
MiCS: Near-linear Scaling for Training Gigantic Model on Public
Cloud

Zhen Zhang∗
Johns Hopkins University

zzhen1@jhu.edu

Shuai Zheng
Amazon Web Services
shzheng@amazon.com

Yida Wang
Amazon Web Services
wangyida@amazon.com

Justin Chiu
Amazon

justchiu@amazon.com

George Karypis
Amazon Web Services
gkarypis@amazon.com

Trishul Chilimbi
Amazon

trishulc@amazon.com

Mu Li
Amazon Web Services
mli@amazon.com

Xin Jin
Peking University

xinjinpku@pku.edu.cn

ABSTRACT
Existing general purpose frameworks for gigantic model training,
i.e., dense models with billions of parameters, cannot scale effi-
ciently on cloud environment with various networking conditions
due to large communication overheads. In this paper, we propose
MiCS, which Minimizes the Communication Scale to bring down
communication overhead. Specifically, by decreasing the number
of participants in a communication collective, MiCS can utilize
heterogeneous network bandwidth, reduce network traffic over
slower links, reduce the latency of communications for maintaining
high network bandwidth utilization, and amortize expensive global
gradient synchronization overhead. Our evaluation on AWS shows
that the system throughput of MiCS is up to 2.89× that of the state-
of-the-art large model training systems. MiCS achieves near-linear
scaling efficiency, which is up to 1.27× that of DeepSpeed. MiCS
allows us to train a proprietary model with 100 billion parameters
on 512 GPUs with 99.4% weak-scaling efficiency, and it is able to
saturate over 54.5% theoretical computation power of each GPU on
a public cloud with less GPU memory and more restricted networks
than DGX-A100 clusters.

PVLDB Reference Format:
Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis,
Trishul Chilimbi, Mu Li, and Xin Jin. MiCS: Near-linear Scaling for
Training Gigantic Model on Public Cloud. PVLDB, 16(1): 37 - 50, 2022.
doi:10.14778/3561261.3561265

1 INTRODUCTION
There is a growing body of research showing that large Deep Learn-
ing (DL) models deliver superior accuracy in areas such as natural
language processing (NLP) [17, 54], speech recognition (SR) [11,
13, 70], and computer vision (CV) [15, 67, 68]. This has resulted
in a more than 1000× increase in the size of the DL models that
∗Work partly done as an intern at Amazon Web Services.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:10.14778/3561261.3561265

are commonly trained with many of them having several hundred
billion parameters. The high computational requirement associated
with training DL models has led to effective and simple paralleliza-
tion approaches based on data parallelism (DP) [26, 42, 43, 52, 57].
However, many of these approaches cannot be applied for train-
ing gigantic DL models, as their memory requirements exceed the
amount of GPU memory.

A common way to train gigantic DL models is to use model-
parallelism (MP) that decomposes the computation across the de-
vices by partitioning the neural network architecture (i.e., the
model). As a result of this network partitioning, themodel states (i.e.,
the memory storing the model parameters, gradients, and optimizer
states) are also partitioned across the devices, and as such it over-
comes DP’s memory-related limitations. Unfortunately, existing
MP frameworks require users to substantially modify the logic of
their training code and add specific primitives [25, 28, 35, 53, 54]. In
addition, many of the MP frameworks are specifically designed for
certain types of neural network architectures [38, 54] and cannot
be directly used for arbitrary architectures. However, the idea of
partitioning the model states across different devices is essential
for enabling large model training and was recently incorporated
into DP by the development of ZeRO [47]. ZeRO, which is imple-
mented in distributed systems DeepSpeed [47] and FairScale [18],
evenly partitions the model states across the entire training cluster,
enabling the training of very large models while retaining DP’s
simplicity, ease of use, and generality.

ZeRO was designed for clusters using nodes based on NVIDIA’s
DGX-2 or DGX-A100 multi-GPU systems [37, 45]. These nodes
are connected via high-bandwidth low-latency InfiniBand leading
to clusters whose intra- and inter-node GPU-to-GPU bandwidth
is nearly balanced (intra-node bandwidth is about 3× faster than
inter-node). ZeRO takes advantage of this balanced network to
treat all GPU devices of the cluster equivalently and to partition
the model states across the entire cluster. As a result, whenever
during the forward or backward phase a parameter tensor is re-
quired for the computations, a collective communication operation
needs to be performed that involves all devices of the entire clus-
ter (§2.2). Training clusters in public cloud environment are not
always equipped with high-speed InfiniBand networks as DGX

37

https://doi.org/10.14778/3561261.3561265
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3561261.3561265


nodes have. For example, cloud instances with V100 GPUs are typ-
ically paired with 100Gbps networks [3–5, 20], in which case the
bandwidth is less balanced (intra-node bandwidth is about 24×
faster than inter-node). In such scenarios, ZeRO is not well suited.
By treating these devices equivalently and not accounting for the
heterogeneous and hierarchical nature of the inter-node network,
ZeRO fails to take advantage of the faster intra-node networks.
Moreover, by partitioning the model states across the entire cluster,
even when the model states can fit in the memory of a subcluster,
ZeRO unnecessarily incurs high communication cost of collective
communications, because of the low effective bandwidth caused
by high algorithmic latency. And the communication overhead of
ZeRO grows larger as the size of the cluster scales up (§2.3).

To surmount the aforementioned challenges, we propose MiCS,
following a core design principle: to reduce the number of commu-
nicating participants, i.e., communication scale, as much as possible.
By minimizing the scale, MiCS reduces the latency and the data
volume transmitted over slow inter-node links. We design and
implement three components to realize the design principle for
reducing communication overheads.

• Scale-aware model partitioning. Instead of using all devices as
a single group for holding the model states, MiCS divides all
devices into partition groups. Each group holds a complete copy
of the model states. Within each group, the model states are par-
titioned. Thus most frequent parameter gatherings are operated
at the scale of each group (§3.2).

• Hierarchical communication strategy. Hierarchical communica-
tion allows us to parallelize multiple inter-node collective com-
munications and reduce the scale of each collective communica-
tion. It reduces the aggregated traffic over the inter-node links,
thus leading to lower communication cost (§3.3).

• 2-hop gradient synchronization. Unlike ZeRO that synchronizes
gradients over all devices for each micro-step, MiCS only syn-
chronizes gradients within the partition group until the gradient
accumulation boundary is reached. At the gradient accumulation
boundary, gradients are synchronized across the partition groups.
As a result, MiCS reduces the synchronization cost significantly
by amortizing the cost to multiple micro-steps. (§3.4).

Our thorough evaluation shows significant system throughput
and scaling efficiency improvement of MiCS on public clouds like
AWS. On V100 GPU clusters with 100Gbps network, the system
throughput of MiCS is 2.89× larger than that of DeepSpeed, which
is the state-of-the-art DP framework for large model training. On
A100 GPU clusters with 40GB memory per GPU and 400Gbps net-
works, MiCS is up to 2.74× as fast as DeepSpeed. Compared to
Megatron-LM-3D, a state-of-the-art system specialized for training
Transformer models, MiCS achieves up to 30.1% better throughput.
MiCS gets near-linear (e.g., 99.4%) weak scaling efficiency in the
cloud, which is up to 27% better than DeepSpeed. MiCS has been
deployed to train a proprietary model with 100 billion (B) parame-
ters, saturating over 170 TeraFLOP/s (TFLOPS) per A100 GPU with
activation checkpointing at the scale of 512 GPUs.

In summary, this paper makes the following contributions.

• We identify the root problem—overwhelming communication
overhead—that prevents DP-based model partitioning from effi-
ciently scaling out on clusters with 100Gbps or 400Gbps network
interfaces with relatively higher latency than InfiniBand [74].

• We design and implement a system MiCS that minimizes the
communication scale to reduce the communication overhead.

• We evaluate MiCS thoroughly to justify the benefits of minimiz-
ing communication scale on clusters with up to 512 GPUs.

2 BACKGROUND AND MOTIVATION
In this section, we briefly review deep learning model training (§2.1)
and how existing works tackle the large model training challenges
(§2.2), and discuss its major limitation in the context of public clouds
(§2.3). We then present the intuition that motivates our design (§2.4).

2.1 Model Training
Deep learning model training process mainly consists of three
phases, i.e., forward computation, backward computation, and pa-
rameter updating. In order to train the model faster, we can harness
the computing power of multiple machines. A gradient synchro-
nization step is performed before updating the model parameters to
ensure all workers will use the same set of parameters to evaluate
the incoming new training samples.

Deep learning model training is memory consuming as it needs
to hold the model states including model parameters, gradients
from backward computation, and optimizer states for parameter
updating. Because of the limited on-devicememory resource, activa-
tion checkpointing and gradient accumulation are typically enabled.
Activation checkpointing discards the activation outputs from the
forward phase and requires activation recomputation in the back-
ward phase. Gradient accumulation divides one large data batch
into multiple small micro-batches to reduce the memory footprint
of storing activation outputs. However, for models with billions of
parameters, these two techniques alone are not sufficient. Many
solutions targeting at gigantic model training are thus proposed.

2.2 Gigantic Model Training
In this paper, we use the term “giganticmodel” to refer to those Deep
Neural Networkmodels that consist of billions of densely connected
parameters, which means both the size of the model and the per-
sample computation of the model, i.e., floating-point operations
(FLOPs), are “gigantic”. Nowadays, the commonly adopted models
that fall into this category are transformer-based models [9, 37, 44,
45, 56, 69] and latest wide computer vision models [67].

Traditionally, developers use model-parallel (MP) distributed
training for gigantic model training. The basic idea is to distribute
the model parameters and computations across multiple devices for
each training sample. Thus, the memory for storing model states
is also distributed across devices. This way of distributing com-
putations comes with issues. Tensor model parallelism as one MP
method requires lots of communications during computation [54].
On the other hand, pipeline MP strategy is advocated with smaller
communication overheads, but it suffers from pipeline bubbles and
causes under-utilization. Besides, MP solutions are not directly
compatible with common frameworks like PyTorch or Tensorflow,
and they require non-trivial engineering effort from the user side.

38



Rank 0

Rank 1

Rank 2

Rank 3

Rank 0

Rank 1

Rank 2

Rank 3

All-gather
layer-0

Fo
rw

ar
d 
pa
ss
 o
f 

Ze
RO

-3
 D
P

Rank 0

Rank 1

Rank 2

Rank 3

Forward 
layer-0

release 
layer-0

Rank 0

Rank 1

Rank 2

Rank 3

All-gather
layer-1

Forward 
layer-1

release 
layer-1

…

Ba
ck
w
ar
d 
pa
ss
 o
f 

Ze
RO

-3
 D
P

Rank 0

Rank 1

Rank 2

Rank 3

Rank 0

Rank 1

Rank 2

Rank 3

All-gather
layer-1

Rank 0

Rank 1

Rank 2

Rank 3

Comp. 
gradient

w.r.t 
layer-1

Rank 0

Rank 1

Rank 2

Rank 3

Sync.
gradients

All-gather
layer-0

release
layer-1

…

Two-layer model Model param. partition 1 Model param. partition 2 Model param. partition 3 Model param. partition 4

Figure 1: Forward and backward passes of ZeRO-3 Data Parallelism on a cluster with four devices; for brevity, only the model
parameter states are shown in the figure; “Comp.”: compute, “Sync.”: synchronize, “param.”: parameter; communications are
marked with bold font; a two-layer model is used here for illustration purposes.

Lastly, some of the MP designs [37, 38] are model-specific solutions,
making them hard to generalize.

Compared to the MP solutions, ZeRO [45] powered data-parallel
(DP) solutions are general to various models and do not require
model refactoring. ZeRO partitions themodel states onto all devices
on the cluster to reduce the memory consumption on each device.
ZeRO has three different stages, corresponding to three different
levels of memory reduction: ZeRO-1 partitions optimizer states
only; ZeRO-2 partitions gradients and optimizer states; ZeRO-3
partitions all three states, i.e., parameters, gradients and optimizer
states, evenly across all devices on the training cluster. The full-
fledged ZeRO allows us to train the extremely large models when
we have a large enough cluster. However, we have to pay commu-
nication costs for gathering model parameters during both forward
and backward. Figure 1 illustrates the forward and backward passes
in ZeRO-3 powered DP, in which the parameters of each layer are
partitioned across all the ranks. Here we use the same convention
in the high-performance computing (HPC) community where we
use a rank number to identify a computing device. Before comput-
ing the activations or gradient for a layer, all parameters of this
layer are gathered back by all-gather communication. After com-
puting the gradients on each rank with its own part of the data,
the gradients are synchronized and partitioned across all ranks us-
ing reduce-scatter communication, which aggregates gradients
among all ranks and partitions the gradients at the same time. The
gradient partition is necessary for gigantic models with billions of
parameters due to the limited memory on each rank.

ZeRO-Offload [49] and ZeRO-Infinity [46] are two extensions to
ZeRO-3. These two systems offload model parameters, gradients,
and optimizer states to CPUmemory and NVMe SSDs. Both systems
suffer from the same communication overheads as ZeRO-3, which
will be discussed in the next subsection.

2.3 Communication Overhead
ZeRO’s model state partitioning mechanism results in the heavy
use of collective communication for gathering model states , which
is demonstrated in Figure 1. Specifically, ZeRO-3 transmits 3(𝑛 −

128MB 256MB 512MB 1024MB
Message size

0

5

10

15

E
ffe

ct
iv

e 
ba

nd
w

id
th

(G
B

/s
)

4 nodes
8 nodes

16 nodes
32 nodes

Figure 2: Effective bandwidths measured with all-gather.

1)𝑀/𝑛 bytes [45] in forward and backward passes, where 𝑀 de-
notes the size of the parameters of the model in bytes, 𝑛 denotes
the number of devices. The transmitted data volume is as large as
tens to hundreds of gigabytes for models with tens to hundreds of
billions of parameters. The cost of transmitting these data crossing
the entire cluster cannot be easily hidden via pipelining the commu-
nication and computation. Our timeline measurement shows that
for a BERT model with 10B parameters, parameter gathering could
take 2.85× more time than computation in forward pass. Similar
expensive communications also exist in the backward computa-
tion and gradient synchronization, which hurts the performance of
ZeRO especially when the network bandwidth between devices is
less preferable.

There are two main factors that contribute to the costly com-
munications when using ZeRO-3 on the cloud. Firstly, at the hard-
ware level, many of the available internode network bandwidths
and latency of cloud-based GPU clusters are not as good as DGX
systems [3, 5, 20, 74]. Moreover, unlike on-premise clusters, the net-
work topology of cloud-based clusters is out of users’ control, which
could negatively impact the network performance [32, 33]. Sec-
ondly, at the algorithmic side, the latency of collective algorithms
for communication has a positive correlation with the communica-
tion scale and the startup time for transmission [10]1. Therefore,
as the scale grows, the latency becomes more significant and hurts
1The latency of tree algorithms is bounded with

⌈
log2 (𝑝)

⌉
𝛼 , and the ring algorithms

have a latency term 2𝑝𝛼 , where 𝑝 denotes the number of participants and 𝛼 denotes
the startup time for transmission, §7.1.7 in [10]

39



the performance of communication at a large scale. In addition,
previous studies [71] suggest that network bandwidth may not be
the performance bottleneck of distributed model training. Based on
our measurements, as the cluster size grows, we need larger mes-
sage sizes to saturate the bandwidth. Figure 2 shows that small-size
message such as 128MB obtains poor bandwidth utilization on 16
and 32 nodes.

In practice, we may not be able to always communicate large
messages due to the memory constraint. Instead, it is better to con-
trol the communication scale to improve the bandwidth utilization,
especially on the cloud with less favorable network conditions.

2.4 Motivation
As mentioned in §2.3, the frequent communication among all de-
vices significantly hampers the training performance of ZeRO pow-
ered DP solutions. This motivates us to design a new system that
reduces the cost of communications while preserving the generality
and usability advantages. We found the communication overhead
can be effectively reduced by shrinking the communication scale,
i.e., reducing the number of participants in a collective commu-
nication. With the reduced communication scale, the majority of
communications are restricted to a smaller group of devices. This
allows us to maintain high bandwidth utilization in communica-
tions for various sized messages, as shown in Figure 2. In addition,
because the transmitted data volume is positively correlated to the
number of participants, reducing the communication scale reduces
the data volume. We give detailed descriptions of our methodology
in the next section.

3 MICS DESIGN
MiCS is designed for training large models on the public cloud. The
overarching goal of MiCS’s design is to reduce the scale of com-
munication. The reduced scale allows us to exploit heterogeneous
network bandwidth, and to reduce the network traffic transmitted
over slow links. To effectively reduce the communication scale, we
propose three components named small-scale model partitioning,
hierarchical communication and 2-hop gradient synchronization. For
each of them, we explain the motivation, the methodology, and the
analysis of our design.

3.1 Notation
We define the notations used in this section as follows:

• 𝑛: Number of devices or ranks in the cluster.
• 𝑘 : Number of devices on each computational node.
• 𝑀 : Size of a model in bytes.
• 𝑝: Number of devices for holding a model replica.
• 𝑠: Number of micro-steps.
• 𝐵𝑔 : Effective communication bandwidth among devices belong-

ing to the group 𝑔. We define the effective communication band-
width as the bandwidth measured using collective communica-
tion. Effective communication bandwidth takes algorithm latency
into account. Thus it is smaller than the theoretical bandwidth
of hardware specification. For a fixed message size, when the
number of nodes increases, the effective bandwidth shrinks.

• 𝐶: Time cost.

Rank 0

Rank 1

Rank 2

Rank 3

Rank n-2

Rank n-1

Partition 
group 0

Partition 
group 1

Partition 
group n/2-1

Replication
group 0

Replication
group 1

…

…

Figure 3: Model training on 𝑛 devices, with every 2 devices
together holding a copy of the model states. Each partition
groupmaintains a copy of the entiremodel states, and devices
in a replication group hold the same part of model states.

3.2 Scale-aware Model Partitioning
Partitioning model states across all the devices causes significant
communications overheads during training. Such communication
overheads scale with the number of participants in a single collec-
tive communication (§2.3). To reduce the communication overheads,
we consider distributing the model states over a subset of devices
to reduce the scale of the communication. A modern single com-
puting device typically has tens of gigabytes of memory, and tens
of them provide sufficient memory for a model with tens of billions
of parameters. For example, a model with 10 billion parameters
takes about 160GB of memory when training with Adam optimizer
using mixed-precision. Partitioning the model states across 8 V100
(32GB) GPUs is already more than enough. By using 8 V100 GPUs
instead of all the devices for holding one model states replica, we
can effectively reduce the scale of communication. If 8 GPUs are
located on a single node, then we can leverage high-speed intra-
node connections such as NVLink/NVSwitch to perform the most
communications. Next, we give a general form of model states
partitioning in our system and provide an analysis of the benefits.

In MiCS, we divide all the devices into multiple groups and
partition the model states within each group. Every group has the
same number of devices and holds a complete replica of the model
states in training. We call these groups partition groups. Each device
is tagged with a local group rank. Devices with the same local
group rank form another type of group, named replication group,
and they hold the same part of the model states. In Figure 3, we
give an example that the model states are partitioned onto two
devices. Thus every two devices with consecutive rank numbers
form a partition group. The devices ranked with odd numbers and
even numbers form two replication groups separately. During the
training, when a parameter tensor is needed for either the forward
or backward computation, MiCS invokes all-gather collective to
gather the corresponding model parameters distributed within each
partition group. After the gradients are computed on each device,
MiCS uses all-reduce collective to aggregate the gradients, and then
it partitions the gradients within each partition group.

Now we give the performance analysis of our partitioning strat-
egy in terms of the cost of all-gather. We assume the iteration
time is bounded by the communications, which is true based on
our measurements (§2.3). The time cost of ZeRO-3’s partition-to-
all strategy is 𝐶all = ((𝑛 − 1)𝑀)/(𝑛𝐵all), where 𝐵all denotes ef-
fective bandwidth among all devices. The time cost of MiCS is
𝐶MiCS = ((𝑝 − 1)𝑀)/(𝑝𝐵part). Here we assume all partition groups

40



Rank 0

Rank 1

Node 0

Rank 2

Rank 3

Node 1

Vanilla communication Hierarchical communication

Rank 0

Rank 1

Node 0

Rank 2

Rank 3

Node 1

Inter-nodeIntra-node

Figure 4: Differences between hierarchical communication
and vanilla communication.

have the same intra-group bandwidth, and we denote this band-
width by 𝐵part. Because the value of function (𝑥 − 1)/𝑥 increases
when 𝑥 ≥ 1 and 𝑝 ≤ 𝑛, we have the following inequality for the
ratio of two costs.

𝐶all
𝐶MiCS

≥
𝐵part

𝐵all
.

For models that can be partitioned to devices located on a single
node, only local high-speed NVLinks connections are used for all-
gather. Based on the measurement on 64 GPUs spread across 8
computational nodes, we get 𝐵part ≃ 128GB/s and 𝐵all ≃ 11GB/s.
Thus, the cost ratio can be as large as 11.6. For the case where there
are 32 nodes in total and each partition group consists of 4 nodes,
the cost ratio is ranging from 2.7 to 4.9 based on our measurements
presented in §2.3. For the model states that can be partitioned
within 4 nodes, we can expect about 63.6% to 91.3% time reduction
for parameter gathering with our partitioning strategy.

3.3 Hierarchical Communication Strategy
When the model size grows, it requires more devices to hold the
model states for the training. If the required devices span multi-
ple computational nodes, inter-node communication is needed for
parameter gathering. We can reduce the transmitted data volume
over inter-node connections by reducing the scale. Assuming we
want to all-gather a message with size 𝑀 among 𝑝 participants,
the data traffic transmitted among participants is determined by
(𝑝 − 1)𝑀/𝑝 [10]. This means we can split 𝑝 participants into multi-
ple small groups and perform independent communication within
each group. We consider GPUs spanning across multiple nodes as
a two-dimensional grid, in which we first aggregate the data across
nodes in parallel and then merge the local data on each node.

For hierarchical communication to work properly, we first build
communication channels for devices. Assuming each computational
node has 𝑘 devices, MiCS builds 𝑘 communication channels for
inter-node communication and a separate communication channel
for intra-node communication (Figure 4 (right)). As a compari-
son, vanilla collective communication uses a single communication
channel for devices spanning across nodes (Figure 4 (left)). In Fig-
ures 4, we illustrate the idea using two computational nodes, each of
which has two devices, i.e., 𝑝 = 4 and 𝑘 = 2. Next, we introduce how
hierarchical communication works for inter-node communication.

MiCS uses a three-stage algorithm for hierarchical communi-
cation. In the first stage, each device uses the inter-node commu-
nication channels to do all-gather with the devices that have the
same local rank on respective nodes. The inter-node all-gather

operations are executed in parallel. In the second stage, the data
chunks are rearranged to ensure correctness. In the third stage,
we invoke batched intra-node all-gather. In general, for the model
states partitioned onto 𝑝 devices spanning 𝑝/𝑘 nodes, the number
of batched all-gather calls is 𝑝/𝑘 in the third stage. An example of
the algorithm running across two nodes is given in Figure 5. In the
following, we explain why we have the second and third stages
work as we described here.

The second and third stages are designed to fix the memory
discontiguous issue. Otherwise, we would get the wrong output.
We use the model states partitioned to two nodes with 4 GPUs
for an explanation, shown in Figure 5. The final outputs of the
hierarchical communication algorithm should place data𝐶0 and𝐶1
in the adjacent locations. However, the inter-node all-gather will
gather 𝐶0 and 𝐶2 into a contiguous memory. Thus, if we directly
launch an all-gather collective primitive on the output from the
first stage, we will get the wrong memory layout [𝐶0,𝐶2,𝐶1,𝐶3],
while the correct one is [𝐶0,𝐶1,𝐶2,𝐶3]. To fix this, we add a data
movement stage before intra-node all-gather to rearrange the data
chunks. Then in the third stage, we launch 𝑝/𝑘 = 2 intra-node
all-gather collectives in a batch, where each intra-node all-gather
operation works on a subset of the data chunks. Launching multi-
ple communications in a batch requires new communication API
implementation to get good performance, which is detailed in §4.

The performance benefits of the hierarchical communication
strategy depend on the scale of the model states partitioning. As-
sume the model is partitioned onto 𝑝 devices, and 𝑝 is divisible by
𝑘 , where 𝑘 is the number of devices on each computational node.
With the vanilla communication strategy, the inter-node data traffic
is (𝑝 − 1)𝑀/𝑝 . Using the proposed hierarchical communication, the
data volume transmitted over inter-node connections is reduced to
(𝑝 − 𝑘)𝑀/𝑝 . In this way, the communication volume over the slow
inter-node links is reduced by

𝑝 − 1
𝑝 − 𝑘

.

Given that 𝑝 ≥ 𝑘 ≥ 1, this ratio decreases monotonically and
approaches 1 when 𝑝 increases. Thus, the improvement is less
when we have to use more devices to hold a model replica. In a
typical setup, we would have 𝑘 = 8. A 10B-50B parameter model
typically requires 8 ≤ 𝑝 ≤ 64 number of workers for holding the
model states. In this case, we will obtain 11.1% to 46.6% data volume
reduction with hierarchical communication.

3.4 2-hop Gradient Synchronization
In the typical distributed training setting, we need to aggregate
gradients across all the devices [21]. Gradient aggregation is an
expensive synchronization step and its cost scales with the number
of workers, detailed in §2.3. It ensures that all devices work on the
same model states.

To improve the training efficiency, more recent works advocate
large-batch training [21, 29, 65, 66, 73]. However, due to the limited
device memory, practitioners have to resort to gradient accumula-
tion that divides a large batch into multiple micro-batches and accu-
mulates the gradient w.r.t. each micro-batch into a shared memory
buffer. In the standard data parallel setting, the gradient synchro-
nization is only needed at the accumulation boundary where all the

41



1. Inter-node 
all-gather

Node 1

C 2
Rank 2

C 3
Rank 3

Node 0

C 0
Rank 0

C 1
Rank 1

C 0
Rank 0

C 2 C 1
Rank 1

C 3
2. Data 
placement

C 0 C 1 C 2 C 2

Rank 0
C 0 C 1 C 1 C 3

Rank 1

C 0 C 1 C 2 C 3
Rank 0

C 0 C 1 C 2 C 3

Rank 1

Inter-node all-gather Intra-node all-gather

3. Batched 
intra-node 
all-gather 

Memory copy Intra-node all-gather

Figure 5: Hierarchical communication stages; C* denotes a
data chunk; the procedure of Node 0 is shown for brevity.

gradients have been computed. However, ZeRO requires additional
gradient synchronization within each micro-step because of gradi-
ent partitioning. Since each device is only responsible for holding
a part of the gradient, the gradient needs to be partitioned once
it is computed. In order to avoid losing the gradient information,
gradients have to be aggregated before the partitioning. This makes
every gradient partitioning step become a global synchronization
barrier among all devices. Since MiCS only partitions the model
states into a small group of devices, we can restrict the gradient
synchronization within the group for each micro-step and delay
the global gradient synchronization to the accumulation bound-
ary. This motivates the design of 2-hop gradient synchronization
schedule without over-paying communication costs.

2-hop gradient synchronization performs gradient synchroniza-
tion within each partition group for each micro-step. Only at the
gradient accumulation boundary, global synchronization is per-
formed among the devices that possess the same part of the model.
Figure 6 gives an example of a model partitioned onto two devices.
Every two consecutive ranks form a partition group. Ranks with
odd number and even number indices form two different replication
groups, respectively. For illustration purposes, we assume the num-
ber of gradient accumulation steps is 𝑠 = 4. For each micro-step,
MiCS uses reduce-scatter to synchronize gradients within each par-
tition group. At the gradient accumulation boundary, an all-reduce
operation is used within each replication group for synchroniza-
tion. An alternative synchronization schedule is to use all-reduce
for gradient synchronization at every micro-step and then partition
the gradient on each device. During the partitioning, each device
only keeps the part of the gradient that it is responsible for while
discarding the rest. This alternative schedule is the default one
implemented in DeepSpeed. However, this scheme is redundant
and overpays the communication costs.

The performance benefits of the 2-hop gradient synchronization
schedule depend on the number of micro-steps and the effective

Rank 0

Rank 1

Rank 2

Rank 3

…
Rank n-2

Rank n-1

Rank 0

Rank 1

Rank 2

Rank 3

…
Rank n-2

Rank n-1

Micro-step 1 Micro-step 2

Rank 0

Rank 1

Rank 2

Rank 3

…
Rank n-2

Rank n-1

Micro-step 3

Rank 0

Rank 1

Rank 2

Rank 3

…
Rank n-2

Rank n-1

Micro-step 4 

Gradient acc. boundary 

Intra-partition sync. Inter-partition sync.
Replication groupPartition group

Figure 6: Gradient synchronization steps. A partition group
consists of two nodes. The intra-group synchronization hap-
pens in every micro-step, while the inter-group synchroniza-
tion only happens at gradient accumulation boundary.

communication bandwidths within partition groups and replica-
tion groups. For simplicity, we assume that every partition group
has the same effective bandwidth 𝐵part, and bandwidth within
each replication group is 𝐵repl. The time cost of 2-hop schedule is
𝐶2-hop = (𝑠𝑀 (𝑝−1))/(𝑝𝐵part) +2𝑀 (𝑛−𝑝)/(𝑛𝐵repl), while the time
cost for the alternative schedule is 𝐶alt = 2𝑠𝑀 (𝑛 − 1)/(𝑛𝐵all). We
take the ratio of two costs, and simplify the ratio using inequalities
(𝑝 − 1)/𝑝 ≤ (𝑛 − 1)/𝑛 and (𝑛 − 𝑝)/𝑛 ≤ (𝑛 − 1)/𝑛 when 𝑛 ≥ 𝑝 ≥ 1.
In the following inequality, we can view the right-hand side as the
lower bound for the improvement.

𝐶alt
𝐶2-hop

≥
2𝑠
𝐵all

𝑠
𝐵part

+ 2
𝐵repl

.

Assuming 𝑠 = 4, which is a reasonable setup for large batch train-
ing [45, 54], and assuming 𝐵all = 𝐵part = 𝐵repl for simplicity, we
get the lower bound of the ratio at 4/3. This means at least 25%
cost reduction by using the 2-hop schedule. Taking heterogeneous
bandwidth into consideration would further reduce the denomina-
tor on the right-hand side and helps achieve more gains. We notice
that when 𝑠 = 1, under the assumption that 𝐵all = 𝐵part = 𝐵repl,
the 2-hop synchronization is sub-optimal compared to the alter-
native schedule. However, given the heterogeneity of the effective
bandwidths in a large cluster, e.g., having 𝐵part ≃ 𝐵repl > 1.5𝐵all
(which is reasonable based on our measurement in §2.3), the 2-hop
schedule typically costs less. Therefore, even for 𝑠 = 1, in training
large models with a large cluster, 2-hop is still preferred.

4 IMPLEMENTATION
The implementation of MiCS is based on DeepSpeed-v0.4.9 and
PyTorch-v1.11. To efficiently implement our design, we make the
following optimizations.

Fine-grained synchronization. Both parameter gathering and
gradient synchronization involve a large number of communication
kernel launches. Communication and computation operations are
typically executed asynchronously from each other in their own
CUDA streams. To maintain the data dependency correctly among
these two types of operations, synchronization is required at proper

42



position. The synchronization mechanisms like device synchroniza-
tion or stream synchronization used in DeepSpeed-v0.5.6 operate in
a coarse granularity and hence lead to sub-optimal communication
and computation overlapping, especially on lower bandwidth clus-
ters. For example, if a communication operation 𝑐𝑜𝑚𝑚0 depends on
the output from computation operation 𝑐𝑜𝑚𝑝0, and the 𝑐𝑜𝑚𝑝0 is
running with another computation 𝑐𝑜𝑚𝑝1 on the device, then using
coarse-grained device synchronization would delay 𝑐𝑜𝑚𝑚0 until
𝑐𝑜𝑚𝑝1 is completed. Instead, MiCS follows the good practice in
existing works, e.g., BytePS [26], that leverages much finer-grained
wait_event, wait_stream and record_stream operations for syn-
chronization, which allow us to maintain the relative order of com-
putation and communication operations in different streams. Using
this mechanism, 𝑐𝑜𝑚𝑚0 can kick off without waiting for 𝑐𝑜𝑚𝑝1
to complete. In addition, during the forward and backward passes,
many complex decisions need to be made, such as which parame-
ters should be fetched, predicting which parameters will be used
next, which parameters may be reused soon and should be kept,
and which can be released. We observe that making these decisions
on-the-fly creates large computation and communication bubbles.
We optimize this computation by precomputing and caching the
decisions. The same decisions are reused throughout the training.

Coalesced communication APIs. MiCS’s hierarchical communi-
cation design introduces multiple communications over small mes-
sages. One way to improve bandwidth utilization is to batch com-
munications. However, it is suboptimal to use existing all_gather
and reduce_scatter operators in PyTorch to implement batched
communication as we will have to explicitly use a custom interleav-
ing scheme to copy the tensors into a shared buffer. MiCS intro-
duces two coalesced communication APIs, all_gather_coalesced
and reduce_scatter_coalesced. These APIs avoid the redundant
buffer allocation and memory copy in all-gather and reduce-scatter
API calls in PyTorch. MiCS leverages the group primitive in nccl to
launch multiple communication operations at once, without extra
data movement or allocation.

Memory defragmentation. Like DeepSpeed, MiCS also requires
frequent memory allocation and deallocation operations as model
states are frequently gathered and scattered. This results in serious
memory fragmentation when using the dynamic allocation pro-
vided by PyTorch memory manager, causing out-of-memory errors
when we try to allocate large contiguous memory buffers. Deep-
Speed allocates contiguous memory buffers for holding gradients to
mitigate the fragmentation issue. But it does not consider the frag-
mentation problems caused by operations related to partitioned
parameters and gradients. MiCS’s memory management solves
the memory fragmentation issue in a more comprehensive way.
MiCS pre-allocates large contiguous memory buffers for holding
partitioned parameters, partitioned gradients, and temporary small
buffers ahead of the training. During training, MiCS reuses these
buffers proactively, rather than relies on the memory management
module in PyTorch.

5 EVALUATION
In this section, we evaluate the following three aspects.

• Training performance: Does MiCS provide better throughput
than the existing solutions?

• Effectiveness of the design: How does each component of the
system affect the performance?

• Fidelity: Is the system carefully implemented so that the training
is converging correctly?

Setups. We conduct all experiments on AWS. Unless specified
otherwise, we use Amazon EC2 p3dn.24xlarge instances for the
evaluation. Each instance has 8 V100 (32GB) GPUs, which are inter-
connected via NVLink. The theoretical aggregated GPU intercon-
nect bandwidth within the instance is 300 GB/s. For the inter-node
communication, p3dn.24xlarge has a 100Gbps elastic fabric adaptor
(EFA). In addition, we have also evaluated our system on Ama-
zon EC2 p4d.24xlarge instances, which have 8 A100 (40GB) GPUs
and a 400Gbps EFA network. The software environment includes
CUDA-11.0, DeepSpeed-v0.5.6, PyTorch (customization from v1.11),
Megatron-LM (git-hash d416968), and nccl-v2.10.3.

Metric and workloads. We use system throughput and TFLOPS
as our main evaluation metrics. Unless specified otherwise, we
use model variants based on the BERT model [17]. We vary the
number of transformer layers and the size of each layer to get dif-
ferent model configurations. We also include two other popular
language models, RoBERTa [31] and GPT2 [44]. Table 1 summarizes
the detailed model configurations. Other than language models, we
also evaluate the performance for training WideResNet to demon-
strate the generality of our system. For the language models, the
Wikipedia-en corpus is used as the training dataset. We fix sequence
length to 512 for the training. For the WideResNet model, we use
synthetic data with images sized 3 × 224 × 224. By default, we use
a micro-batch size of 8, global-batch size of 8192, mixed-precision,
and activation checkpointing in training.

5.1 Performance
In this section, we demonstrate the performance advantages of
MiCS. First, we show the scalability of MiCS against DeepSpeed,
which is the state-of-the-art (SOTA) solution using DP with model
states partitioning. The TFLOPS numbers are also reported to show
the computation utilization of each GPU. In §5.1.2, we evaluate
MiCS and DeepSpeed in a different network condition, i.e., 400Gbps
network. In §5.1.5 we provide performance numbers of the 100B
model training on a large scale. In §5.1.3, we show MiCS can
outperform Megatron-LM-3D [37], which is a SOTA design for
transformer-based language models that uses DP and MP.

5.1.1 Scalability in 100Gbps Network. In this subsection, we report
the throughput performance and strong-scaling efficiency of MiCS
and DeepSpeed in 100Gbps networks. The baselines include both
ZeRO-2 and ZeRO-3 in DeepSpeed. ZeRO-1 is excluded because it is
not runnable for the smallest model we consider. ZeRO-Offload [49]
and ZeRO-Infinity [46] are not included, either. These two variants
aim to utilize CPUmemory and NVMe storage to support largemod-
els, which are orthogonal to MiCS. Instead, we focus on minimizing
communication overhead to improve the training throughput. For
both ZeRO-3 and MiCS, we use micro-batch size 8. But for ZeRO-
2 we use a smaller micro-batch size 4, because ZeRO-2 does not
perform parameter partitioning and uses more GPU memory for

43



Table 1: Structure of language models. BERT 10B means BERT with 10 Billion parameters, and similarly for other model names.
We use a sequence length of 512 for all the models.

Model Hidden size Intermediate size #layers #Attention heads Vocabulary size

BERT 10B 2560 10240 127 40 32008
BERT 15B 2560 10240 190 40 32008
BERT 20B 5120 20480 64 40 32008
BERT 50B 8192 32768 62 40 32008
RoBERTa 20B 5120 20480 62 40 50265
GPT2 20B 5120 20480 62 40 50265

16 32 64 128
Number of GPUs

0

100

200

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
) ZeRO-2

ZeRO-3
MiCS

(a) BERT 10B.

16 32 64 128
Number of GPUs

0

50

100

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
) ZeRO-2

ZeRO-3
MiCS

(b) BERT 15B.

16 32 64 128
Number of GPUs

0

20

40

60

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
) ZeRO-2

ZeRO-3
MiCS

(c) BERT 20B.

16 32 64 128
Number of GPUs

0

10

20

30

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
) ZeRO-2

ZeRO-3
MiCS

(d) BERT 50B.

Figure 7: Strong-scaling with different model sizes; × de-
notes “out-of-memory”; black rectangular denotes the linear-
scaling efficiency.

the redundant model parameter replicas. We vary the number of
computational nodes from 2 (resp. 16 GPUs) to 16 (resp. 128 GPUs).
For the partition group size, we use the smallest number of nodes
that allow us to train models with the selected batch size, i.e., 1 node
for BERT 10B, 2 nodes for BERT 15B and 20B, 8 nodes for BERT
50B. All throughput numbers are averaged over 500 iterations.

As shown in Figure 7 and 8, the throughput of MiCS is signifi-
cantly better than that of DeepSpeed. Our performance numbers
show that the throughput of MiCS is up to 2.82× that of DeepSpeed
for the BERT 15B model. MiCS achieves near-linear or super-linear
scalability in all experiments. Here we define the linear-scaling as
with respect to the smallest number of computational nodes that
can hold the model states with the targeted micro-batch size, e.g.,
for BERT 50B the linear-scaling is with respect to 8 nodes. In most
of the setups, ZeRO-2 has an out-of-memory (OOM) problem. Next,
we explain the rationale of our results.

The performance improvements are different with respect to the
different characteristics of the models. For the BERT 10B model, a
single computational node has enough GPU memory to hold the
model states so that we can leverage fast intra-node GPU intercon-
nect to complete most of the communication. In this case, MiCS is
223% faster than ZeRO-3. And, larger micro-batch size allows MiCS
to further achieve more gains over ZeRO-2. The performance gain
of MiCS for BERT 15B is larger than that for BERT 20B model. The

difference is mainly due to the structural differences between the
two models. As listed in Table 1, BERT 15B has narrower transform-
ers layer but a larger number of layers. The narrower model leads to
smaller computation and communication units, which allow finer
grained overlapping of computation and communication. In BERT
20B experiments, we observe super-linear scaling. This is because
we have to disable hierarchical communication on 16 GPUs due to
the memory constraint. The all-reduce overhead among replication
groups is amortized by multiple micro-batches (§3.4). The amor-
tized overhead is relatively small, less than 1%, to the iteration time
of each micro-step. Thus, MiCS can maintain near-linear scalability.

To compare the computation utilization, we calculate the TFLOPS
performance based on system throughput. The TFLOPS numbers
are shown in Figure 9. We follow the equation in [37] to calculate
the total TFLOPS.

𝐹 = 96𝑇𝑙𝐿ℎ2
(
1 + 𝑙

6ℎ
+ 𝑉

16𝐿ℎ

)
,

where 𝑉 denotes vocabulary size, 𝑙 is the sequence length, ℎ is the
hidden size, 𝐿 refers to the number of layers, and 𝑇 is throughput
per second2. As we can see, MiCS is better than ZeRO-3 by a large
margin for all the model sizes. The maximum gain we observe
is 223.7%. For the BERT 10B model, we achieve about 42% of the
theoretical peak performance of V100. When the model size is
over 10B, the performance dropping is mainly because of the cross
node partitioning, which causes a larger communication overhead.
However, the computation utilization we get is still on par with the
numbers reported by DeepSpeed ZeRO [45] and Megatron-LM [54]
on DGX-2 clusters, which have 800Gbps networking.

5.1.2 Scalability in 400Gbps Network. In this subsection, we evalu-
ate MiCS on a GPU cluster with A100 GPUs and 400Gbps network
(Amazon EC2 p4d.24xlarge instances, 8 GPUs per instance). We use
the BERT 15B and BERT 20B models for the evaluation, and we fix
the micro-batch size to 8 for all experiments. DeepSpeed ZeRO-3 is
used as our baseline for comparison.

As shown in Figure 10, MiCS significantly outperforms Deep-
Speed and achieves near-linear scaling. The throughput of MiCS
is up to 2.21× that of ZeRO-3. The throughput gap enlarges as
the scale of the cluster increases, demonstrating that MiCS can
maintain near-linear scaling efficiency. In BERT 15B case, when
we scale the cluster size from 16 GPUs to 64 GPUs, MiCS achieves
96.7% efficiencies with respect to 16 GPUs. In contrast, DeepSpeed
ZeRO-3 only achieves 85.3% for BERT 15B. Compared to the results
2The derivation process of the formula is in the appendix of the paper [37].

44



16 32 64 128
Number of GPUs

0

50

100

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
)

ZeRO-2
ZeRO-3
MiCS

(a) RoBERTa 20B.

16 32 64 128
Number of GPUs

0

50

100

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
)

ZeRO-2
ZeRO-3
MiCS

(b) GPT2 20B.

Figure 8: Strong-scaling with other language models; × de-
notes “out-of-memory”; black rectangular denotes the linear-
scaling efficiency.

16 32 64 128
Number of GPUs

0

20

40

60

TF
LO

P
S

/G
P

U

ZeRO-3 (10B)
ZeRO-3 (15B)
ZeRO-3 (20B)
ZeRO-3 (50B)
MiCS (10B)
MiCS (15B)
MiCS (20B)
MiCS (50B)

Figure 9: TFLOPS performance; BERT models with different
sizes; × denotes “out-of-memory”.

16 32 64
Number of GPUs

0

50

100

150

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
)

ZeRO-3
MiCS

(a) BERT 15B.

16 32 64
Number of GPUs

0

50

100

150

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
)

ZeRO-3
MiCS

(b) BERT 20B.

Figure 10: Throughput comparison in 400Gbps network.

in Figure 7b, the performance gains are lower mainly because faster
network bandwidth mitigates communication overheads.

5.1.3 Comparison to Megatron-LM-3D. We increase the number of
layers to 128 while keeping the same hidden size and intermediate
size as the BERT 10B model. This is because the pipeline parallelism
of Megatron-LM-3D requires the number of layers to be divisible by
the size of pipeline parallelism.We usemicro-batch size 8 and global-
batch size 4096 for this experiment. We follow the takeaways from
Megatron-LM-3D [37] to tune the tensor parallel size and pipeline
parallel size for better performance. Specifically, we avoid using
tensor MP across nodes and use more pipeline MP than DP size if
applicable. We report three reasonable setups of Megatron-LM-3D,
as listed in table 2. In the table, we omit the DP size, because it
depends on the size of the training cluster.

As shown in Figure 11a, the performance of Megatron-LM-3D is
sensitive to model parallel configurations. We always restrict the
tensor MP size to be lower than eight to make sure the tensor MP
ranks only communicate through NVLink. But Megatron-LM-3D
is still sensitive to the tuning of the MP sizes, e.g., configuration
(3) is 38% better than configuration (1). This raises usability chal-
lenges to users. In contrast, MiCS does not have such complicate

16 32 64
Number of GPUs

0

50

100

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
) Megatron-LM-3D (1)

Megatron-LM-3D (2)
Megatron-LM-3D (3)
MiCS

(a) BERT 10B, intermediate size = 4× hidden size.

16 32 64
Number of GPUs

0

50

100

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
) Megatron-LM-3D (1)

Megatron-LM-3D (2)
Megatron-LM-3D (3)
MiCS

(b) BERT 10B, intermediate size = 8× hidden size.

16 32 64
Number of GPUs

0

100

200

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
) Megatron-LM-3D

ZeRO-3
MiCS

(c) WideResNet 3B; × denotes “no support”.

Figure 11: Performance Comparison to Megatron-LM-3D.

configurations for different parallel sizes, because of the simplicity
of data parallelism. And MiCS is up to 31% faster than the best
results from Megatron-LM-3D. Our profiling shows the inefficiency
of Megatron-LM-3D is mainly due to timeline bubbles in pipeline
parallelism and communication overhead in tensor parallelism.

For some uncommonly structured models, Megatron-LM-3D
could outperform MiCS marginally. We conducted some experi-
ments to evaluate system performance with respect to the struc-
tural differences of models. The number of parameters of the model
is fixed to 10B. Figure 11b presents the throughput of Megatron-
LM-3D and MiCS, that are evaluated on a BERT model with wider
transformer layers than a regular BERT 10B model. Specifically,
the model consists of 80 transformer layers. The intermediate size
of each transformer layer is equal to 8× hidden size. This kind of
wider structure is used in the evaluation of GSPMD [63]. Usually,
the intermediate size of a transformer layer is 4× that of the hid-
den size [37, 45, 54, 61]. The number of transformer layers, 80, is
chosen to match the size of the regular BERT 10B model. The other
training setups are the same as the previous experiment. In this ex-
periment, Megatron-LM-3D with configuration (3) is slightly better
than MiCS. The performance gaps are within 1.5%. For this specific
setup, the wider structure produces larger intermediate activations
and requires more memory for each transformer layer. Frequently
allocating and releasing large memory chunks cause allocation fail-
ure and retry at the PyTorch allocator side [59], which impacts the
efficiency of overlapping computation and communication in MiCS.

5.1.4 Performance on CV models. To show the performance im-
provements of MiCS generalize to other models, we report the
training throughput of WideResNet [67], a computer vision model,

45



Table 2: Megatron-LM-3D configurations.

Configuration Tensor MP size Pipeline MP size

Megatron-LM-3D (1) 8 1
Megatron-LM-3D (2) 4 4
Megatron-LM-3D (3) 2 8

in Figure 11c. We compare MiCS against DeepSpeed (ZeRO-3). Note
that Megatron-LM-3D cannot be applied to training this model. We
scale up the size of WideResNet by enlarging the width and num-
ber of blocks of the network. In our setup, the WideResNet model
has 3B parameters. It has 200 convolution layers, width factor 8,
and its bottleneck block configuration is [6, 8, 46, 6]. We fix
batch size 8 for each GPU, and use synthetic image data with size
224x224 for benchmarking. The training uses float32 and activa-
tion checkpointing is disabled. The model is not runnable under
ZeRO-2 optimization. The system throughput of MiCS is up to
2.89× that of DeepSpeed (ZeRO-3).

5.1.5 Case Study: 52B and 100B Model Training. MiCS has been
deployed to train proprietary models in distribution. Our training
cluster consists of 128 A100 GPUs with 400Gbps networking. Our
results show that we can achieve 179 and 171 TFLOPS per GPU
for 52B and 100B parameter models, respectively. These are about
57% and 55% compute utilization of the peak half-precision per-
formance of A100. The utilization results outperform the TFLOPS
performance reported from Megatron-LM-3D [37] on DGX A100
clusters with 8 InfiniBand networking cards (1.6Tb/s) [40]. When
we increase the number of GPUs from 128 to 512, we can obtain
170 TFLOPS per GPU for the 100B parameter model with 99.4%
weak scaling efficiency, where the partition group size is 128 GPUs.
When the cluster size equals the partition group size (128 GPUs),
the performance improvements come from hierarchical communi-
cation and implementation optimizations. In contrast, DeepSpeed
ZeRO-3 only achieves 62 TFLOPS per GPU for training a 100B pa-
rameter model on 512 GPUs with 72% weak-scaling efficiency. In
this experiment, the size of each micro-batch is 16 and the number
of micro-steps is 4. The TFLOPS performance of MiCS is 2.74× that
of DeepSpeed ZeRO-3 on 512 GPUs.

5.2 Analysis of the Design
To understand the performance contribution of each component
in MiCS, we conduct ablation tests in this section. We divide our
studies into three subsections. Each subsection corresponds to one
of the three components in §3. For each experiment, we present the
setups followed by detailed results and takeaways.

5.2.1 Analysis of Partition Group Size. As the scale-aware model
partitioning uses partition groups for storing model states replicas,
it is natural to ask the relationship between the size of the partition
group and the end-to-end performance. In this experiment, we use
BERT 10B model, fix the micro-batch size to 8, and use 64 V100
GPUs in total. We vary the size of each group from 8 GPUs to 64
GPUs. If we use all the 64 GPUs for partitioning the model states,
MiCS reduces to ZeRO-3. As shown in Figure 12, by increasing
the partition group size, the end-to-end throughput trends down

8 16 32 64
Partition group size (#GPUs)

0

50

100

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
)

Figure 12: Throughput change w.r.t. partition group sizes.

0 8 16 32 64 128 256
Message size (MB)

0.6

0.8

1.0

1.2

Ti
m

e
(n

or
m

al
iz

ed
)

All-gather
MiCS

(a) Micro-benchmark.

16 32 64 128
Number of GPUs

1

2

3

4

Th
ro

ug
hp

ut
(N

or
m

al
iz

ed
)

ZeRO-3
MiCS (w/o hierarchy)
MiCS (w/ hierarchy)

(b) End-to-end performance.

Figure 13: Benefits of hierarchical all-gather.

obviously. The throughput of partition group size 8 is 1.6× that of
partition group size 64. Thus, it is preferable to partition the model
states into a smallest possible group.

5.2.2 Analysis of Hierarchical Communication. Hierarchical com-
munication plays an important role for good performance because it
can reduce the transmitted data volume over the inter-node connec-
tions. In this subsection, we conduct performance analysis quantita-
tively to show its importance. We divide our experiments into two
parts, micro-benchmark and end-to-end training throughput. In
both experiments, we report normalized performance to baselines,
i.e., vanilla all-gather and DeepSpeed ZeRO-3.

In the micro-benchmark experiment, we measure the elapsed
time of vanilla all-gather and hierarchical all-gather operators
for handling different message sizes. We use two Amazon EC2
p3dn.24xlarge instances. We cap the message size at 256MB, be-
cause a single parameter fetching typically gathers less data than
it for better overlapping of computation and communication. In
Figure 13a, we can see that the elapsed time of hierarchical com-
munication operator is consistently lower than the baseline. For
message size 128MB, hierarchical communication only uses about
72.1% of the time cost of vanilla all-gather.

For the end-to-end experiment, we use the BERT 15B model,
which needs two computational nodes (i.e.,16 GPUs) to hold the
model states for the training. For models that can be held by a
single computational node (i.e., 8 GPUs), the hierarchical all-gather
is not needed. We vary the cluster size from 16 to 128 GPUs and
evaluate MiCS with and without hierarchical communication. We
normalize throughput numbers to the results of DeepSpeed ZeRO-3.
As shown in Figure 13b, MiCS with hierarchical communication is
consistently better than the case where hierarchical communication
is disabled. In particular, hierarchical communication improves the
end-to-end training throughput by 30.6% to 38%.

46



16 32 64 128
Number of GPUs

0

100

200

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
)

MiCS (w/o 2-hop)
MiCS (w/ 2-hop)

Figure 14: Benefits of 2-hop gradient synchronization.

16 32 64 128
Number of GPUs

0

100

200

Th
ro

ug
hp

ut
(S

am
pl

es
/s

ec
)

ZERO-3
MiCS (ZERO-3)
MiCS

Figure 15: Improvements of implementation optimizations.

5.2.3 Analysis of Synchronization Scheduling. In this experiment,
we report the throughputs of MiCS with 2-hop gradient synchro-
nization enabled and disabled. We use the BERT 10B model for the
experiments and fix the micro-batch size 8, global batch size 8192
for training. We partition model states on 8 GPUs. When the 2-hop
synchronization is disabled, the system uses an alternative synchro-
nization schedule that synchronizes the gradients across all devices
at the end of each micro-step, explained in § 3.4. We can see the
performance gaps between these two setups, Figure 14. When the
cluster size increases to 128 GPUs, we get the max throughput gap.
Numerical results indicate that the relative improvement ranges
from 11% to 24.9%, when 2-hop synchronization is enabled.

5.3 Other Optimizations
We conduct experiments to analyze the performance improvements
by using the optimization techniques described in §4. We use the
BERT 10B model for the evaluation. In the training, we use the
default setup as mentioned at the beginning of §5. When we turn
off optimizations that are unique to MiCS and let the model states
be partitioned over all devices, MiCS reduces to ZeRO-3 with the
optimization techniques in §4, We denote it as “MiCS (ZeRO-3)”.
For comparisons, we report the throughput of DeepSpeed ZeRO-3.

Figure 15 shows the improvements of using the proposed sys-
tem optimizations. MiCS (ZeRO-3) achieves 54.1% better system
throughput than DeepSpeed ZeRO-3 when the cluster scales up
to 128 GPUs, while the scaling efficiency of DeepSpeed ZeRO-3
drops when we scale out the cluster. In addition, MiCS still signifi-
cantly outperforms MiCS (ZeRO-3), demonstrating the superiority
of minimizing the communication scale.

5.4 Fidelity
In this section, we show that MiCS achieves consistent convergence
as DeepSpeed, which validates the correctness of our system. We
provide the training loss curves for training a 1.5B parameter model
on the Wikipedia-en dataset. The model has 48 transformer layers,
each of which is constructed with the hidden size 1,600 and interme-
diate size 6,400. The global batch size is 512. And the micro-batch

0.0 0.2 0.4 0.6 0.8 1.0
#Samples 1e6

8

10

Lo
ss

DeepSpeed
MiCS

Figure 16: Fidelity of the implementation.

size is 8 (the number of gradient accumulation steps is 4). The loss
validation process does not aim to produce exactly the same loss as
DeepSpeed but to ensure the convergence behaviours are the same.
We report the training losses on 1 million sequences. As shown in
Figure 16, MiCS provides the same convergence as DeepSpeed.

6 RELATEDWORK

Data parallelism. PyTorch-DDP [43], Horovod [52], ps-lite [42],
Tensorflow-DDP [57], and BytePS [26] are distributed training
frameworks using data parallelism. All of them place complete
model states on each GPU for training. Thus, the supported model
size is limited. Recently, ZeRO [45] has been proposed to address
the memory limitation issue of the traditional data-parallel strategy,
by partitioning the model states onto all GPUs. ZeRO-Offload [49]
and ZeRO-Infinity [46] are two extensions to ZeRO that explore
the possibility to extend the memory to hold the model from GPU
memory to CPUmemory and NVMe, which are orthogonal to MiCS.
MiCS focuses on minimizing the communication overheads of the
training system, addressing the challenges not solved in ZeRO.

Other parallelisms. ColocRL [34] formulates the distributed train-
ing as a placement optimization problem to maximize the through-
put. FlexFlow [25] and OptCNN [24] use heuristic search for parallel
strategies including tensor MP and device placement MP. Alpa [72]
and Unity [60] use hierarchical search to jointly optimize within-
and between-device to look for a good parallel strategy. These sys-
tems do not explicitly embed the memory constraints into their
optimization objective, and are not directly verified to train models
at the scale that MiCS trained. Megatron-LM-3D [37], GPipe [22],
and DAPPLE [19] use pipeline parallelism to partition large mod-
els into multiple stages for the training in a synchronous manner.
These solutions have resource under-utilization problems due to
pipeline bubbles. PipeMare [64], PipeDream [35], and PipeDream-
2BW [36] use asynchronous and bounded-staleness training for
efficient resource utilization which, however, can affect the conver-
gence quality [14, 16, 48]. The research direction of asynchronous
methods are orthogonal toMiCS. Currently,MiCS uses synchronous
training and it does not suffer from convergence issues. DLRM [38]
and Megatron-LM [54] are specific designs for recommendation
models and transformers, respectively. DLRM partitions the em-
bedding table along row and column dimensions. Megatron-LM
introduces tensor parallelism to parallelize the tensor computation
on multiple devices. Megatron-LM-3D [37] integrates the pipeline
parallelism into Megatron-LM for further scaling up the model size.
Pipeline parallelism, tensor parallelism, and the mixture of multiple
parallelisms require significantly additional efforts to program the

47



customized model implementation and tune the hyper-parameters
for high performance. MiCS is orthogonal to this line of research.
We compared MiCS against Megatron-LM-3D [37] in Section 5.1.3.

Communication optimizations. ByteScheduler [41] and P3 [23]
overlap the computation with communication to hide the commu-
nication cost. SwitchML [50] and ATP [27] use the programmable
switches as gradient aggregation servers to reduce the communica-
tion overheads. Lossy compression algorithms like 1bit-SGD [51]
and DGC [30] compress the data transmitted over the network to
improve the system performance. Those techniques are complemen-
tary to our system for further reducing the communication over-
heads. Blink [62] leverages multiple communication channels with
optimized spanning trees to speed up the gradient synchronization.
Plink [33] discovers and explores the locality of the distributed train-
ing cluster for better performance. Cloud Collective [32] reorders
the ranks of cluster nodes to explore a better topology. Bluecon-
nect [12] decomposes all-reduce primitive with pipelined reduce-
scatter and all-gather. These techniques explore better locality or
pipeline multiple communication primitives to speed up the syn-
chronization. MiCS reduces communication overheads from a differ-
ent perspective. In particular, our system reduces communication
costs by reducing the scale of communications. Varuna [2] works
on optimizing network jitter and instability among cheap “spot”
instances [6] to lower the training cost. The objective of Varuna
is orthogonal to MiCS. In high-performance computing, innova-
tions [7, 8, 55] at the hardware level are critical to the efficiency
of communications. On the other hand, researchers explore the
relationship among collective communication algorithms, software
implementations, and message sizes to optimize each individual
communication primitives [1, 58]. These efforts are orthogonal to
MiCS. Our system is built with GPU-aware library NCCL [39].

7 DISCUSSION AND FUTURE WORK
The optimality of the training throughput depends on the model
structure, input data, and hardware. For the models used in the
evaluation, we do not prove that MiCS is the optimal solution.
MiCS is a pure data-parallel training system, which admittedly
covers a limited space of parallelism strategies. Thus, for some less
common model structures, e.g., wider feedforward layer in trans-
former blocks, Megatron-LM-3D could outperform MiCS in certain
configurations marginally, shown in §5.1.3. It is worth noting that
adapting tensor model parallelism and pipeline parallelism requires
refactoring model implementations [45], thus is less favorable to
practitioners. MiCS, as a pure DP solution, achieves state-of-the-
art performance in training standard transformer-based models
with billions of parameters and trades off performance for lower
complexity in some less common cases.

Despite the model states replications created in MiCS, our sys-
tem does not require additional hardware resources as compared to
the existing ZeRO system. Partitioning one model states replication
across all devices, as the existing ZeRO system does, underutilizes
the memory of each device. As discussed in the first paragraph of
§3.2, the memory capacity of eight V100 (32GB) GPUs are large
enough for holding model states of a model with 10 billion (B)
parameters. For a cluster with 16 or more V100 (32GB) GPUs, parti-
tioning the 10Bmodel to all devices consumes less than 32%memory

usage of each device for holding the model states. MiCS effectively
leverages these spare memory resources for lowering communi-
cation costs (§3). For models that require all devices to hold the
model states for training, MiCS still outperforms the ZeRO system
because of the hierarchical communication module (§3.3).

In MiCS, the memory consumption of each device is controlled
by the size of the partition group, which is configurable. MiCS uses
a heuristic to pick the size for holding the model states, which
is mentioned in §5.1.1. Compared to prior large model training
systems, MiCS does not introduce extra issues in terms of system
practicability. For ZeRO systems, users have to figure out the small-
est size of the cluster for training, otherwise the system runs into
out-of-memory issues. Similarly, the Megatron-LM-3D system re-
quires users to configure the number of pipeline stages and the
tensor parallelism size, so that the partitioned model components
can fit into each GPU in a cluster. In MiCS, the way to figure out
the partition group size is the same as figuring out the smallest size
of the cluster for training in ZeRO systems.

To automate the configuration search for large model training,
an accurate estimation of memory usage is needed. A profiling-
based method can get relatively precise memory usage statistics.
But once the training processing runs into the out-of-memory is-
sue during configuration search, the dangling process can cause
hanging and prevent successive configurations from launching.
Estimating memory consumption from the model structure and
input size is inaccurate due to the dynamic behavior of the memory
management module in PyTorch runtime. Addressing challenges
from estimating or predicting the memory usage of large models is
beyond the scope of this paper, in which we focus on reducing the
communication overheads in the ZeRO DP algorithms. We leave
the configuration search for MiCS as future work.

8 CONCLUSION
In this paper, we present MiCS, a system that attains high training
throughput and near-linear scalability on the cloud by only using
data parallelism. The overarching goal of MiCS is to minimize the
communication scale so as to reduce the expensive communication
overhead rooted in parameter gathering and gradient synchro-
nization. Specifically, we propose scale-aware model partitioning,
hierarchical communication strategy, and 2-hop gradient synchro-
nization to achieve this goal. We evaluate MiCS on various training
workloads on large-scale clusters. MiCS outperforms DeepSpeed
ZeRO by up to 2.89× and demonstrates near-linear scaling efficiency
in various training setups.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their valuable
feedback. We thank the Amazon Search M5 team for providing
large clusters. Xin Jin and Shuai Zheng are the corresponding au-
thors. Xin Jin is with the Key Laboratory of High Confidence Soft-
ware Technologies (Peking University), Ministry of Education. Zhen
Zhang is supported in part by NSF grants CNS-1813487 and CCF-
1918757. Xin Jin is supported in part by National Natural Science
Foundation of China under the grant number 62172008 and Na-
tional Natural Science Fund for the Excellent Young Scientists Fund
Program (Overseas).

48



REFERENCES
[1] George Almási, Philip Heidelberger, Charles J Archer, Xavier Martorell, C Chris

Erway, José E Moreira, Burkhard Steinmacher-Burow, and Yili Zheng. 2005. Opti-
mization of MPI collective communication on BlueGene/L systems. In Proceedings
of the 19th annual international conference on Supercomputing.

[2] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ramjee, and
Nipun Kwatra. 2021. Varuna: Scalable, Low-cost Training of Massive Deep
Learning Models. arXiv preprint arXiv:2111.04007 (2021).

[3] AWS-P3-Instances 2022. Amazon EC2 P3 Instances. https://aws.amazon.com/
ec2/instance-types/p3/.

[4] azure-gpu-ncv3-series 2022. Azure NCv3-series. https://docs.microsoft.com/en-
us/azure/virtual-machines/ncv3-series.

[5] azure-gpu-ndv2-series 2022. Azure Updated NDv2-series. https://docs.microsoft.
com/en-us/azure/virtual-machines/ndv2-series.

[6] Azure-Spot-VM 2022. Azure Spot Virtual Machines. https://azure.microsoft.
com/en-us/services/virtual-machines/spot/#overview.

[7] Kevin J Barker, Alan Benner, Ray Hoare, Adolfy Hoisie, Alex K Jones, Darren K
Kerbyson, Dan Li, Rami Melhem, Ramakrishnan Rajamony, Eugen Schenfeld,
et al. 2005. On the feasibility of optical circuit switching for high performance
computing systems. In SC’05: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing. 16–16.

[8] Aleksandr Biberman and Keren Bergman. 2012. Optical interconnection networks
for high-performance computing systems. Reports on Progress in Physics (2012).

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[10] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. 2007.
Collective Communication: Theory, Practice, and Experience. Concurrency and
Computation: Practice and Experience 19 (2007), 1749–1783.

[11] William Chan, Daniel Park, Chris Lee, Yu Zhang, Quoc Le, and Mohammad
Norouzi. 2021. SpeechStew: Simply mix all available speech recognition data to
train one large neural network. arXiv preprint arXiv:2104.02133 (2021).

[12] Minsik Cho, Ulrich Finkler, and David Kung. 2019. BlueConnect: Novel hier-
archical all-reduce on multi-tired network for deep learning. In Conference on
Machine Learning and Systems.

[13] Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming
Pang, and Yonghui Wu. 2021. W2v-bert: Combining contrastive learning and
masked languagemodeling for self-supervised speech pre-training. arXiv preprint
arXiv:2108.06209 (2021).

[14] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian
Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2019. Analysis
of DAWNBench, a Time-to-AccuracyMachine Learning Performance Benchmark.
ACM SIGOPS Operating Systems Review 53, 1 (2019), 14–25.

[15] ZihangDai, Hanxiao Liu, Quoc V Le, andMingxing Tan. 2021. CoAtNet: Marrying
Convolution and Attention for All Data Sizes. arXiv preprint arXiv:2106.04803
(2021).

[16] Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. 2015.
Taming the wild: A unified analysis of hogwild-style algorithms. Advances in
Neural Information Processing Systems 28 (2015).

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[18] FairScale 2022. PyTorch extensions for high performance and large scale training.
https://github.com/facebookresearch/fairscale.

[19] Shiqing Fan, Yi Rong, ChenMeng, Zongyan Cao, SiyuWang, Zhen Zheng, Chuan
Wu, Guoping Long, Jun Yang, Lixue Xia, et al. 2021. DAPPLE: A pipelined data
parallel approach for training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming.

[20] gcloud-gpu-bandwidths 2022. Google Cloud: Network bandwidths and
GPUs. https://cloud.google.com/compute/docs/gpus/gpu-network-bandwidth#
vm-configurations.

[21] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[22] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks using pipeline parallelism. In
Advances in Neural Information Processing Systems, Vol. 32.

[23] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko. 2019. Priority-based parameter propagation for distributed DNN
training. arXiv preprint arXiv:1905.03960 (2019).

[24] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. 2018. Exploring hidden dimen-
sions in parallelizing convolutional neural networks. In International Conference
on Machine Learning (ICML). 2279–2288.

[25] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond data and model paral-
lelism for deep neural networks. In Conference on Machine Learning and Systems,

Vol. 1. 1–13.
[26] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.

2020. A Unified Architecture for Accelerating Distributed {DNN} Training in
Heterogeneous GPU/CPU Clusters. In USENIX OSDI. 463–479.

[27] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning. In USENIX NSDI. 741–761.

[28] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. Gshard:
Scaling giant models with conditional computation and automatic sharding.
arXiv preprint arXiv:2006.16668 (2020).

[29] Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, and
Yuxiong He. 2021. 1-bit LAMB: Communication Efficient Large-Scale Large-
Batch Training with LAMB’s Convergence Speed. arXiv preprint arXiv:2104.06069
(2021).

[30] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887 (2017).

[31] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[32] Liang Luo, Jacob Nelson, Arvind Krishnamurthy, and Luis Ceze. 2021. Cloud
Collectives: Towards Cloud-aware Collectives forML Workloads with Rank Re-
ordering. arXiv preprint arXiv:2105.14088 (2021).

[33] Liang Luo, Peter West, Arvind Krishnamurthy, Luis Ceze, and Jacob Nelson.
2020. PLink: Discovering and Exploiting Datacenter Network Locality for Effi-
cient Cloud-based Distributed Training. In Conference on Machine Learning and
Systems, Vol. 2. 82–97.

[34] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yue-
feng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.
2017. Device Placement Optimization with Reinforcement Learning. In Interna-
tional Conference on Machine Learning, Vol. 70. 2430–2439.

[35] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In ACM SOSP.
1–15.

[36] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Za-
haria. 2020. Memory-Efficient Pipeline-Parallel DNN Training. arXiv preprint
arXiv:2006.09503 (2020).

[37] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei
Zaharia. 2021. Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM. arXiv preprint arXiv:2104.04473 (2021).

[38] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, XiaodongWang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model for
Personalization and Recommendation Systems. arXiv preprint arXiv:1906.00091
(2019).

[39] NCCL 2022. NVIDIA Collective Communications Library (NCCL). https:
//developer.nvidia.com/nccl.

[40] NVIDIA-DGX-A100 2022. NVIDIA DGX A100. https://images.nvidia.com/aem-
dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf.

[41] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-
tributed DNN training acceleration. In ACM SOSP. 16–29.

[42] PS-lite 2022. lightweight implementation of the parameter server framework.
https://github.com/dmlc/ps-lite.

[43] PyTorch 2022. PyTorch. https://pytorch.org/.
[44] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog (2019).

[45] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2019. Zero:
Memory optimization towards training a trillion parameter models. arXiv
preprint arXiv:1910.02054 (2019).

[46] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale
Deep Learning. arXiv preprint arXiv:2104.07857 (2021).

[47] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over 100
billion parameters. In ACM SIGKDD. 3505–3506.

[48] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild!:
A lock-free approach to parallelizing stochastic gradient descent. Advances in
Neural Information Processing Systems 24 (2011).

49

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://docs.microsoft.com/en-us/azure/virtual-machines/ncv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ncv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ndv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ndv2-series
https://azure.microsoft.com/en-us/services/virtual-machines/spot/#overview
https://azure.microsoft.com/en-us/services/virtual-machines/spot/#overview
https://github.com/facebookresearch/fairscale
https://cloud.google.com/compute/docs/gpus/gpu-network-bandwidth#vm-configurations
https://cloud.google.com/compute/docs/gpus/gpu-network-bandwidth#vm-configurations
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://github.com/dmlc/ps-lite
https://pytorch.org/


[49] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. Zero-offload:
Democratizing billion-scale model training. arXiv preprint arXiv:2101.06840
(2021).

[50] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and
Peter Richtárik. 2019. Scaling distributed machine learning with in-network
aggregation. arXiv preprint arXiv:1903.06701 (2019).

[51] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
dnns. In INTERSPEECH. 1058–1062.

[52] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[53] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani,
Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning for supercomputers. arXiv
preprint arXiv:1811.02084 (2018).

[54] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. arXiv preprint arXiv:1909.08053
(2020).

[55] Ankit Singla, P Brighten Godfrey, and Alexandra Kolla. 2014. High throughput
data center topology design. In USENIX NSDI. 29–41.

[56] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. 2022. Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative languagemodel. arXiv preprint arXiv:2201.11990
(2022).

[57] TensorFlow 2022. TensorFlow. https://www.tensorflow.org/.
[58] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of

collective communication operations in MPICH. The International Journal of
High Performance Computing Applications 19, 1 (2005), 49–66.

[59] Torch CUDA Memory Stats 2022. Torch CUDA Memory Stats. https://pytorch.
org/docs/stable/generated/torch.cuda.memory_stats.html.

[60] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quin-
tero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Ja-
maludinMohd-Yusof, Xi Luo, DheevatsaMudigere, Jongsoo Park, Misha Smelyan-
skiy, and Alex Aiken. 2022. Unity: Accelerating DNN Training Through Joint
Optimization of Algebraic Transformations and Parallelization. In USENIX OSDI.
Carlsbad, CA, 267–284.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All

You Need. arXiv preprint arXiv:1706.03762 (2017).
[62] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin,

Nikhil Devanur, and Ion Stoica. 2020. Blink: Fast and generic collectives for
distributed ML. In Conference on Machine Learning and Systems, Vol. 2. 172–186.

[63] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang,
Rahul Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
2021. GSPMD: general and scalable parallelization for ML computation graphs.
arXiv preprint arXiv:2105.04663 (2021).

[64] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher R. Aberger,
and Christopher De Sa. 2020. PipeMare: Asynchronous Pipeline Parallel DNN
Training. arXiv preprint arXiv:1910.05124 (2020).

[65] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bho-
janapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. 2019.
Large batch optimization for deep learning: Training bert in 76 minutes. arXiv
preprint arXiv:1904.00962 (2019).

[66] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2018.
Imagenet training in minutes. arXiv preprint arXiv:1709.05011 (2018).

[67] Sergey Zagoruyko and Nikos Komodakis. 2017. Wide Residual Networks. arXiv
preprint arXiv:1605.07146 (2017).

[68] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. 2021. Scal-
ing vision transformers. arXiv preprint arXiv:2106.04560 (2021).

[69] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

[70] Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming
Pang, Quoc V Le, and Yonghui Wu. 2020. Pushing the limits of semi-supervised
learning for automatic speech recognition. arXiv preprint arXiv:2010.10504 (2020).

[71] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin
Jin. 2020. Is network the bottleneck of distributed training?. In Proceedings of the
Workshop on Network Meets AI & ML. 8–13.

[72] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator
Parallelism for Distributed Deep Learning. In USENIX OSDI. 559–578.

[73] Shuai Zheng, Haibin Lin, Sheng Zha, and Mu Li. 2020. Accelerated large batch
optimization of bert pretraining in 54 minutes. arXiv preprint arXiv:2006.13484
(2020).

[74] Tobias Ziegler, Dwarakanandan Bindiganavile Mohan, Viktor Leis, and Carsten
Binnig. 2022. EFA: A Viable Alternative to RDMA over InfiniBand for DBMSs?.
In Data Management on New Hardware.

50

https://www.tensorflow.org/
https://pytorch.org/docs/stable/generated/torch.cuda.memory_stats.html
https://pytorch.org/docs/stable/generated/torch.cuda.memory_stats.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Model Training
	2.2 Gigantic Model Training
	2.3 Communication Overhead
	2.4 Motivation

	3 MiCS Design
	3.1 Notation
	3.2 Scale-aware Model Partitioning
	3.3 Hierarchical Communication Strategy
	3.4 2-hop Gradient Synchronization

	4 Implementation
	5 Evaluation
	5.1 Performance
	5.2 Analysis of the Design
	5.3 Other Optimizations
	5.4 Fidelity

	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	References

