

the objects. The JITValues of the objects can be used to gener-

ate related data processing operations, even if the objects are not

constructed actually. After the code generation, the objects in the

codegen context are constructed based on the registered parameters

and managed by the runtime context. The codegen context and

runtime context associate the objects in the code generation phase

and the execution phase.

4.6.3 String Heap. For the string operations, there are usually some

large intermediate results that need to be materialized to the mem-

ory and require frequent memory allocations (e.g., the operations

like 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑙𝑜𝑤𝑒𝑟 (𝑎), 𝑢𝑝𝑝𝑒𝑟 (𝑏)) will generate three intermediate

results for each execution). The frequent memory allocation and

release lead to significant runtime overheads such as the interaction

with the system kernel. BDTK implements StringHeap as a part

of the runtime context to manage the memory used by the string

operations. The string heap uses an arena allocator to manage the

memory allocation, which reduces the runtime overheads and im-

proves the performance. To avoid excessive memory usage, the

string heap tracks the memory usage and shrinks it at runtime.

5 HARDWARE ACCELERATOR SUPPORT IN
BDTK

Data compression and decompression are important for the data

processing systems which could reduce the I/O workloads and

the costs of storage and network. However, data compression and

decompression require many CPU resources and affect the en-

gine performance significantly. In recent years, offloading such

CPU-intensive workloads to the specialized hardware accelera-

tors demonstrates significant performance improvement[6]. In the

BDTK,we propose Intel Codec Library (ICL) to provide high-performance

data compression/decompression by leveraging the hardware ac-

celerators.

ICL is a compression and decompression library, which could be

used in some popular data formats, such as Apache Arrow IPC and

Apache Parquet. The library is designed as a two-layer architecture

as shown in Figure 5.

The upper layer is the bridge layer, which is used to interact with

the front-end frameworks and runtimes. For example, it extends

the compression class from Hadoop/Spark and forwards the com-

pression requests to the underlying native execution layer through

the Java Native Interface (JNI).

The bottom layer is the native execution layer which is a shared

C/C++ library to provide accelerated compression and decompres-

sion ability. The native execution layer takes full advantage of the

hardware accelerators on the Intel Xeon CPUs, such as the Intel

QuickAssist Technology (QAT) and the Intel In-Memory Analytics

Accelerator (IAA). The ICL not only supports the Intel hardware

accelerators to accelerate the deflate-compatible data compression

algorithm but also supports some software solutions such as the

Igzip from the Intel Intelligent Storage Acceleration Library (ISA-

L)[30] that uses the AVX-512 instructions to accelerate the data

codec.

Figure 6 demonstrates the compression and the decompression

throughput with the dynamic Huffman coding algorithm and the

default compression/decompression level 6. For the compression,

the QAT could provide a maximum throughput of 124 Gbps for

Figure 5: Intel Codec Library Architecture.

Figure 6: The compression (Upper) and decompression

(Lower) throughput of the QAT.

the 32 Kb data pieces. For the decompression, the QAT provides a

maximum throughput of 537 Gbps for the 1024 Kb data pieces.

Parquet is a popular and widely used columnar file format for

data analytical engines, which supports data compression/decom-

pression storage. To improve the data compression/decompression

performance, the ICL is integrated with the Parquet and boosts

the performance by leveraging the QAT accelerator and the ISA-L

library.

6 EXPERIMENTS

In this section, we present some experimental evaluation results

to demonstrate the improvement of the query compilation and the

hardware accelerators in the BDTK. We performed the evaluation

on the Aliyun Cloud Service with the ECS nodes equipped with

3711

192 vCPUs provided by Intel Xeon Platinum 8475B Sapphire Rapids

CPUs, and 512 GB of DRAM.

6.1 Query Compilation Performance Evaluation

We first integrated the BDTK with the Velox[24] to evaluate the

performance improvement by using the BDTK. We performed a

micro-benchmark to evaluate the expression evaluation perfor-

mance and an end-to-end benchmark to evaluate the overall query

processing performance.

Table 3: Expression Evaluation Cases (𝑎 ∈ 𝑖𝑛𝑡16;𝑏 ∈

𝑖𝑛𝑡32;𝑑, 𝑒, 𝑓 , 𝑔 ∈ 𝑏𝑜𝑜𝑙)

Case Id Expression

Case 1 𝑎 × 𝑎 × 𝑎 × 𝑎

Case 2 𝑏 × 𝑏

Case 3 𝑎 × 𝑎 × 2 + 𝑎/3 − 1

Case 4 𝑑 𝐴𝑁𝐷 𝑒

Case 5 (𝑓 𝑂𝑅 𝑔) 𝐴𝑁𝐷 ((𝑓 𝐴𝑁𝐷 (𝑓 ≠ (𝑓 𝑂𝑅 𝑔)))) 𝑂𝑅 (𝑑 = 𝑒)

We designed some expression evaluation benchmark cases as

shown in Table 3. Case 1, case 2, and case 3 are the basic arithmetic

expressions, in which case 3 is more complex relatively. Similarly,

case 4 and case 5 are the basic logical expressions and case 4 consists

of multiple logical operations.

In the micro-benchmark of the expression evaluation, we com-

pared the BDTK with Velox’s vectorized expression evaluation

engine. The benchmark data is generated by the vector fuzzer pro-

vided by Velox. The data batch size is 10000 and about 50% of the

data are null values. We enabled the AVX2 for both the BDTK and

Velox to leverage 256-bit SIMD instructions. BDTK uses LLVM-

9 as the query compilation backend. The evaluation results are

demonstrated in Figure 7.

Figure 7: Evaluation results of the expression evaluation in

the BDTK and Velox. Left: arithmetic expressions; Right:

logical expressions (Higher is better).

Figure 7 demonstrates the throughput of the expression evalua-

tion in the BDTK and Velox. For case 1, case 2 (simple arithmetic

expression), and case 4 (simple logical expression), BDTK shows

14x, 3x, and 5x performance improvement respectively. For the

complex ones like case 3 and case 5, BDTK is nearly 10x faster than

Velox. The primary reason is the expression compilation in the

BDTK leverages both the vectorized execution and the data-centric

code generation, which takes advantage of the runtime compilation

and the SIMD instructions. Compared with the BDTK, the expres-

sion evaluation engine of the Velox has some extra overheads like

the interpretation cost and materialization cost because of the in-

terpreted vectorized execution. BDTK is available to eliminate the

interpretation cost and allows the intermediate results to stay in the

registers as long as possible to reduce the memory access by the na-

tive compilation. Meanwhile, BDTK can provide more performance

improvement for complex expressions. One of the additional costs

of the BDTK is the compilation latency, for most common expres-

sions and plan fragments, the compilation latency of BDTK using

the LLVM backend is in the two-digit millisecond range, which is

relatively trivial, especially for long-running queries.

Furthermore, we evaluated the end-to-end performance improve-

ment by using the Presto engine. The Presto provides an implemen-

tation named Prestissimo that uses Velox as the native execution

engine. We compared the query execution time of the original

Prestissiom and the Prestissiom integrated with the BDTK. We

built some queries that select the expression cases in Table 3 as the

project target. We used the Hive query runner provided by Prestis-

simo that creates the tables of the TPC-H benchmark and launches

the Hive service. The end-to-end benchmark uses the lineitem table

of the TPC-H benchmark with a scale factor of 1000.

Figure 8: Evaluation results of the end-to-end query execu-

tion performance, in which Prestissimo is the Presto engine

using Velox as the execution backend (Lower is better).

The results are demonstrated in Figure 8. The results show BDTK

provides up to 1.21x performance improvement than the original

Prestissimo. However, the improvement is not as significant as the

micro-benchmark shown. After the profiling and investigation, we

3712

noticed that the conversion between the Velox vector and the Arrow

data format leads to lots of redundant memory allocation, which

damages the end-to-end performance. This is because the current

conversion implementation does not reuse the memory properly.

6.2 Data Decompression Performance
Evaluation

We applied the BDTK’s hardware accelerator into the native Par-

quet reader in Velox and improved the data decompression perfor-

mance, which is critical to the table scan operations. To evaluate

the performance improvement provided by the QAT accelerators

on the Sapphire Rapids CPU and the Igzip library, we used the

TPC-H lineitem table with a scale factor of 100 and measured the

decompression time consumption.

Figure 9: Decompression time consumption under different

codec libraries. (Lower is better).

We evaluated the Parquet reader performance with different

codec libraries, such as the zlib, the Igzip, and the QAT. We ex-

ecuted the decompression by a single thread multiple times and

measured the average decompression time to reduce the variance.

As Figure 9 shown, for the single-threaded case, there are 1.72x and

1.38x performance improvements compared with the zlib imple-

mentation by using the QAT hardware accelerator and the Igzip

library uses the AVX-512 instruction set. We also evaluated the

performance with multiple threads in parallel, as both the Igzip and

QAT demonstrate good performance improvements and scalability

within several threads. Besides, a limited impact of compression

ratio was observed after adopting both the QAT accelerator and

the Igzip.

7 RELATED WORKS

Apache Arrow[10] provides Gandiva[8] to generate code at run-

time for expression evaluation performance. Gandiva consists of a

runtime expression compiler based on the LLVM[12], and a high-

performance execution environment. The users submit an expres-

sion tree, then Gandiva compiles the tree to a high-performance

function kernel to consume data in the Apache Arrow format and
produce results. Gandiva also combines the vectorized execution

with the compilation to leverage the SIMD instructions. Compared

with the query compilation in the BDTK, the usage scope of Gandiva

is restricted to the expression evaluation.

Velox[24] is a unified execution engine developed by Meta. Velox

aims to provide reusable, extensible, high-performance data pro-

cessing components, which could improve engineering efficiency

and democratize optimizations. Although there are several design

concepts of Velox shared with BDTK like reusability, Velox is a com-

plete data processing engine that includes the task, task scheduler,

task executor, etc. By contrast, BDTK is a lightweight library and

focuses on providing high-performance utilities for the engines,

rather than replacement.

MapD[29] is a compilation-based database management system

(DBMS) leveraging GPU for data processing acceleration. The code

generation in MapD is templated-based[2], which is inflexible[26]

and difficult to optimize compared with the Produce/Consume[21]

pattern used in BDTK. MapD generates code of data processing

as LLVM IR, then compiles it to native CPU code by LLVM JIT

compiler or to native GPU code through NVVM IR.

Hyper[16] is a DBMS pioneered data-centric code generation[21]

based on LLVM. Hyper fuses all operators in a pipeline as a compact

loop to improve code locality and reduce materialization cost, in

which their boundaries are blurred and tuple attributes could be

kept in CPU registers as long as possible. BDTK not only leverages

data-centric code generation but also takes advantage of vectorized

execution to boost performance further. BDTK focuses on providing

reusable, easy-to-connect utilities for engines instead of a complete

DBMS like Hyper.

8 CONCLUSION

As the important techniques for improving query performance,

query compilation and hardware accelerators are explored and

adapted in many engines. However, because of the intricacies of

these techniques, adapting these techniques often has to start from

scratch and interact with low-level compiler frameworks, hardware

drivers, etc., which leads to many duplicate works and unnecessary

costs.

To address this problem, we proposed BDTK, a reusable C++

acceleration toolkit library with interoperable interfaces, which

could be integrated into different engines and help them to adapt

high-performance data processing utilities. In this paper, we de-

scribed the implementation details of the BDTK, which explains

how BDTK achieves reusability and good performance. We inte-

grated the BDTK into the Velox and evaluated the performance

of expression evaluation and data decompression, in which BDTK

showed significant performance improvements.

As future steps, we are extending the features and optimizing

the performance of BDTK. There are several open questions in

BDTK to resolve, such as the expansibility for expressions and

functions, the observability for debugging and profiling, etc. We are

also attempting to integrate the BDTKwithmultiple data processing

engines for more practical feedback. Finally, we hope the BDTK

could be a helpful choice for the developers to easily leverage the

query compilation and the hardware accelerator techniques.

3713

REFERENCES
[1] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh

Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta,
Sebastian Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the
2022 International Conference on Management of Data. 2205ś2217.

[2] Morton M. Astrahan, MikeW. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,
Jim N Gray, Patricia P. Griffiths, W Frank King, Raymond A. Lorie, Paul R.
McJones, James W. Mehl, et al. 1976. System R: Relational approach to database
management. ACM Transactions on Database Systems (TODS) 1, 2 (1976), 97ś137.

[3] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, AnkurDave, ToddGreenstein, Shant Hovsepian, Ryan Johnson, Arvind
Sai Krishnan, et al. 2022. Photon: A fast query engine for lakehouse systems. In
Proceedings of the 2022 International Conference on Management of Data. 2326ś
2339.

[4] BlazingDB. 2023. Home - SQL-Bblaz Ing. https://blazingsql.com/. (Accessed on
02/23/2023).

[5] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In Cidr, Vol. 5. 225ś237.

[6] Monica Chiosa, Fabio Maschi, Ingo Müller, Gustavo Alonso, and Norman May.
2022. Hardware acceleration of compression and encryption in SAP HANA. In
48th International Conference on Very Large Databases (VLDB 2022).

[7] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. 1991. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13, 4 (1991), 451ś490.

[8] Apache Software Foundation. 2018. Gandiva: A LLVM-based Analytical Expres-
sion Compiler for Apache Arrow | Apache Arrow. https://arrow.apache.org/blog/
2018/12/05/gandiva-donation/. (Accessed on 02/26/2023).

[9] Apache Software Foundation. 2022. Apache Arrow DataFusion Ð Arrow Data-
Fusion documentation. https://arrow.apache.org/datafusion/. (Accessed on
02/23/2023).

[10] Apache Software Foundation. 2023. Apache Arrow | Apache Arrow. https:
//arrow.apache.org/. (Accessed on 02/23/2023).

[11] Apache Software Foundation. 2023. Arrow Columnar Format Ð Apache Arrow
v11.0.0. https://arrow.apache.org/docs/format/Columnar.html. (Accessed on
02/23/2023).

[12] LLVM Foundation. 2023. The LLVM Compiler Infrastructure Project. https:
//llvm.org/. (Accessed on 02/23/2023).

[13] Trino Software Foundation. 2023. Trino | Distributed SQL query engine for big
data. https://trino.io/. (Accessed on 02/23/2023).

[14] Carnegie Mellon University Database Group. 2023. NoisePage ś Self-Driving
Database Management System. https://noise.page/. (Accessed on 02/23/2023).

[15] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an open
framework for query optimization and compilation. Proceedings of the VLDB
Endowment 15, 11 (2022), 2389ś2401.

[16] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In 2011 IEEE
27th International Conference on Data Engineering. IEEE, 195ś206.

[17] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter Boncz. 2018. Everything you always wanted to know about compiled and
vectorized queries but were afraid to ask. Proceedings of the VLDB Endowment
11, 13 (2018), 2209ś2222.

[18] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: fast compilation and fast execution of relational queries in Umbra. The
VLDB Journal 30 (2021), 883ś905.

[19] Maksim Kita. 2022. JIT in ClickHouse. https://clickhouse.com/blog/clickhouse-
just-in-time-compiler-jit. (Accessed on 02/23/2023).

[20] Prashanth Menon, Todd C Mowry, and Andrew Pavlo. 2017. Relaxed opera-
tor fusion for in-memory databases: Making compilation, vectorization, and
prefetching work together at last. Proceedings of the VLDB Endowment 11, 1
(2017), 1ś13.

[21] Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern
hardware. Proceedings of the VLDB Endowment 4, 9 (2011), 539ś550.

[22] Thomas Neumann. 2021. Evolution of a compiling query engine. Proceedings of
the VLDB Endowment 14, 12 (2021), 3207ś3210.

[23] Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance.. In CIDR.

[24] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: meta’s unified
execution engine. Proceedings of the VLDB Endowment 15, 12 (2022), 3372ś3384.

[25] Pola-rs. 2023. Polars. https://www.pola.rs/. (Accessed on 02/23/2023).
[26] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad

Dashti, and Christoph Koch. 2016. How to architect a query compiler. In Pro-
ceedings of the 2016 International Conference on Management of Data. 1907ś1922.

[27] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. 2011. Vectorization
vs. compilation in query execution. In Proceedings of the Seventh International
Workshop on Data Management on New Hardware. 33ś40.

[28] Substrait. 2023. Home - Substrait: Cross-Language Serialization for Relational
Algebra. https://substrait.io/. (Accessed on 02/23/2023).

[29] Alex Suhan and Todd Mostak. 2015. MapD: Massive throughput database queries
with LLVM on GPUs.

[30] Gregory Tucker, Roy Oursler, and Johnathan Stern. 2017. ISA-L igzip: improve-
ments to a fast deflate. In 2017 Data Compression Conference (DCC). IEEE Com-
puter Society, 465ś465.

[31] Michael Joseph Wolfe. 1995. High performance compilers for parallel computing.
Addison-Wesley Longman Publishing Co., Inc.

[32] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

[33] Tianqi Zheng, Zhibin Zhang, and Xueqi Cheng. 2020. Saha: a string adaptive
hash table for analytical databases. Applied Sciences 10, 6 (2020), 1915.

3714

	Abstract
	1 Introduction
	2 Background
	2.1 Apache Arrow
	2.2 Substrait
	2.3 Query Compilation

	3 Overview of BDTK
	3.1 Overview
	3.2 Integration with Execution Engines

	4 Query Compilation in the BDTK
	4.1 Substrait Plan Parser
	4.2 Codegen Translator Planner
	4.3 JITLib
	4.4 Expression Evaluation
	4.5 Operators
	4.6 Memory Management

	5 Hardware Accelerator Support in BDTK
	6 Experiments
	6.1 Query Compilation Performance Evaluation
	6.2 Data Decompression Performance Evaluation

	7 Related Works
	8 Conclusion
	References

