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ABSTRACT
Hosting database services on cloud systems has become a com-
mon practice. This has led to the increasing volume of database
workloads, which provides the opportunity for pattern analysis.
Discovering workload patterns from a business logic perspective
is conducive to better understanding the trends and characteris-
tics of the database system. However, existing workload pattern
discovery systems are not suitable for large-scale cloud databases
which are commonly employed by the industry. This is because the
workload patterns of large-scale cloud databases are generally far
more complicated than those of ordinary databases.

In this paper, we propose Alibaba Workload Miner (AWM), a
real-time system for discovering workload patterns in complicated
large-scale workloads. AWM encodes and discovers the SQL query
patterns logged from user requests and optimizes the querying
processing based on the discovered patterns. First, Data Collection
& Preprocessing Module collects streaming query logs and encodes
them into high-dimensional feature embeddings with rich semantic
contexts and execution features. Next, Online Workload Mining
Module separates encoded query by business groups and discovers
the workload patterns for each group. Meanwhile, Offline Training
Module collects labels and trains the classification model using the
labels. Finally, Pattern-based Optimizing Module optimizes query
processing in cloud databases by exploiting discovered patterns.
Extensive experimental results on one synthetic dataset and two
real-life datasets (extracted from Alibaba Cloud databases) show
that AWM enhances the accuracy of pattern discovery by 66% and
reduce the latency of online inference by 22%, compared with the
state-of-the-arts.
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Sequence:
q1q2...q1q4

Pattern:
(q1q2)

q1: INSERT INTO...
q2: SELECT...FROM A
q3: SELECT...FROM B
q4: UPDATE...SET...
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Figure 1: An example of workload pattern discovery

1 INTRODUCTION
Enterprises and consumers are increasingly hosting their services
on cloud database systems, e.g., Alibaba Cloud Relational Database
Service (RDS) [1], AWS RDS [2], Microsoft Azure SQL Database [7],
and Google Cloud SQL [27]. With the advancement of cloud data-
base technology, these systems can now support a wider range of
optimizations, e.g., automatic query re-write [9], root cause diag-
nose [34, 38, 52], automatic scale-up instances [34], and automatic
tuning [11]. The optimization techniques [9, 11, 34, 38, 52] have
significantly improved the performance of Database Management
System (DBMS), in terms of both the overall system and the specific
query execution. Workload pattern discovery can be used to further
optimize DBMS performance by providing statistics about entire
patterns in the workload, which can significantly enrich the context
of existing reports [49]. An example of workload pattern mining is
shown as follows.
Example 1. Figure 1 shows an example of workload pattern discov-
ery. Given a sequence of queries 𝑞1𝑞2 ...𝑞1𝑞4 executed by a DBMS
and a probability threshold 0.7, only 𝑞1𝑞2 is returned as its probabil-
ity of occurrence is no smaller than 0.7. On the other hand, 𝑞1𝑞2𝑞3
is not returned because its probability of occurrence 0.28 (= 0.7×0.4)
is smaller than 0.7.

Example 1 shows a frequently executed code sequence 𝑞1𝑞2.
Such information is crucial for database administrators (DBAs) and
application developers to optimize quering processing and improve
application performance. Note that, the frequency of executed code
paths may be unavailable without pattern mining, especially if the
components of applications work as black boxes [49]. Workload
pattern mining is thus essential in inferring the business logic and
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user activities. For example, the DBAs for database-as-a-service
(DaaS) offerings (e.g., Oracle Cloud and Alibaba Cloud) require
knowledge about the business logic. However, due to permission
issue, the DBAs generally do not have access to the source code
of the applications. In this case, workload pattern mining can pro-
vide DBAs with a useful model for tracing workloads. The model
offers the DBAs better insight into the applications running in the
database and provides developers of applications with the working
flow of the application’s logic [49].

However, analyzing workload patterns from large-scale indus-
trial cloud databases is challenging, because the query log often
contains queries from multiple business logics rather than a single
one. To the best of our knowledge, WI [49], the only existing study
for workload pattern analysis on databases, cannot distinguish the
mixed queries and thus cannot be applied to industrial applications.

Example 2. Figure 2 depicts two cases of workload pattern discovery.
In the upper case, queries (e.g., 𝐴, 𝐵,𝐶, · · · ) from the same business
logic (i.e., API) are transferred to a query log store for workload
pattern discovery. Since only a single business logic exists in this
case, WI [49] can be employed without the need for query classifi-
cation by business logic. In the lower case, queries (e.g., 𝐴, 𝐵,𝐶, · · · )
from multiple business logics (i.e., API1, API2, API3) are mixedly
loaded into a query log store. This results in interleaved queries
from different business logics in a sequence (e.g., {𝑎,𝑋,𝑏}, {𝑌,𝑋 },
and {𝑐, 𝑌 }), which serves as the input of the subsequent workload
pattern discovery. This scenario is common in industry applications.
WI [49], however, cannot distinguish queries from multiple busi-
ness logics and thus cannot discover workload patterns correctly.
The lower case highlights the necessity of distinguishing patterns
from multiple business logics in industrial applications.

In this paper, our goal is to develop a system for discovering
workload patterns from large-scale query logs and utilizing the dis-
covered patterns to optimize subsequent query processing. Specifi-
cally, the system needs to be capable of (i) classifying queries by
types of business logic while maintaining users’ privacy, (ii) effi-
ciently performing pattern discovery on each business logic, and
(iii) leveraging the discovered patterns to optimize query processing
in the cloud database. However, there are four key issues that must
be addressed to achieve these objectives.
• Scalability. The system should be designed to handle large-scale

datasets, enabling it to train classifiers and identify workload
patterns across billions of queries.

• Privacy. A potential classification method is to analyze the App
ID and code, which can serve as labels for identifying the business
logic. However, such information is considered private and thus
is not accessible [34] to the system. Therefore, an alternative
approach is needed that can classify the data with limited labels.

• Accuracy. Achieving high classification accuracy can be chal-
lenging when the true label of a query is mostly unavailable
due to user privacy concerns. Thus, it is important to develop
classification algorithms that can achieve high accuracy even
with limited true labels.
• Optimization.Discovering patterns in query workloads can pro-

vide valuable insights into optimizing future query processing in
cloud DBMS. However, existing pattern mining systems typically
only provide pattern mining results without clear optimization

guidelines. This makes it difficult for users who lack knowledge
of the underlying logic of database engines to design their own
optimization strategies. We thus aim to not only perform pattern
discovery but also offer clear optimization guidelines based on
discovering results through a user interface.
We present Alibaba Workload Miner (AWM), a comprehensive

system that consists of four key modules: Data Collection & Prepro-
cessing Module (DCPM), Offline Training Module (OTM), Online
Workload Mining Module (OWMM), and Pattern-based Optimizing
Module (POM). The DCPM module is responsible for large-scale
data collection and preprocessing. It consists of two feature extrac-
tion layers: (i) Workload Semantic Embedding Layer, which utilizes
pre-trained foundation models [26] to extract latent information
from SQL queries and provide a rich source of information for clas-
sification; and (ii) Execution Feature Process Layer, which encodes
execution features, such as response time, into a unified feature
that serves as input for the classifier model.

To achieve high scalability, OTM handles heavy workloads ef-
ficiently (e.g., label collection and model training), which enables
OWMM to infer the trained model and obtain workload patterns
in real-time. To preserve privacy, OTM incorporates a novel auto-
matic label method. This method allows users to flexibly select the
labels that can be shared as training data. To achieve high accuracy,
OWMM employs an effective classifier that categorizes patterns by
business logics, with the use of rich features provided by DCPM.
Continuing Example 2, AWM’ classifier distinguishes 𝑋 from 𝑎, 𝑏

such that queries from distinct business logic are separated, e.g.,
𝑎, 𝑏, 𝑐, · · · and 𝑋,𝑌,𝑋,𝑌, · · · . This enables effective discovery of
workload patterns. To achieve optimization, POM provides users
with clear guidelines for optimizing query processing. This allows
users to define the business logic-related dependencies for SQL
queries by themselves, even if they are not experts in DBMS. In
summary, the paper makes the following contributions:
• We develop AWM, an autonomous workload pattern mining

system for cloud databases, which discovers frequent workload
patterns and provides guidelines for optimizing query processing.
To the best of our knowledge, AWM is the first system that has
been successfully deployed on large-scale cloud databases.

• We present a high-efficient DCPM. This module can not only
process large-scale data in real-time but also extract sufficient
latent information from pre-trained foundation models.

• We develop a two-stage framework, OTM and OWMM, for au-
tonomous workload pattern mining. OTM handles complicated
tasks with heavy workloads; while OWMM infers the trained
model to obtain the discovered patterns promptly in real-time.

• We propose an optimization scheme in POM. It analyzes the dis-
covered patterns by exploiting dependency graphs and provides
users with clear guidelines through a user interface. With the
guidelines, users can optimize query processing without requir-
ing professional knowledge.

• We conduct extensive experiments on one synthetic dataset and
two real-life datasets. The experimental results suggest that com-
pared with the state-of-the-arts, AWM achieves a 70% improve-
ment in the accuracy of pattern discovery and a 25% reduction
in the latency of online inference.
The rest of the paper is organized as follows. We present prelim-

inaries in Section 2 and give an overview of the proposed system
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Figure 2: Examples of analyzing workloads from single busi-
ness logic and multiple business logic

in Section 3. Section 4 details the DCPM, and Section 5 covers the
OWMM. Section 6 and Section 7 present OTM and POM, respec-
tively. Section 8 reports the experimental results. Section 9 reviews
the related work. Section 10 concludes and offers directions for
future work.

2 PRELIMINARIES
2.1 Markov chain
A Markov chain is a type of stochastic model describing a sequence
of possible events. A first-order Markov chain considers that the
future state depends only on the current state and has nothing to do
with the previous state. Put differently, first-order Markov models
are memoryless. The𝑚𝑡ℎ-order Markov chain is an extension of
the first-order Markov chain, which considers that the future state
depends on the past 𝑛 states.𝑚𝑡ℎ-order Markov chains satisfy the
following equation of conditional probability:

𝑃 (𝑋𝑡 = 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1, . . . , 𝑋1 = 𝑥1)
= 𝑃 (𝑋𝑡 = 𝑥𝑡 | 𝑋𝑡−1 = 𝑥𝑡−1, . . . , 𝑋𝑡−𝑚 = 𝑥𝑡−𝑚) ,

(1)

where 𝑋𝑖 and 𝑥𝑖 represents the 𝑖𝑡ℎ state of the random variable 𝑋
and its value, and 𝑡 is the future state to be identified. The change
in the state of a random variable over time steps in a Markov chain
is called transition. A transition matrix is generally adopted to
describe the structure of aMarkov chain. It represents the properties
that the Markov chain exhibits during the transition process. A
state transition probability is defined as the conditional probability
between random variables in a Markov chain.

Markov chains can be exploited to predict and identify the con-
text of SQL queries in the field of workload patterns [49]. Consid-
ering each SQL query as a state of the random variable, Markov
chains formulate the transition probabilities among queries in SQL
context. Since Markov chains has proven effective for workload
pattern mining [49], we incorporate Markov chains into AWM.

2.2 Minimum Description Length principle
The Minimum Description Length (MDL) principle [20] is a com-
monly used model selection principle. MDL is particularly suitable
for dealing with the selection, prediction, and estimation of compli-
cated models. The quantity of interest (a model or/and parameters)

Table 1: Execution feature collected in the query log store

Feature Description
lock_wait_time Waiting time to access data
logical_read The number of blocks read from memory
rows_examined The number of rows scanned
rows_returned The number of rows of data returned
rows_updated The number of updated data rows
rt The response time of the transaction
timestamp The time that the query begins to execute
physical_sync_read The number of blocks read from disk
database Name of the database stated in the query
error_code Execution error code
origin_host Source database address
sql_type SQL statement type (e.g., INSERT)
sql SQL text

is called a hypothesis. The best hypothesis defined by MDL de-
scribes the regularities of data, such that employing it on data
compression achieves the highest compression ratio [31, 32]. MDL
can be formulated according to the maximum a posteriori (MAP)
estimation [20]: 𝐿(𝐷) = minℎ∈H (𝐿(𝐷 | ℎ)+𝐿(ℎ)), where 𝐿 denotes
description length. The first term in the formula is the description
length of the training data 𝐷 given the hypothesis ℎ. The second
term in the formula is the description length of ℎ in the hypothesis
spaceH .

The MDL principle selects the hypothesis ℎ that minimizes the
sum of these two description lengths. MDL is essentially a balance
between model complexity and the number of errors. More specfi-
cially, it aims to choose a shorter hypothesis that generates fewer
errors.

2.3 Problem Definition
Definition 2.1 (SQL template). An SQL template (or SQL digest)
is a composite of multiple queries that are structurally similar but
may have different literal values. An SQL template replaces hard-
coded values in the statement with a placeholder (e.g ’?’).

Example 3. An SQL template "SELECT * FROM item_table WHERE
item_id = ?" might include the following children queries:
• SELECT * FROM item_table WHERE item_id = ABCDEF
• SELECT * FROM item_table WHERE item_id = GHIJKFM
• SELECT * FROM item_table WHERE item_id = NOPQRS

Using templates is sufficient for most optimization techniques in
practice because the absence of special values has minimal impact
on request behavior. A workload pattern is represented by SQL
templates, which are interpretable sequences of SQL context in the
database’s request behavior. These templates characterize work-
loads and unveil query patterns that correspond to applications.

Definition 2.2 (workload pattern). Given a threshold 𝛼 , a work-
load pattern 𝑝 is a sequence of queries 𝑞1, 𝑞2, · · · , 𝑞𝑚 , whose occur-
rence probability is no smaller than 𝛼 .

Definition 2.3 (workload pattern discovery). Given a query
log 𝑄 containing a set of queries 𝑞1, 𝑞2, · · · , 𝑞𝑛 , workload pattern
discovery aims to find a set of workload patterns 𝑃 = {𝑝𝑖 |𝑖 =

1, 2, · · · , 𝑛}.

3691



Cloud 
Database

Data Collection & Preprocessing Module

Data Collection
Layer Workload Semantic Embedding Layer Execution Feature Process Layer

Embedding
Server

Embedding
Store

Feature
Normalization

One-Hot
Encoding

Query Logs

Markov-based
Pattern mining layer

Pattern-based Optimization ModuleOffline Training Module

Automatic
Label Collection

Classifier
Model Training

Online Workload Mining Module

Dependency graph
construction

Pattern

Dependency-aware
multi-query optimization

Workload Classifying Layer

Figure 3: System overview

Please enter the request SQL 1 Jan 2023, 10:30:00 ~ 1 Jan 2023, 11:30:00 Analyze

Pattern(s) Strategy

• SELECT id, gmt_create, 
gmt_modified, name FROM
table_1_state WHERE 1 = 1 
AND name = ?

• UPDATE table_1 SET
max_hold_time = ?, comment 
= ?, gmt_modified = now(), 
version = version + ? WHERE
id = ? AND version = ?

• INSERT INTO table_1_state
(id, gmt_create, gmt_modified, 
name) VALUES (?, now(), 
now(), ?)

• SELECT LAST_INSERT_ID()

Analysis

success

• SELECT id, 
gmt_create, 
gmt_modified, 
name FROM
table_1_state
WHERE 1 = 1 
AND name = ?

• UPDATE table_1
SET max_hold_time 
= ?, comment = ?, 
gmt_modified = 
now(), version = 
version + ? WHERE
id = ? AND version 
= ?

• INSERT INTO table_1_state (id, 
gmt_create, gmt_modified, name) VALUES
(?, now(), now(), ?)

• SELECT LAST_INSERT_ID()

Optimize
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Figure 4: Demonstration of the user interface

3 SYSTEM OVERVIEW
We develop a workload pattern discovery system AWM, which
actively collects the SQL query patterns logged from the user re-
quests, and then analyzes and provides strategies for optimizing
those patterns. We have deployed AWM on Alibaba Cloud Data-
base Autonomous Service (DAS) 1. The system encompasses four
modules: Data Collection & Preprocessing Module (DCPM), Of-
fline Training Module (OTM), Online Workload Mining Module
(OWMM), and Pattern-based Optimizing Module (POM). Figure 3
gives an overview of AWM.

DCPM processes data with three layers: Data Collection Layer,
Workload Semantic Embedding Layer and Execution Feature Pro-
cess Layer. Data Collection Layer collects and pre-processes the
streaming raw data (Performance Metrics data and Query Logs
data) from millions of database instances in real-time and stores the
processed data in a local storage. Workload Semantic Embedding

1https://www.alibabacloud.com/product/das

Layer encodes the queries into high-dimensional feature embed-
dings with rich semantic contexts. Execution Feature Process Layer
processes the execution features into uniformed embeddings.

OTM automatically collects training labels and trains classi-
fiers for Workload Classifying Layer with the labels and the pre-
processed feature vectors. OWMM discovers workload patterns in
a fully online fashion. It has two layers: Workload Classifying Layer
and Markov-based Pattern Mining Layer. Workload Classifying
Layer encompasses an effective classifier that is trained offline by
OTM with few labels. It categorizes query logs by business groups
in real-time. Markov-based Pattern Mining Layer receives the clas-
sified query logs and performs pattern discovery on them.

POM offers code optimization strategies presented in a user in-
terface to cloud database users. It automatically idnetifies potential
optimizations in a set of SQL queries that may arise from sub-
optimal business logic code. POM allows users to flexibly define
the business logic-related dependencies for SQL queries.

We develop a user interface (UI) that provides a visualization
of identified patterns and optimization strategies for users based
on their requests. We integrate UI into Alibaba Cloud Database
Autonomy Service System, part of which is shown in Figure 4. In
particular, when a user submits a SQL query, AWM analyzes it and
displays corresponding patterns and optimization strategies in the
UI. Among the strategies shown, SQL queries that appear in the
parallel cells of a row can be parallelized.

4 DATA COLLECTION & PREPROCESSING
MODULE

DCPM contains three layers: Data Collection Layer, Workload Se-
mantic Embedding Layer, and Execution Feature Process Layer.
When the DBMS executes a SQL query, Data Collection Layer
firstly collects all the information related to the query, and then
Workload Semantic Embedding Layer encodes the SQL queries into
semantic features for a unified process. Meanwhile, Execution Fea-
ture Process Layer is applied to obtain the vectorized execution
features of the queries. Finally, the two features are fed into both
OWMM and OTM as an integrated feature of each query.
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Algorithm 1: Workload Semantic Embedding Layer
Input: The input queries𝑄 , batch size 𝑏, pooling method 𝑝 , and

the embedding store 𝐷
Output: Output vector 𝑍𝑜 ∈ R|𝑄 |×𝑑

1 idx_new← [] // id of queries to be embedded

2 𝑄𝑛 ← []
3 𝑍𝑜 ← 0|𝑄 |×𝑑

4 for 𝑖, 𝑞 ∈ enumerate(𝑄 ) do
5 if 𝑞 ∉ 𝐷 then
6 idx_new.append(𝑖) // add an id to be embedded

7 𝑄𝑛 .append(𝑞)

8 else
9 𝑍𝑜 [𝑖 ] ← 𝐷 [𝑞 ] // extract value directly from D

10 𝑍𝑛 ←FM-Server(𝑄𝑛 , 𝑏, 𝑝)
11 𝑍𝑜 [idx_new] ← 𝑍𝑛

12 for 𝑖, 𝑞 ∈ 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 (𝑄𝑛 ) do
13 𝐷 [𝑞 ] ← 𝑍𝑛 [𝑖 ]
14 return 𝑍𝑜

4.1 Data Collection Layer
Data Collection Layer collects large-scale streaming query logs
data via the Audit log of DB engines [34]. The query log contains
two kinds of information for query execution: the raw query text
and the recorded execution data (e.g., query response time). We
provide the collected features and the corresponding description
in Table 1. Since the data is asynchronously loaded into Alibaba
Cloud LogStore [3] in real-time, it has little impact on database
instances [42]. Note that, we delete the collected data every three
days to avoid storage overflow. We will detail how we encode the
input query into a unified feature in Section 4.2 and Section 4.3.

4.2 Workload Semantic Embedding Layer
Workload Semantic Embedding Layer pre-processes data by pro-
viding sufficient features from the SQL text corpus in a unified
vector. This enables Workload Classifying Layer to achieve higher
performance with limited training labels.

4.2.1 Deploying the Embedding Server of FoundationModels. Work-
load Semantic Embedding Layer serves an API online with GPU
acceleration to map the SQL query text into a high dimensional
embedding space, namely FM-Server. Here, we use the pre-trained
foundation models (FMs) [26, 35, 36] to embed the SQL text. This is
because FMs can learn latent information from the web, which en-
hances the classification with fewer training labels. The pre-trained
FMs have proven effective for subsequent tasks such as knowledge
graphs [15] and data integration [16]. Since SQL query text is gener-
ally text data generated with meaningful statements, incorporating
FMs can result in better accuracy [48]. To implement pre-trained
FMs, we adopt the transformers2 library from hugging face for
obtaining an accurate and reliable service. Here, the FM maps an
input sequence of SQL text token representations (𝑥1, ..., 𝑥𝑛) to a
sequence of continuous representations z = (𝑧1, ..., 𝑧𝑛), where 𝑥
is a token, (𝑥1, ..., 𝑥𝑛) is the whole query text, and 𝑧𝑖 ∈ R𝑑 is the

2https://github.com/huggingface/transformers/

Algorithm 2: FM-Server
Input: The input queries𝑄 , batch size 𝑏, pooling method 𝑝
Output: Output vector 𝑍

1 def FM-Server(𝑄 , 𝑏, 𝑝):
2 batch_idx← 0
3 result← []
4 while batch_idx < |𝑄 | do
5 batch_end =𝑚𝑖𝑛 (batch_idx + 𝑏, |𝑄 | )
6 𝑞𝑢𝑒𝑟𝑦_𝑏𝑎𝑡𝑐ℎ = 𝑄 [batch_idx : batch_end]
7 𝑇𝑏 ← Tokenizer(𝑞𝑢𝑒𝑟𝑦_𝑏𝑎𝑡𝑐ℎ)
8 𝑆𝑇 ← 𝑙𝑒𝑛 (𝑇 for 𝑇 in𝑇𝑏 )
9 𝑍𝑏 ←Pooling_Mask( Language_Model(𝑇𝑏), 𝑆𝑇 , 𝑝)

10 if 𝑝 is "max_pooling" then
11 𝑍 ← 𝑍𝑏 .max(axis=1,keepdim=False)

12 if 𝑝 is "mean_pooling" then
13 𝑍 ← 𝑍𝑏 .mean(axis=1,keepdim=False)

14 batch_idx← batch_idx + 𝑏
15 result.append(𝑍 )

16 return concatent(result)

vector representation of dimension 𝑑 indicating the embedding of
𝑥𝑖 . An example is shown as follows.

Example 4. Given an SQL query text "SELECT id, name FROM
user_tableWHERE id=5", and a simple tokenizer dividing the text by
space, we get a list of tokens 𝑇 = ["SELECT", "id,", "name", "FROM",
"user_table", "WHERE", "id=5"]. For this SQL text, the FM outputs a
vector 𝑍 ∈ R |𝑇 |×𝑑 where |𝑇 | indicates the length of the token list.

In practice, more complex tokenizers [26] are employed in the
upstream tasks of pre-trained FMs. Here, we process the queries
by batch to speed up the overall procedure. Thus, with a batch of
query texts, a vector 𝑍𝑏 ∈ R𝑏×𝑚𝑎𝑥 ( |𝑇 | )×𝑑 is obtained, where 𝑏 is
the batch size. Note that, the middle dimension of 𝑍𝑏 is𝑚𝑎𝑥 ( |𝑇 |),
which indicates the FM pads the output in order to align the output
length of all sequences. Suppose we have a batch, in which the
shortest sequence length is 𝑡 , then the output of this sequence will
be a vector of𝑚𝑎𝑥 ( |𝑇 |) × 𝑑 . In this vector, only the prefix of 𝑡 × 𝑑
has the valid semantic value, and the rest is padded with a constant
number zero by default.

After applying FM, we map the sequence of vectors 𝑍𝑏 for each
SQL statement into a unified size vector 𝑍𝑜 ∈ R𝑏×𝑑 , to be prepared
for the downstream tasks. This incurs the demand for pooling,
which reduces the sequence of vectors into one vector. We support
two types of pooling methods: (1) max pooling, which returns the
maximum value along the given dimension; and (2) mean pooling,
which returns the averaged value along the given dimension. In
each pooling method, we pool the result matrix along the sequence
dimension. Thus, for each value of the output vector, the result
is reduced from all the tokens acquired by FM, i.e., the original
𝑍𝑏 ∈ R𝑏×𝑚𝑎𝑥 ( |𝑇 | )×𝑑 is transformed into 𝑍𝑜 ∈ R𝑏×𝑑 by pooling.

Since the output is a padded vector, the padded value will have
an adverse effect on the result. By using the default constant, we
discuss the following two cases: (i) when using max pooling, we
may be unable to get a negative value from the FM; and (ii) when
using mean pooling, we may obtain a relatively smaller output
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vector in terms of the norm. To avoid these, we first augment the
output (e.g., for max pooling, we pad the output vectors with −∞),
and then calculate the mean or max value.

4.2.2 Embedding Store. We observe that most of the SQL queries
executed are repeated. Thus, we develop an embedding store to
cache the output feature embeddings. The embedding store should
satisfy the following two requirements. First, it should follow idem-
potence [47] of Workload Semantic Embedding Layer. This means
that, for one specific input, Workload Semantic Embedding Layer
can be applied several times, but the resulting state of one call
should be indistinguishable from the consequent state of multiple
calls. This results in a consistent handling function of duplicate
requests received by the API. Duplicate requests may arrive unin-
tentionally or intentionally. For example, a user may send several
duplicate queries due to timeout or network issues. However, the
output embeddings of FMs may be different in terms of the batch
context, which is not desirable. Second, FM-Server requires massive
computational resources. Thus, applying it to infer massive queries
in real-time is unrealistic and inefficient (cf. Section 8).

To address the above-mentioned issue, we hash the SQL text of
each input and store its unique embedding index by a global hash
map. For each newly emerged query, we first check if the query
text has been computed. If it has, we directly output the stored
embedding; if it has not, we compute the feature embedding with
FM-Server, and then store it in the embedding store.

The pseudo-code of Workload Semantic Embedding Layer is
shown in Algorithm. 1. Given the input 𝑄 , which is the set of
SQL query texts, the algorithm first initializes the output memory
space and other supporting variables (cf. Lines 1-3 of Algorithm 1).
Then, for each query, we check if its embedding has already been
calculated. If it has, the value is directly obtained (cf. Lines 4-9
of Algorithm 1). The embedding queries that are not cached by
the embedding store are then calculated online and merged into
all features (cf. Lines 10-11 of Algorithm 1). Next, we update the
embedding store and return the currently requested vectors.

The implementation of FM-Server is shown in Algorithm 2,
which follows a batched design to infer the foundation model. For
each batch, we first compute the tokens and other supplementary
features (cf. Lines 4-8 of Algorithm 2). Then, we apply FM to the
queries and assign corresponding values to padded positions for
different pooling methods. To pad the right value for reduction,
we calculate a mask for each query token sequence, indicating the
position of the padded value. If the pooling method is "max pool-
ing", a very small number (−∞) is padded. For "mean pooling", we
first pad the value to 0 and then scale the whole batch (cf. Lines
9-13 of Algorithm 2). Finally, we reduce the output size by pooling
the embedding and proceed to the next batch (cf. Lines 10-15 of
Algorithm 2).

4.3 Execution Feature Process Layer
The classification model generally can only take numerical value
as the input to make the regression prediction. In this section, we
detail howwe use Execution Feature Process Layer to preprocess the
recorded execution data into numerical data, in order to sufficiently
learn all feature information of each query.

The data features and the corresponding description are shown
in Table 1. We divide all features into two primary categories: (i)
features with numerical meaning (e.g., rows_examined, logical_read,
and rt) and (ii) features without numerical meaning (e.g., origin_host,
error_code, and sql_type). For the first category, we normalize them
with their mean value and std. For the latter category, OneHot
is adopted to encode their input variables. As a common encod-
ing method in machine learning, OneHot encoding uses N-bit 0/1
registers to encode N states.

Note that, when numerical features follow long tail distribution,
directly encoding them tends to result in high data dimension.
Hence, we preprocess numerical features before label encoding or
OneHot encoding to modify its representation. For example, the
rows_examined feature is represented as ten integer values from 1
to 10 based on its numerical distribution. In addition, some features
have special significance when their values are zero (e.g. the query
is most likely a SELECT statement when its rows_updated is 0), and
we represent such features as specified integers.

5 ONLINE WORKLOAD MINING MODULE
OWMM acts as a real-time service. It contains two layers: Workload
Classifying Layer and Markov-based Pattern Mining Layer. When a
query arrives, Workload Classifying Layer first receives the features
of this query fromDCPM for classification by business groups. Then,
Markov-based Pattern Mining Layer of the corresponding business
group processes this query.

5.1 Workload Classifying Layer
In this layer, we classify the queries into different business groups.
The input of each query contains: the semantic embedding 𝑍 based
on Workload Semantic Embedding Layer and the query execution
information 𝑋 based on Execution Feature Process Layer. More
specifically, we first concatenate the two features to obtain a unified
input vector of each query, i.e., 𝐹 = [𝑍 | |𝑋 ]. Then, we can apply a
classification model to the input embeddings, i.e., 𝑐𝑙 𝑓 (𝐹 ), where
𝑐𝑙 𝑓 is the pre-trained classifier. Although Workload Classifying
Layer can incorporate any kind of classifier model, it cannot be
specified by users because it is a general classifier for all users and
is thus hard to satisfy users’ localized and specialized needs. This
paper sets XGBoost Classifier (XGBClassifier) [5] as the default
classification model due to its high scalability.

5.2 Markov-based Pattern Mining Layer
This layer is to discover workload patterns from SQL queries filtered
by Workload Classifying Layer, where the Markov chain model and
Oracle Workload Intelligence (WI) [49] model are employed. In the
following, we introduce this layer by detailing the transformation
from SQL query texts to templates, the Markov model selection and
the workload patterns mining.

5.2.1 Transform SQL query texts into Templates. To handle mas-
sive SQL queries, we transform SQL query texts into SQL templates
according to the equivalence of the operation. Specifically, we first
gain SQL templates [37, 49, 50] based on its definition (cf. Sec-
tion 2.3). Next, we hash the template via a unique SQL_ID. Finally,
we identify a set of SQL queries as equivalent among the discovered
patterns if their SQL_IDs are identical.
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Figure 5: A prefix tree for Example 5

5.2.2 Select the appropriate Markov model. We build a prefix tree
for the SQL sequence 𝑆 for analyzing and calculating the state
transition probabilities using MDL principle [49]. The prefix tree is
an ordered tree with𝑚𝑎𝑥_𝑜𝑟𝑑 + 2 layers of nodes, where𝑚𝑎𝑥_𝑜𝑟𝑑
is the maximum order of the Markov model. The root node is at
the first level, i.e., level zero, and the leaf nodes are at the last level,
i.e., level𝑚𝑎𝑥_𝑜𝑟𝑑 + 1. Each node in the prefix tree represents an
ordered sequence. The edge between nodes represents a statement,
and the node stores the occurrence frequency of its represented
ordered sequence.

Example 5. Given a SQL sequence 𝑆 = 𝑞1𝑞2𝑞3𝑞4𝑞3𝑞4𝑞2𝑞3𝑞4𝑞3𝑞1𝑞3
𝑞4𝑞3𝑞2𝑞5 and the maximum order of Markov model𝑚𝑎𝑥_𝑜𝑟𝑑 = 1,
a prefix tree is constructed, as shown in Figure 5. To be specific,
𝑛2 = 3 represents that 𝑞2 appears 3 times in the sequence; 𝑛8 = 2
represents that 𝑞2𝑞3 appears 2 times in the sequence.

In order to reduce the time cost and improve the generaliza-
tion ability of the model, we prune the built prefix tree to cal-
culate state transition probabilities before applying MDL princi-
ple. Specifically, the state transition probabilities are computed by
P (𝑞𝑥 | s) = value(𝑛𝑐 )

value(𝑛𝑝 ) , where 𝑠 and 𝑛𝑝 represent the current se-
quence and its corresponding node, while 𝑞𝑥 and 𝑛𝑐 represent the
new query and its corresponding node. However, when calculat-
ing the nodes in the same layer, the probability may be 0, which
ignores the appearance possibility of some sequences and affects
the subsequent model selection. Hence, it is necessary to modify
the method of computing state transition probabilities according to
the threshold 𝜏 = 1/| set(𝑆) |:
• If P (𝑞𝑥 | s) ≥ 𝜏 , the transition probability follows its correspond-

ing real distribution;
• If P (𝑞𝑥 | s) < 𝜏 , the transition probability is considered to be

distributed uniformly.

Example 6. Continuing Example 5 and given 𝜏 = 1/| set(𝑆) | =
1/5, 𝑃 (𝑞4 | 𝑞3) =

value(𝑛12 )
value(𝑛3 ) = 2

3 > 1
5 . Thus, 𝑃 (𝑞4 | 𝑞3) is pre-

served as its real distribution. On the contrary, due to 𝑃 (𝑞2 | 𝑞3) =
𝑃 (𝑞1 | 𝑞3) = value(𝑛10 )

value (𝑛3 ) = 1
6 < 1

5 and 𝑃 (𝑞3 | 𝑞3) = 𝑃 (𝑞5 | 𝑞3) =
0 < 1

5 𝑃 (𝑞2 | 𝑞3), 𝑃 (𝑞1 | 𝑞3), 𝑃 (𝑞3 | 𝑞3) , and 𝑃 (𝑞5 | 𝑞3) are all set
to (1 − 𝑃 (𝑞4 | 𝑞3)) /4 = 1

12 .

In order to choose the most suitable Markov model, we calculate
the costs of pruned models with different orders according to MDL
principle following [49]:

C
(
𝑆,𝑀𝑜𝑟𝑑

)
= 2 × (log𝑜𝑟𝑑 + log𝑚 + 1)

+𝑚((𝑜𝑟𝑑 + 1) log | set(𝑆) | + 2 log |𝑆 |) − log P
(
𝑆 | 𝑀𝑜𝑟𝑑

)
,

(2)

where𝑀𝑜𝑟𝑑 is the Markov model of 𝑜𝑟𝑑𝑡ℎ order;𝑚 is the number of
items whose probability values reach the threshold 𝜏 ; set(𝑆) is the
statement set of SQL sequence 𝑆 ; and P

(
𝑆 | 𝑀𝑜𝑟𝑑

)
is the probability

calculated by continuous multiplication. Continuing Example 6
where order ofMarkovmodel is 1, P

(
𝑆 | 𝑀𝑜𝑟𝑑

)
is derived as follows.

P
(
𝑆 | 𝑀𝑜𝑟𝑑

)
= 𝑃 (𝑞1) × 𝑃 (𝑞2 | 𝑞1) × 𝑃 (𝑞3 | 𝑞2) × 𝑃 (𝑞4 | 𝑞3)

×𝑃 (𝑞3 | 𝑞4) × · · · × 𝑃 (𝑞5 | 𝑞2)
(3)

Finally, the 𝑥𝑡ℎ order Markov model with the smallest cost is se-
lected. We calculate the required state transition matrix from the
Markov model with the order selected.

5.2.3 Discover workload patterns. After obtaining the state transi-
tion matrix and the Markov model order 𝑥 , we proceed to determine
whether an SQL sequence is a pattern by following WI [49]. Specif-
ically, given a threshold 𝜃 , 𝑞1 . . . 𝑞𝑥𝑞𝑦 is identified as a pattern if
the state transition probability P

(
𝑞𝑦 | 𝑞1 . . . 𝑞𝑥

)
≥ 𝜃 .

Example 7. Continuing Example 5, we set the threshold 𝜃 to 0.7 and
the Markov model order to 1. We first initialize the pattern as 𝑞1.
Since 𝑃 (𝑞2 | 𝑞1) = 1

2 < 𝜃 , 𝑞1 is returned as pattern. Next, we reset
the new pattern as 𝑞2 and continue the calculation until the new
pattern is reset to 𝑞4, where 𝑃 (𝑞3 | 𝑞4) = 3

4 > 𝜃 . As a consequence,
we update the pattern as 𝑞4𝑞3. Since 𝑃 (𝑞4 | 𝑞3) = 2

3 < 𝜃 , 𝑞4𝑞3 is
returned as a pattern. We repeat this procedure until reaching the
end of the sequence.

6 OFFLINE TRAINING MODULE
In this section, we detail the implementation of OTM, which is
employed to train parameters offline.

6.1 Automatic Label Collection
As discussed in Section 5, it is necessary to classify the queries
stored in SQL query log into different business groups. To achieve
this, we need to collect labels to train a classifier. We divide label
collection into two parts: label collection for public data, and label
collection for industrial data. Note that, in order to avoid the heavy
back prop operations caused by the update of the foundation model,
we do not fine-tune FMs.

6.1.1 Label collection for public data. It is uncommon for public
datasets to log different businesses into one query log. This is be-
cause the currently available datasets are obtained from relatively
simple business logic, and do not meet the requirement of large-
scale complex business. To this end, we propose a generated dataset
by fusing multiple public datasets (cf. Section 8), whose ground
truth label is obviously available.

6.1.2 Label collection for industrial data. We aim to protect user
privacy when collecting labeled SQL queries from industry applica-
tions. This implies that we should minimize the labels we collect
without compromising classification accuracy.
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We provide users with a unique ID for each business group.
Requests with the unique ID may pass through another API that is
encapsulated by the cloud database interface, which is generally
non-transparent to users. This implies that users only need to pass
this unique ID as an extra data field when logging in to the cloud
database. With the unique ID, we provide three options for users
to label their business groups.
Random Sample.When the user queries the cloud database, the
system will send the query with a probability 𝑃𝐿 , where 𝑃𝐿 is a
configurable parameter. The default value of 𝑃𝐿 is 0.01, indicating
that 1% of the total requests are marked as training labels to classify
the business groups.
Manually Labeling. Users can flexibly choose the queries to be
labeled, by informing the system of their preferences. This preserves
the user privacy.
Hybrid.When employing random sampling, users are allowed to
manually specify the type of SQL query that is prohibited from
accessing as the training label. Specifically, this is achieved by
setting a flag when querying the SQL statement. The flag overwrites
the global probability 𝑃𝐿 so that the queries with the flag will not
be sampled by the system. This setting aims to balance the label
quality and user privacy.

When Random Sample and Hybrid are adopted, the classifier
model is trained on a weekly basis by default and the frequency
of updating the model is configurable. After training, the labeled
SQL queries are discarded to prevent possible data/privacy leakage.
When Manually Labeling is adopted, the classifier model is trained
only when the user requests the model to be updated.

6.2 Classifier Model Training
The parameters involved in Workload Classifying Layer should be
trained accurately, which is a prerequisite for having Workload
Classifying Layer perform classification efficiently. To achieve this,
we need to carefully select the training data. It can be collected
from business groups who have executed massive SQL queries on
the cloud database server. Note that, in order to protect user pri-
vacy, we aim to minimize the number of labels we collect. We
adopt XGBClassifier [5] as the classifier model. However, AWM
also accommodates other classifier models (cf. Section 8).

As the size of the input data is extremely large, themodel training
follows a mini-batch strategy. Specifically, we separate the data by
the ‘timestamp’ feature and train the model in small batches.

7 PATTERN-BASED OPTIMIZING MODULE
As an application of AWM, POM analyzes the workload patterns
discovered by OWMM and provides optimization strategies for
cloud database users to improve their business logic codes. Optimiz-
ing queries based on mined workload patterns can fundamentally
optimize the business, which is more valuable than optimizing
based on the entire workload extracted from logs directly.

In general, the workload patterns from one business group typ-
ically have two origins. The first is the pattern within one piece
of code. For example, a function that first executes the "SELECT"
command on the "user" table to select requested user IDs, and then
iteratively "SELECT" and "UPDATE" the followers of the user. This

User Code

SQL1: UPDATE table_a SET …
SQL2: SELECT … FROM table_b …
SQL3: INSERT INTO table_a …
SQL4: INSERT INTO table_c …

execute SQL1

if condition_a:
execute SQL1

if condition_b:
execute SQL2
if condition_c:

execute SQL4

if condition_d:
execute SQL2
for i in range(2):

execute SQL3
if condition_e:

execute SQL4

……
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Figure 6: An example of optimizing query code

creates a pattern of "SELECT uid"→ "SELECT follower"→ "UP-
DATE follower"→... . The second is the pattern generated from
the business group, which is the remote procedure call (RPC) from
different micro-services. The reason is that the modern implementa-
tion of business logic follows the micro-service architecture, which
enables back-end programmers to reduce code coupling. This strat-
egy is adopted by most large tech companies. This motivates us
to take advantage of the analysis of this strategy. Specifically, in
POM, micro-services call each other to form a directed acyclic graph
(DAG) with a call relationship in a user’s request.

In both of the above situations, dependencies exist within the
codes querying the cloud database, either intentional or not inten-
tional. Furthermore, the dependencies are hidden inside the patterns
discovered from the SQL query log corpus. For SQL queries without
dependencies in-between each other, executing them in parallel is
obviously more efficient. Since a pattern is a sequence of queries
that occurs frequently, optimizing the execution of patterns is more
significant than that of infrequently occurred queries. Hence, our
goal is to analyze the workload patterns and figure out strategies
for users to execute SQL queries in parallel (as shown in Figure 6).
To achieve this, we represent the dependencies as a graph and pro-
pose Dependency aware Multi-query Optimizer for constructing
the dependency graph within queries. Based on this, we provide
optimization based on the constructed graph.

7.1 Dependency aware Multi-query Optimizer
7.1.1 Dependency graph construction. Two types of dependencies
are related to constructing the dependency graph. The first type
(namely block-based dependencies) is the dependencies that are
trivially inferred from the SQL query text. For example, if there is
one "SELECT" operation after an "UPDATE" operation, and the two
queries are applied to the same table, then the "SELECT" should
not be executed until the "UPDATE" is completed. Intuitively, this
type of dependency can be directly derived from the data. The
second type of dependency (namely business-based dependencies) is
the business logic-related dependency and is not accessible for the
cloud database.
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Next, we introduce the generation of dependency graph from
query patterns. Considering the block-based dependencies, it is
essential to detect the blocking queries. Such queries may block
followed-up queries to execute, e.g., an "UPDATE" query is a block-
ing query. Different blocking queries have different scopes of block-
ing. For example, the DDL (Data Definition Language, e.g., "CRE-
ATE", "ALTER") queries generally have larger scopes than the DML
(Data Manipulation Language, e.g., "INSERT", "UPDATE") queries.
To construct the graph, we iterate the pattern. For each scope
(database/table), we maintain a map of the current blocking query.
If the query is within a scope (e.g., is querying a specified table),
we add one dependency edge between the blocking query of this
scope and the current query. If the query itself is a blocking query,
we update the corresponding scope in the map. For those business-
based dependencies, we provide interfaces for users to define their
specified dependencies.

7.1.2 Dependency-graph-based optimization. After the dependency
graph 𝐺 is built, Dependency aware Multi-query Optimizer per-
forms a breadth-first search on 𝐺 to determine the optimal execu-
tion order of queries. Once the optimization result is generated,
users receive a list of queries that can be executed in parallel in the
same order. In the case of incorrect results, users can manually add
dependencies and the system will update the order accordingly. By
following the suggestions provided by the system, users can further
optimize their code for improved performance.

8 EXPERIMENTAL EVALUATION
8.1 Experimental Setup
Experimental dataset. We use two real-life datasets (AQL-N and
AQL-L) and one synthetic dataset (OSQL).
• AQL-N. It is a normal query log of the Alibaba Cloud database.

It contains 941K queries, of which the number of SQL templates
is 184. The total query response time of AQL-N is 683.22 seconds.

• AQL-L. It is a large query log of the Alibaba Cloud database. It
contains 4.5M queries, of which the number of SQL templates is
205. The total query response time of AQL-L is 2,512.59 seconds.

• OSQL. AWM is designed to discover workload patterns from
multiple sources. However, no public integrated dataset is avail-
able. Thus, we synthesize a dataset by fusing four public datasets:
StackOverflow [22], IIT Bombay [4], UB dataset [28], and Pock-
etData [25]. Specifically, we randomly sample queries from the
four datasets and then mix them into OSQL. OSQL contains 4,403
queries, of which the number of SQL templates is 4,308. Since
the four public datasets only provide the query statement texts
but not the query execution feature, the total query response
time of OSQL is unknown.
AQL-N and AQL-L fromAlibaba Cloud are diversified and compli-

cated. Diversified means that they contain not only a large number
of entries but also a variety of information such as SQL text and
execution feature metrics. Complicated means that they contain
query entries from different business logic and database instances.
We collect the SQL data from a certain application of the Alibaba
Cloud database as the ground truth, in order to test the perfor-
mance of AWM on AQL-N and AQL-L. On the other hand, OSQL
only contains a small number of queries with the repetition rates

of templates being low. This implies that most patterns of OSQL
have shorter lengths. Since no ground truth is available, we collect
data from each source of OSQL and apply Markov-based Pattern
Mining Layer to generate ground truth patterns.
Evaluation metrics. We study the performance of AWM in terms
of Effectiveness of pattern mining, Effectiveness of Workload Classify-
ing Layer, and Efficiency of AWM. Effectiveness of pattern mining is
measured by the number of correctly discovered patterns (# of pat-
tern) and precision (Precision). Effectiveness of Workload Classifying
Layer is measured by F1-Score(F1). Efficiency of AWM is measured
by logging the online serving latency of OWMM (Latency) and the
offline training time of OTM (Time).
Baselines.We compareAWMwith three baselines: WI [49], WI-tid,
and WI-kmeans. WI mines the patterns of SQL context based on a
Markov chain-based method, which is the state-of-the-art work for
workload pattern discovery. However, WI is designed for mining
patters with a single business logic, and thus cannot be directly
applied to discovery patterns in cloud databases (cf. Section 1).

To attain a fair comparison, we provide two variants of WI: WI-
tid and WI-kmeans, both of which adapt WI to cloud databases.
WI-tid classifies the queries of AQL-N and AQL-L using the tid (i.e.,
the thread id of the program to access the database) attribute of
the data source. This way, queries from multiple sources can be
distinguished according to the characteristic of the business logic.
After classification, WI-tid exploits WI to discover patterns for
each category respectively. WI-kmeans performs classification in
an unsupervised way, where the data is automatically categorized.
Specifically, WI-kmeans first adopts K-Means to cluster data, and
then discovers patterns for each cluster with WI.
Implementation details.We set themaximum order of theMarkov
model to 1 and 𝜃 to 0.77 for all baselines. When implementing WI-
kmeans, we set the number of clusters to 5 for AQL-N and AQL-L,
and 15 for OSQL. We use the encoded query features obtained from
Execution Feature Process Layer to cluster the queries for AQL-N
and AQL-L. Since the query execution feature is unavailable, we
apply Workload Semantic Embedding Layer to the query texts and
take the embeddings as the clustering input. All the baselines do
not have a classification model. Thus, we do not report F1 and Time
for them. Since WI-kmeans runs clustering on the whole dataset,
it is infeasible to apply it to online scenarios. Hence, we do not
report the Latency for WI-kmeans. Moreover, Time of WI-kmeans
refers to the end-to-end workload discovery time. We set three
training set ratios (proportion of the data used for training) for each
dataset, respectively, when studying the performance of AWM. The
lowest training set ratio is denoted as E; the highest training set
ratio is denoted as N; and the middle training set ratio is denoted
as L. For AQL-N and AQL-L, we choose 1% (E), 5% (L), and 10%
(N) of the total data of AQL-N, AQL-L, and OSQL as training sets,
respectively. Here, the highest training ratio (10%) is below the
commonly used settings of existing classification tasks [5]; while
the lowest training ratio (1%) is extremely smaller than the one
adopted by most of the classification tasks [5]. For OSQL, we choose
20% (E), 40% (L), 60% (N) of the total data of AQL-N, AQL-L, and
OSQL as training sets, respectively. Here, we use a larger proportion
of training data because the query execution features of OSQL are
unavailable. We employ the max pooling method and a batch size
of 512 for the Workload Semantic Embedding Layer’s foundation
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Table 2: Comparison results

AQL-N AQL-L OSQL
Setting Method Pattern

Precision # F1 Latency Time Pattern
Precision # F1 Latency Time Pattern

Precision # F1 Latency Time

- WI 0% 0 - 0.00302 - 0% 0 - 0.00335 - 3.92% 2 - 0.35479 -
- WI-tid 15.24% 25 - 0.00254 - 0.79% 25 - 0.00487 - - - - - -
- WI-kmeans 25.37% 17 - - 2007.80 17.39% 20 - - 9899.11 20.00% 16 - - 285.41
E 86.54% 45 99.21% 0.00246 169.45 83.78% 62 99.13% 0.00253 769.23 81.72% 76 91.71% 0.27956 7.50
L 88.00% 44 99.39% 0.00246 290.08 84.00% 63 99.55% 0.00258 1,904.86 90.63% 87 93.98% 0.26061 16.05
N

AWM
89.58% 43 99.45% 0.00247 402.44 86.49% 64 99.60% 0.00260 2,643.84 90.91% 90 94.10% 0.25213 28.07

∗F1 is to measure the performance of Workload Classifying Layer and Precision is to measure the overall pattern discovery performance.

model. We select multi:softmax as the loss function and mlogloss
as the evaluation function for Workload Classifying Layer. We use
the same setting as WI when implementing Markov-based Pattern
Mining Layer. We set the number of batches to 10 for Execution
Feature Process Layer of AQL-L.

8.2 Comparison Study
We compare AWM with WI [49], WI-tid and WI-kmeans in terms
of effectiveness and efficiency. AWM, WI and WI-kmeans are per-
formed on AQL-N, AQL-L, and OSQL, while WI-tid is performed
only on AQL-N and AQL-L. This is because WI-tid conducts clas-
sification by exploiting the tid attribute (cf. Section 8.1), which is
missed in OSQL. Table 2 shows the comparison results.

8.2.1 Effectiveness Study. As observed in Table 2, AWM outper-
forms three baselines significantly in terms of Pattern Precision
and # of pattern on all datasets. First, Pattern Precision of AWM is
more than 81% and F1 is more than 91% on all datasets. Specifically,
AWM improves Pattern Precision by more than 60% compared to
WI-kmeans, which achieves the highest Pattern Precision among
all baselines. Next, patterns identified by AWM (# of the pattern)
are 18 and 37 more than WI-tid on AQL-N and AQL-L, respectively,
and are 60 more than WI-kmeans on OSQL. These results high-
light the effectiveness of AWM. This is attributed to the use of
XGBClassifier [5, 38, 52] model in OTM, which takes into account
data characteristics to more accurately mine patterns. Note that,
both Pattern Precision and # of the pattern of WI on AQL-N and
AQL-L is 0. This is because WI is designed for a single database and
small-scale data only (cf. Section 8.1) and struggles when processing
large-scale industrial data.

Third, the increase of training data leads to growths of F1, Pat-
tern Precision and # of pattern, because more training labels lead
to higher accuracy of training. However, even with the minimum
training set ratios, AWM is able to outperform all baselines sig-
nificantly. The reason is that Automatic Label Collection enables
AWM to work with limited resources, where the user privacy is
protected by Automatic Label Collection (cf. Section 6.1).

8.2.2 Efficiency Study. As shown in Table 2, AWM’s Latency is sig-
nificantly lower than the three baselines’ on three datasets. Specif-
ically, AWM reduces Latency by 2.7% compared with WI-tid on
AQL-N and reduces Latency by 22% and 21% compared with WI on
AQL-L and OSQL, respectively. Here, WI-tid achieves the lowest
Latency among all baselines on AQL-N and WI achieves the lowest
Latency among all baselines on AQL-L and OSQL, respectively. The

above mentioned experimental results are mainly because (i) when
processing large-scale data, all baselines generate large Markov
models, resulting in a large time overhead; (ii) WI-kmeans per-
forms clustering offline; and (iii) AWM reduces the sizes of Markov
models by discovering patterns for each category respectively and
separating offline training from online classification and workload
pattern discovery.

Next, Latency of all methods on OSQL is significantly higher
than those of the other two datasets. This is because Latency largely
depends on the number of SQL templates. As mentioned in Sec-
tion 8.1, OSQL has more SQL templates and a lower repetition
rate of SQL queries than AQL-L and AQL-N. This leads to higher
time and space costs for selecting an appropriate Markov model
in Markov-based Pattern Mining Layer. Meanwhile, the latency of
WI-tid on AQL-L is higher than that on AQL-N. This reason is that
when processing massive data, classifying by tid tends to generate
more repeated patterns, which increases the time cost.

Although it is true that AWM requires additional time for train-
ing the classification model offline, its time cost is still acceptable for
processing millions of data. As the size of data used for training the
classification model grows, the Time of AWM increases. However,
AWM requires only 100 seconds to train the model, which is negli-
gible compared to the total query time (about 1 hour). Note that,
Time of WI-kmeans is much larger than AWM because it mines all
workload patterns in an offline fashion.

8.3 Ablation Study
8.3.1 Analysis of foundation models. Figure 7 reports the effects
of four foundation models, bert-base-cased [26], roberta-base [35],
xlm-roberta-base [6] and xlm-roberta-large [6] by applying them to
AWM respectively. We set the training ratio of each dataset to the
corresponding lowest one, i.e., 1% on AQL-L and AQL-N, and 20%
on OSQL (cf. Section 8.1). no-FM denotes the case where we do not
use any foundation model. Note that, no-FM has not been studied
on OSQL because SQL text is the only available information for the
public datasets [4, 22, 25, 28] (cf. Section 8.1).

The results suggest that using foundation models in AWM can
improve its performance in terms of F1, Pattern Precision and # of
pattern. Although the use of foundation models does incur some
time cost, the improvement in performance is significant and ac-
ceptable (cf. Section 4.2.2 and Section 8.4). Next, the bert-base-cased
model achieves the best performance on each dataset, indicating
that it is more universal than other models. The xlm-roberta-base
model performs the worst in OSQL while performing well on the
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Figure 8: The results of varying classifiers

other two datasets. This is because the training data of xlm-roberta-
base model differs largely from OSQL. Meanwhile, we observe that
when processing large-scale data, a small deviation in-between
F1 may indicate a huge gap in between the number of correctly
discovered patterns. Finally, xlm-roberta-large model’s Latency is
2 times larger than other foundation models’. The reason is that
the size of xlm-roberta-large model is the largest among the three
models, and thus results in the largest embedding dimension and
longest time for preprocessing in DCPM.

8.3.2 Analysis of classifier. Figure 8 shows the effect of using dif-
ferent classifiers. As observed, XGBClassifier and MLPClassifier are
more suitable for AQL-N and AQL-L, while SVC is more suitable
for OSQL. This is because OSQL have more SQL templates. AQL-N
and AQL-L only have around 200 unique templates and contain
additional execution features which do not fit the SVC model. More-
over, according to the experimental results on AQL-L, Time grows
with the data size, because we employ batch processing to trade
time for space.

8.4 Scalability Study
We study the scalability of the Embedding store and OTM of AWM
on AQL-N and AQL-L. We remove the Embedding store (by apply-
ing FMs online to obtain the embedding) and OTM from AWM,
respectively. We denote the system without the Embedding store
as AWM-Embedding store and the system without OTM as AWM-
OTM. Then we compare them with AWM, respectively. Note that,
since directly calculating the embeddings of the whole dataset is
infeasible, we randomly sample 2% data of the total data and record
Latency of AWM, AWM-Embedding store, and AWM-OTM on it.

The experimental results are reported in Figure 9. First, as shown
in Figure 9(a), Latency of AWM-Embedding store is 10 times higher
than that of AWM. This verifies that employing the Embedding
store can greatly reduce the time for computing the embedding of
massive data, thereby improving the efficiency of AWM. Next, as
shown in Figure 9(b), Latency of AWM-OTM is 1.15 times higher
than that of AWM. This is because AWM trains data offline, which
is more efficient.

8.5 Study of Pattern-based Optimizing Module
We evaluate the effectiveness of POM. We collect ten user cases in
an internal software evaluation session. Each user case is a piece
of code that contains queries. We divide the ten cases into two
categories: (i) cases with loops and (ii) cases without loops. We
first apply AWM to the ten cases to identify the workload patterns
and then use the patterns to generate optimization strategies with
POM. Next, we improve the codes with optimization strategies. We
run each piece of original code and improved code 1,000 times,
respectively, and record two metrics: the average execution time
(denoted as mean) and the variance of execution time (denoted
as std). We denote the situation where we run the original codes
as pre-opt and the situation where we run the improved codes as
post-opt.

Table 3 shows the query performance conparison of post-opt
and pre-opt, respectively. It is evident that POM has a considerable
impact on the query execution time. Specifically, it reduces the av-
erage execution time by 2.7 times. Moreover, it effectively decreases
the variance of execution time. This indicates that employing an
optimized parallel strategy improves the stability and predictability
of query execution.
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Figure 9: The results of scalability study

Next, POM is more beneficial for cases that contain loops. The
reason behind this observation is that patterns with more loops can
execute a greater number of queries in parallel, which leads to better
efficiency. The module can recognize such patterns and generate
optimization strategies accordingly to leverage the parallelism and
improve the performance further.

9 RELATED WORK
Workload analysis. Analyzing and understanding workloads is
essential for properly designing, provisioning and optimizing ser-
vices [10, 23, 26, 29, 45, 48, 49, 55]. There is recent work on ex-
ploiting workload characteristics in cloud DBMSs from the query
level [45] and the system level [55]. Although some work on work-
load characterization analyzes SQL logs [23, 43, 48, 56], most of
them focus on the interior of a single SQL statement. Query2Vec [23]
implements a vector representation of SQL queries with natural
language processing (NLP) methods, to support workload analysis
tasks using a corpus. PreQR [48] improves BERT [26] by taking into
account the specific database information to learn query features
and transforms human written texts into SQL queries.

As a branch of workload analysis, workload pattern mining
aims to discover frequent patterns in query logs. Oracle Workload
Intelligence (WI) [49] proposes a Markov chain-based method for
mining SQL context. However, WI cannot be applied to industry
applications. This is because in such applications, queries from
multiple business logics are loaded together into a query log store,
making it difficult to distinguish them using WI. On the contrary,
AWM employs a classifier to solve this problem. Although there
are pattern mining studies targeting streaming data [17, 24], they
are not applicable for discovering patterns from query logs.
Query optimization. Query optimization technologies are gener-
ally designed for optimizing single queries, by estimating the cost
of query execution [9] or optimizing the query execution plan with
deep neural networks [39, 41] or Monte Carlo Tree [53]. However,
they cannot optimize multiple queries.

Some studies investigate multi-query optimization from the per-
spective of batch processing [8, 12, 18, 19], but none of them ana-
lyze the contextual characteristics of workload. To tackle this issue,
AWM exploits the discovered patterns to optimize query execution.
Automatic database analysis. Automatic analysis and optimiza-
tion of databases include various functions such as tuning [11], op-
timizing [21, 39, 41, 53, 54], and workload management [40], which
aim to improve the performance of database systems by address-
ing stability, scalability and etc. Some self-driving DBMSs [30, 44]

Table 3: Results of optimizing

pre-opt post-opt ↓mean ↓ stdmean std mean std
All cases 1.692 0.120 0.620 0.004 2.7 33.4
No loop 0.654 0.012 0.519 0.003 1.3 4.6
With loop 2.136 0.166 0.663 0.004 3.2 41.5

integrate these functions to automate the overall performance of
database systems. However, they do not necessarily account for
user behavior and business logic. AWM, on the other hand, focuses
on analyzing and optimizing the database based on user behaviors
and business logic through workload pattern analysis.
Pre-trained foundation models. Pre-trained foundation models
(PFMs) have shown great success in various NLP tasks, by exploit-
ing large amounts of unlabeled text data to learn common lan-
guage representations [26, 35, 36]. PFMs have been used in tasks
such as sentence embedding [46], matching [16], and knowledge
graphs [13–15, 33, 51]. However, these models are not directly ap-
plicable in the database domain. The reason is that they are trained
on web corpus that are significantly different from SQL queries.
Although PreQR [48] applies BERT to SQL statements for tasks,
such as cardinality estimation and text-to-SQL transformation, it is
not designed to discover workload patterns from query logs. On the
other hand, AWM leverages the benefits of PFMs and is tailored for
the unique characteristics of SQL queries and database workloads.

10 CONCLUSIONS
In this paper, we propose a workload pattern discovery system
AWM for large-scale industry-level workload analysis in real-time.
AWM is mainly composed of four modules: DCPM, OWMM, OTM,
and POM. First, DCPM is applied to collect the streaming raw
query logs, and encodes the raw query logs into high-dimensional
feature embeddings with rich semantic contexts and execution fea-
tures. Next, OWMM firstly classifies the encoded query logs by
business groups, and then discovers the workload patterns effec-
tively for each business group. Meanwhile, OTM collects labels that
are shared by users and trains the classification model accordingly.
Finally,AWM automatically provides clear code optimization strate-
gies for cloud database users. The experimental results show that
AWM outperforms the state-of-the-arts in terms of both accuracy
and efficiency.

In the future, it is of great interest to discover the relation be-
tween database performance indicators andworkload patterns. Min-
ing workload patterns has important applications, such as query
optimization. This paper focuses on a specific aspect of query opti-
mization. However, workload patterns also hold promise for inte-
gration into online anomaly detection and root cause analysis.
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