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ABSTRACT 
This paper describes a variety of techniques from over a decade of 
developing Aerospike (formerly Citrusleaf), a real-time DBMS that 
is being used in some of the world’s largest mission-critical systems 
that require the highest levels of performance and availability. Such 
mission-critical systems have many requirements including the 
ability to make decisions within a strict real-time SLA (milliseconds) 
with no downtime, predictable performance so that the first and 
billionth customer gets the same experience, ability to scale up 10X 
(or even 100X) with no downtime, support strong consistency for 
applications that need it, synchronous and asynchronous replication 
with global transactional capabilities, and the ability to deploy in 
any public and private cloud environments. 

We describe how using efficient algorithms to optimize every area 
of the DBMS helps the system achieve these stringent requirements. 
Specifically, we describe, effective ways to shard, place and locate 
data across a set of nodes, efficient identification of cluster 
membership and cluster changes, efficiencies generated by using a 
‘smart’ client, how to effectively use replications with two copies 
replication instead of three-copy, how to reduce the cost of the real-
time data footprint by combining the use of memory with flash 
storage, self-managing clusters for ease of operation including 
elastic scaling, networking and CPU optimizations including 
NUMA pinning with multi-threading. The techniques and 
efficiencies described here have enabled hundreds of deployments 
to grow by many orders of magnitude with near complete uptime.  
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1 INTRODUCTION 
Real-time services requiring extremely high performance and 
availability have used a variety of solutions over time, including 
mainframes, clustered relational databases, in-memory databases, 
and most recently, NoSQL [2] and New SQL databases like 
CockroachDB [17] and YugabyteDB [18]. Real-time applications 
create enormous strain on these systems, as follows: 
 

• Overwhelming consumer demand from mobile devices 
that produces enormous real-time load on their systems, 
with the DBMS quickly becoming the bottleneck. 

• Requirement for a richer set of application features 
combined with a great real-time consumer experience. 

• Virtually 100% online user interactions from multiple 
remote endpoints making real-time security, risk 
computation and fraud detection mandatory. 

• Round-the-clock availability making any breach of a 
service-level agreement (SLA) via increased latencies, 
downtime, and maintenance windows, unacceptable. 

 
Here are some real-world use cases that illustrate the point.  

1.1 Use Cases 
Let us consider high traffic use cases in three areas, an operational 
database at the edge of the datacenter, a real-time system of record 
(SOR) and a global transaction system for high throughput 
applications. All of these areas require high performance, high 
availability and various levels of data consistency.  

 

This work is licensed under the Creative Commons BY-NC-ND 4.0 International 
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of 
this license. For any use beyond those covered by this license, obtain permission by 
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication 
rights licensed to the VLDB Endowment. 
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097. 
doi: 10.14778/3611540.3611556  

3676

https://creativecommons.org/licenses/by-nc-nd/4.0/


 

1.1.1 Operational system at the edge 
Typically, in these use cases, models generated in an off-line process 
are applied to transactional meta data in real-time for applications 
like fraud detection, recommendation engines, real-time bidding for 
advertising, etc. As seen in this example of fraud detection for 
payment systems at PayPal [3], the machine learning and AI 
algorithms require gathering, maintaining, and accessing in real-
time a vast amount of historical data related to entities in the 
payment network like users, devices, network switches, Wi-Fi 
routers, etc. When a new transaction arrives, it is necessary to use 
the transaction meta-data and analyze it combined with recent 
history of the activities attributed to the actors in this transaction. 
Therefore, a database that can retrieve and save more data for 
analysis can improve its effectiveness by minimizing false positives 
and false negatives while still meeting the stringent real-time SLA 
of ~100-200ms for generating a fraud score. Consistency is 
important as the algorithms are only effective if recent behavioral 
data is input to the AI model for scoring. So, providing consistent 
access to recently written transaction histories is imperative for 
preventing fraud before it happens rather than detecting it after the 
fact. 

1.1.2 Real-time system of record 
One of the best examples of this was highlighted by Airtel [11] in 
India, one of the largest mobile operators in the world. Airtel re-
invented their customer engagement model with “Customer 360,” a 
methodology that understands each customer intelligently and 
contextually and powers a completely personalized customer 
experience. Using a high-performance database as the real-time data 
backbone behind this “digital brain,” Airtel could mine trillions of 
records to create deep learning capabilities at a more than 25,000 
transactions per second run-rate with sub-millisecond latency. 
Access to the latest data is critical here since having outdated data 
would result in poor customer experience for hundreds of millions 
of users.  

1.1.3 Global distributed transaction system 
Let’s look at interbank money transfers. The basics of money 
transfer - simply moving money and tracking those transactions at 
massive scale - haven’t changed. But the benefits of optimizing - 
digitally transforming - a core, existing practice are massive at scale. 
An overnight wire transfer (the old standard) is costly, time-
consuming, and very inefficient with various points of human and 
machine intervention. Today this must happen in seconds without 
any manual intervention.  A good example of this is the Banca 
d’Italia launch of TIPS (Target Instant Payment Settlement) [5], 
which “guarantees settlement within seconds and is unique in doing 
this directly in central bank money.”  These systems have a dual 
requirement of being global (active-active across multiple data 
centers) with the ability to continue without losing a single write in 
the case of an entire data center failure. Consistency requirements 
are most stringent here and not a single record can be lost in any 
case whatsoever. At the same time extremely high availability and 
excellent real-time performance (very high throughput at low 
latency) are absolutely necessary to have a successful system.  
 

The challenges of building database systems to handle the above are 
manifold. First, extremely high performance and complete system 
availability are required. Tunable consistency is important: the first 
case above can benefit from a high level of consistency, the second 
will suffer if consistency falls below a relatively high threshold and 
the third needs strong consistency all the time. Note that the 
performance and ability to scale to hundreds of millions to billions 
of users is critical for the success of all three applications. The user 
experiences provided to the first user and the billionth user need to 
be identical.  
 
As these systems encounter the problem of explosive growth, 
efficiencies of how the DBMS uses the resources available to it are 
critical for its ability to support such mission-critical deployments 
at higher and higher scale. The rest of this paper will describe the 
techniques we have developed for running an efficient DBMS for 
real-time applications. We will divide the discussion into the 
following areas: data partitioning (Section 2), cluster self-
management (Section 3), minimizing replicas and maximizing 
availability (Section 4), geo-distributed transactions (Section 5), 
storage optimizations (Section 6), and CPU and network 
performance (Section 7). We conclude by summarizing our results 
in Section 8. 

2 DATA PARTITIONING 
A key aspect to parallel execution in Aerospike [7], formerly 
Citrusleaf [42], is the ability to divide and conquer the problem 
using a data partitioning scheme that distributes data across nodes 
as shown in Figure 1. A record’s primary key is hashed into a 160-
bit digest using the RIPEMD algorithm, which is extremely robust 
against collisions [8]. The digest space is partitioned into 4096 non-
overlapping ‘partitions.’ A partition is the primary unit of data 
segmentation. Records are assigned to partitions based on the 
primary key’s hash digest. Even if the distribution of keys in the key 
space is skewed, the distribution of keys in the digest space and 
therefore in the partition space is uniform.  
 

 
Figure 1: Data Partitioning 

 
The next step is to assign partitions to nodes at random. The 
partition assignment algorithm has the following objectives: 
 

1. Deterministic, so that each node in the distributed 
system can independently compute the same partition 
map, 

2. Uniform distribution of master partitions and replica 
partitions across all nodes in the cluster, and 
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3. Minimize data migrations of partitions during cluster 
changes (e.g., node arrivals and departures). 

 
The algorithm is described as pseudo code in Table 1 and is 
deterministic, achieving objective 1. The heart of the assignment is 
the NODE_HASH_COMPUTE function, which maps a node id and 
a partition id to a hash value. Note that a specific node’s position in 
the partition replication list is its sort order based on the node hash. 
We have found that running a Jenkins one-at-a-time hash [40] on 
the FNV-1a [41] hashes of the node and partition ids gives a good 
distribution and achieves objective 2 to an extent. 
 

Table 1: Partition Assignment Algorithm 
function REPLICATION_LIST ASSIGN(partitionid) 
  node_hash = empty map 
  for nodeid in node_list 
    node_hash[nodeid] = NODE_HASH_COMPUTE(nodeid, partitionid) 
  replication_list = sort_ascending(node_hash using hash) 
  return replication_list 
function NODE_HASH_COMPUTE(nodeid, partitionid) 
  nodeid_hash = fnv_1a_hash(nodeid) 
  partition_hash = fnv_1a_hash(partitionid) 
  return jenkins_one_at_a_time_hash(<nodeid_hash, partition_hash>) 

 

 
Figure 2: Partition to Node Assignment 

 
Figure 2 shows the partition assignment for a 5-node cluster with a 
replication factor of 3. Only the first three columns (equal to the 
replication factor) in the partition map are used; the last two 
columns are unused. 
 
Consider the case where a node goes down. It is easy to see from 
the partition replication list that this node would simply be removed 
from the replication list, causing a left shift for all subsequent nodes 
as shown in Figure 2(b). If this node did not host a copy of the 
partition, this partition would not require data migration. If this 
node hosted a copy of the data, a new node would take its place. 
This would, therefore, require copying the records in this partition 
to the new node. Once the original node returns and becomes part 
of the cluster again, it would simply regain its position in the 
partition replication list, as shown in Figure 2(c).  Adding a brand-
new node to the cluster would have the effect of inserting this node 
at some position in the various partition replication lists, and, 
therefore, result in the right shift of the subsequent nodes for each 
partition. Assignments to the left of the new node are unaffected. 
This discussion shows how the algorithm minimizes data 
migrations during cluster reconfiguration and achieves objective 3. 

2.1 Uniform Partition Balance 
While assigning keys to partitions automatically generates a 
uniform distribution of keys into partitions, assigning partitions to 
nodes may be skewed if we are not careful. We noticed that as 
cluster sizes increased to a hundred nodes or higher, there was 
significant skew in the partition assignment to nodes. For example, 
a 100-node cluster should have approximately of 40-41 partitions 
assigned to each node, but we routinely noticed skew in these 
assignments up to 20-30% depending on cluster size (e.g., a 100-node 
cluster could have some nodes with 45 partitions and other with just 
35). The most occupied node now hits system limits earlier and the 
entire cluster suffers from inefficient usage of its available capacity. 
 
To fix this, we came up with a modified algorithm that creates 
uniform balancing of partitions across nodes while minimizing the 
data migrations, as much as possible. The original algorithm was 
designed to incur the fewest amount of data migrations on node 
arrivals and departures. 
 
We define a threshold for the number of claims that need to be 
assigned to a node for each replica-set before the uniform-balance 
adjustments begin. For a system that does not use rack awareness, 
we set the claim threshold to be: 
 
 (n_partitions – 128) / n_active_nodes 
 
Empirically we found that since rack-aware configuration applies 
additional restrictions to the possible balance adjustments, it needed 
more buffer to ensure near-uniform balance. Therefore, for systems 
that use rack awareness the claim threshold is set to: 
 
 (n_partitions – 1024) /n_active_nodes 
 
For a hundred node cluster the threshold is 39 for a standard cluster 
or 30 for a rack-aware cluster, respectively. Therefore, balance 
adjustments will start at shortly before or after partition 3968 
(standard) or 3072 (rack-aware). 

 
Figure 3: 20-way parallelism with 4 nodes and 5 disks each 

 
The uniform balance adjustments take place when the node initially 
selected to claim a replica has reached the claim threshold. We 
choose the node that has the most unfilled claims or, in the case of 
a tie, also has fewer overall claims allocated to it. Interestingly, we 
initially assumed that we should choose the node with the most 
overall claims on a tie but, counter-intuitively, simulations 
empirically demonstrated that it was better to choose the node with 
fewer overall claims during a tie. Our rationale is that if the node 
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with fewer claims were to overflow, it would appear to be a node 
that received a remainder. 

2.2 Parallelism without Hot Spots  
The uniform data-partitioning significantly enables parallel 
processing to use system resources in a balanced and efficient 
manner. Data is uniformly distributed across homogeneous cluster 
nodes, and, within a node, data can be further distributed randomly 
into storage devices. This combination provides the opportunity for 
highly concurrent workload execution resulting in high levels of 
parallelism, as illustrated in Figure 3. Extrapolating, a 100-node 
cluster with 16 storage devices per node can drive a 1600-way 
parallel execution of a high throughput workload of individual 
record writes in the millions of transactions per second. With the 
scale up available in a hybrid memory/flash configuration, up to 
100TB can be stored per node resulting in database storage of 10 
petabytes (in a 100-node cluster) that can be processed at a very high 
rate of throughput with sub-millisecond read/write latency. 
 
Remarkably, this architecture also works well in reverse when data 
needs to be fetched from the database. Such a workload can consist 
of single record operations, batch operations (multi-get) or even a 
database query with or without a matching secondary index. The 
data partitioning and distributed layout across nodes and storage 
devices helps again as the 4K partitions lend themselves to be 
scanned in parallel.  
 

 
Figure 4: Parallel processing, Aerospike & Apache Spark 

 
Furthermore, scans can be initiated to start from predetermined 
positions within a partition (in order of hash digests). This means 
that data can be scanned in parallel in more streams than there are 
data partitions. Therefore, the database queries can be aligned with 
the parallel processing available in machine learning systems like 
Apache SparkTM [21]. For example, it is possible to deploy 32K 
parallel streams scanning data from the database into a machine 
learning system in parallel at the rate of hundreds of terabytes per 
hour (Figure 4). Similar parallel integrations are possible between 
Aerospike and Presto/Trino for SQL queries. 

3 CLUSTER SELF-MANAGEMENT 
The basic Aerospike partitioning scheme described in Section 2 is 
unique to Aerospike and is the basis for the self-management of the 
cluster. There are three components to clustering (Figure 5): 

1. the heartbeat subsystem that stores and exchanges 
information (status of neighboring nodes in adjacency 
lists) between nodes. 

2. the clustering subsystem that maintains the membership 
information (node succession list) corresponding to the 
current active cluster. 

3. the exchange subsystem that communicates the 
partition state and triggers the rebalancing algorithm.   

 

 
Figure 5: Clustering Subsystems 

 
When a node is added to the cluster to provide increased capacity 
or throughput, the arriving node must contact at least one existing 
cluster member. The system is configured to use multicast IP or a 
well-known automatically updated DNS address or a list of 
individual IP addresses to contact the other nodes in the cluster. 
When the new node locates the cluster, it begins the process of 
joining the cluster, first at the heartbeat level, and then through the 
process of being accepted by the current principal node in the 
cluster. If accepted, data partitions are allocated to the new node and 
will be “migrated” from existing nodes to the new hardware. The 
new node becomes the data master for some partitions and a replica 
for other partitions, according to the data distribution system 
outlined in Section 2. As data is migrated, the current data layout is 
broadcast to connected clients, which automatically route future 
requests to the correct node. 
 
When a node is removed from the cluster due to hardware failure 
or shut down for an upgrade, the inverse happens. The heartbeat 
system will detect absence of the node. The cluster either elects a 
new principal, or the existing principal will reorganize the cluster. 
A departing node’s partitions will be reallocated to existing nodes 
by default, maintaining replication factor reliability. For each of the 
departing node's partitions, one of its current replicas is promoted 
to be the new master if necessary, and a new replica is selected from 
among the remaining nodes. Data migration is performed to fill the 
new replica. Like node addition, clients automatically receive a new 
partition map as replicas are promoted, and as data migration 
continues, clients will become aware of new data location.  
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Figure 6: Adding a Node 

3.1  Increasing Availability During Node Arrivals 
and Departures 

There are two key optimizations to increase availability during 
cluster changes. The first is quantum-based event detection for 
cluster changes that allows multiple complex network changes to be 
merged into one event and thus handled efficiently with fewer state 
transitions. The second ensures that the total amount of partition 
related data that needs to be transferred during cluster change 
events is bounded by the fraction of the cluster nodes that impact 
the total number of partitions (4096) times the replication factor 
(typically 2 or 3), as determined by the partition rebalancing 
algorithms described in Section 2. This scheme reduces, by an order 
of magnitude, the information being exchanged in a large cluster of 
50-100 nodes. An example node addition is illustrated in Figure 6. 
 
Additionally, it is important to set longer clock quanta settings for 
detecting cluster changes for public cloud environments for 
enabling the clustering system to complete all the message transfers 
and reach a quiescent state within a few seconds after a cluster 
change. This allows the system to quickly ramp up to the full extent 
of transactional throughput after only a few seconds of slow down 
during cluster node arrival and departure events. 

3.2  Data Migration Optimizations 
The process of moving records from one node to another node is 
termed a migration. After every cluster view change, the objective 
of data migration is to have the latest version of each record 
available at the current master and replica nodes for each of the data 
partitions.  
 
Clusters will self-heal even at demanding times without operator 
intervention. Capacity planning and system monitoring capabilities 
provide you the ability to handle virtually any unforeseen failure 
with negligible loss of service. You can configure and provision your 
hardware capacity and set up replication/synchronization policies 
so that the database recovers from failures without affecting users. 
 
The data rebalancing mechanism ensures that the transaction 
volume is distributed evenly across all nodes and is robust in the 
event of node failure happening during rebalancing itself. The 
system is designed to be continuously available, so data rebalancing 
doesn't impact cluster behavior. There is only a short period when 
the cluster internal redirection mechanisms are used while clients 
discover the new cluster configuration by assembling a copy of the 
partition map by polling the server nodes. Thus, this mechanism 
optimizes for continuous transactional availability in a scalable 
shared-nothing environment.  
 
To optimize data migrations, Aerospike defines a notion of partition 
ordering using partition version numbers that change every time 
cluster node composition changes. These version numbers help 

determine whether a partition retrieved from disk needs to be 
migrated or not. The process of data migration would be a lot more 
efficient and easier if a total order could be established over 
partition versions. However, enforcing total ordering of partition 
version numbers is problematic. When version numbers diverge on 
cluster splits caused by network partitions, this would require the 
partial order to be extended to a total order (order extension 
principle). Yet, this would still not guarantee the retention of the 
latest versions of each record since the system will end up either 
choosing the entire version of the partition, or completely rejecting 
it. Moreover, the amount of information needed to create a partial 
order on version numbers would only grow with scale. Thus, 
Aerospike maintains this partition lineage up to a certain number of 
partition changes. 
 
When two versions come together, nodes negotiate the difference in 
actual records and send over the data corresponding only to the 
differences between the two partition versions. In certain cases, 
migration can be avoided completely based on the knowledge that 
the content of a partition is a subset of the same partition on another 
node. In other cases, like rolling upgrades, the delta of changes is 
small and are shipped over and reconciled instead of shipping the 
entire partition content. 

3.3  Operation during Data Migration 
If a read operation lands on a master node while migrations are in 
progress, Aerospike guarantees that the copy of the most recently 
written record value available within the cluster will be returned. 
For partial writes to a record, Aerospike guarantees that the partial 
write will happen on the copy that eventually wins. To ensure these 
semantics, operations enter a duplicate resolution phase during 
migrations. While this feature provides added data correctness, it 
adds latency to transactions during this period.  More specifically, 
the read and write latency for the first transaction on a record may 
be affected (if the record’s partition has not completed migration).  
 
Therefore, it is good to complete migrations as quickly as possible, 
but a migration should not be prioritized over normal read/write 
operations and other cluster management operations. Therefore, 
Aerospike contains several configuration options and performance 
throttles that can be applied in real-time to either speed, or delay, 
data migrations. These flow control systems reduce the impact of 
data migrations on normal application read/write workloads or can 
be used to improve cluster reorganization cycles in a lightly loaded 
cluster. 
 
Uniform distribution of data, indexes, and transaction workload 
across cluster nodes make capacity planning and scale-up and scale-
down decisions precise and simple for Aerospike clusters. Aerospike 
needs redistribution of data only on changes to cluster membership. 
This contrasts with alternate key range based partitioning schemes, 
which require redistribution of data whenever a range becomes 
“larger” than the capacity of a node. 
 
 
Note also, that the Aerospike smart client shares the partition maps 
with the server by polling cluster nodes. This enables Aerospike 
clients to adapt quickly to changing conditions within the cluster 
and is another facet of Aerospike’s ability to scale to larger data sizes 
and workloads continuously and efficiently. 
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4 MINIMIZING REPLICAS & MAXIMIZING 
AVAILABILITY 

In AP-mode configuration where availability is prioritized over 
consistency, Aerospike allows reads and writes to continue during 
split-brain situations as well as in situations where the number of 
cluster nodes unavailable is at or more than the replication factor. 
This could cause inconsistencies and lost writes as shown in writes 
happening to item A in a split-brain scenario shown in Figure 7.  

 
Figure 7: Choosing Availability over Consistency Results in 

Lost Writes 
 
It is uncommon to violate consistency in a properly running system 
except during the following two scenarios: 
 

• When the cluster splits into two or more sub-clusters that 
continue to take reads and writes, and 

• When the cluster simultaneously loses a set of nodes that 
is equal to or greater than the replication factor, causing 
some partitions to completely disappear from the 
remaining cluster. Note that the failures need to be within 
an interval shorter than what is required for partitions to 
migrate to other nodes. 

 
The required improvement for data correctness, then, is a scheme 
that disallows multiple masters for the same partition active at the 
same time. This limitation automatically limits availability in the 
cluster. For example, a simple scheme on a split-brain would be to 
avoid writes during such an event and allow only reads. This 
however is unnecessarily restrictive. 
 
Most systems for providing such strong consistency require a 
minimum of three copies to ensure proper consistency [1]. So, if a 
cluster splits as shown in Figure 7, one of the two sub parts can allow 
writes if it has a majority (two out of three) copies of the data item. 
Aerospike optimizes this further by regularly storing only two 
copies but using an adaptive scheme that adds more write copies on 
the fly in situations where they are necessary, thus optimizing the 
performance in the normal case while incurring a small amount of 
overhead in edge cases that rarely occur. Note that a two-copy 
system still needs a minimum of three nodes to preserve availability. 
 
Our scheme allows us to effectively have the theoretically correct 
result of a three-copy distributed system [1], while paying for only 

two copies of the data. This in turn reduces network traffic resulting 
from handling additional copies as well as CPU and storage costs. 
In clusters handling petabytes of data, this could make a huge 
difference in terms of hardware and operational costs. 
 
As we shall demonstrate in the rest of this Section, achieving higher 
availability using such an optimized replication scheme requires a 
sophisticated algorithm for maintaining strong consistency. 

4.1  Roster 
With strong consistency configured, Aerospike defines a roster for 
strong consistency within a cluster. This roster is the set of nodes 
which are intended to be present at steady state. 
 
When all the roster nodes are present, and all the partitions are in 
their correct computed location, the cluster is in its steady state and 
provides optimal performance. As we described in the partition 
algorithm earlier, the master and replica partitions are assigned to 
nodes in a cluster using a random assignment of partitions to nodes. 
In the case of strong consistency, these partitions are referred to as 
roster-master and roster-replica. To simplify the discussion, we will 
restrict ourselves to a system with replication factor set to 2. Every 
partition in the system will have one master and one replica. First, 
some terminology: 
 

roster-replica – For a specific partition, the roster-replica 
refers to the nodes that would house the replicas of this 
partition if all nodes in the roster were part of the single 
cluster, i.e., the cluster was whole. 
 
roster-master – For a specific partition, the roster-master 
refers to the node that would house the master of this 
partition if all nodes in the roster were part of the single 
cluster, i.e., the cluster was whole. 

 
The following rules are now applied to the visibility of partitions: 
 

1. If a sub cluster (e.g., split-brain) has both the roster-
master and all the roster-replicas for a partition, then the 
partition is active for both reads and writes in that sub 
cluster 

2. If a sub cluster contains a majority of roster nodes and has 
either the roster-master or a roster-replica for the 
partition within its component nodes, the partition is 
active for both reads and writes in that sub cluster. If the 
roster-master is not present, a roster-replica will be 
promoted, and other nodes will become “effective 
replicas” 

3. If a sub cluster has exactly half of the nodes in the roster 
and it has the roster-master within its component nodes, 
the partition is active for both reads and writes. There are 
some further refinements of these rules later in Section 
4.2. 

 
The above rules also imply the following: 

 
100% availability on rolling upgrade: If a sub cluster has 
fewer than replication factor number of nodes missing, 
then it is termed a super-majority sub-cluster and all 
partitions are active for reads/writes within the cluster 
 

3681



  
 

 
 

100% availability on two-way split-brain: If the system 
splits into exactly two sub clusters, then all partitions are 
active for reads and writes in one or the other sub cluster 
(we will later show how to use this in a creative way for 
a rack-aware based HA architecture) 

 
Consider as an example, partition p in a 5-node cluster where node 
4 is the roster-replica for p and node 5 is the roster master for p. 
You can see below in Figure 8, Figure 9 and Figure 10, examples of 
when a partition is available or not available in various network 
partitioning situations. Note that Figure 11 represents the state of 
the cluster that further split from the state depicted in Figure 10. 
So, the state of partition p in Nodes 3, 4 and 5 reflect this 
transition. 
 

 
Figure 8: The cluster is whole, p is active 

 

 
Figure 9: A minority sub-cluster with both roster-master and 
roster-replica, cluster is split, p is active 
 

 
Figure 10: The roster-replica is in majority sub-cluster, 
promoted to master, alt replica created in node 3, cluster is split, 
p is active 
 

 
Figure 11: The roster-master and roster-replica are in minority 
clusters, cluster is split, p is inactive 

4.2  Full partitions versus subsets 
As you can see above, in steady state, partitions are considered full 
if they have all the relevant data. In some cases, for example in 
Figure 10 above where an alternate replica of the partition p was 
created in Node 3, the partition on node 3 is only a subset until all 
of the data in the partition copy on Node 4 is synchronized with 
Node 3. Note that Node 4 has a full copy of partition p since it split 
off from a fully available cluster. Certain rules must be followed for 
maintaining consistency. We will illustrate these using the 
following scenario. 
 
In a cluster with five nodes A, B, C, D, E, let us consider partition q 
that has Node A as roster-master and Node B as roster-replica. Let 
us consider a rolling upgrade (Figure 12) where one node is taken 
down at a time.  
 

• Initially Nodes A and B start out as full partitions for q.  
• When Node A is taken down, Node B which is roster-

replica promotes to alternate master for q and Node C 
becomes alternate replica for q. Node C’s copy of partition 
q is now a subset.  

• Soon enough, Node A rejoins the cluster (as subset) after 
the successful software upgrade and the node B now goes 
down for its turn to be upgraded. At this point, there has 

not been enough time for the roster-master A to complete 
synchronization of all its data with B (that was Full).   

• So, we are left with Node A as roster-master that is a 
subset for partition q and node C that is another subset 
for q. At this point, because this is a super-majority 
cluster, we are guaranteed that among all the nodes in the 
cluster, all updates to the partition are available. 

 
Therefore, we can state the following: 
 
1. Every update must be written to at least two nodes 

(replication factor 2) and at most one node has been down 
at any one time. So, all changes must still be in one of 
these nodes.  

2. However, what this means is that for all reads to records 
that go to A (roster-master) every request has to resolve 
itself on a record-by-record basis with the partition subset 
stored in node C. This will temporarily create extra 
overhead for reads.  

3. Write overhead is never increased as Aerospike writes to 
both copies all the time. 

 

 
Figure 12: Subset and full partitions during rolling upgrade 

 
Based on the above, the earlier rules are qualified further as follows: 
 

1. If a sub cluster (e.g., split-brain) has both the roster-
master and all roster-replicas for a partition, and a full 
partition exists within the sub cluster, then the partition 
is active for both reads and writes in that sub cluster. 

2. If a sub cluster has a majority of nodes and has either the 
roster-master or any roster-replica for the partition within 
the component nodes and it has a full partition, then the 
partition is available. 

3. If a sub cluster has exactly half of the nodes in the full 
roster and it has the roster-master within its component 
nodes, and it has a full copy of the partition, then the 
partition is active for both reads and writes. 

4. If the sub cluster has a super majority (i.e., fewer nodes 
than replication factor are missing from the sub-cluster), 
then a combination of subset partitions are sufficient to 
make the partition active.  

 
Note there are some special kinds of nodes that are excluded while 
counting the majority and super-majority conditions.  
 

• A previously departed node rejoins the cluster with 
missing data (e.g., one or more empty drives). 

• A node that was not cleanly shutdown is enabled. 
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Such nodes will have a special flag called “evade flag” set until they 
are properly inducted into the cluster with all the data. 
 
While we discussed the above using replication factor 2, the 
algorithm extends to higher replication factors. All writes are 
written to every replica, so the write overhead will increase as 
replication factors increase beyond 2. 
 
From the discussion here, our scheme provides equivalent level of 
availability with 2 copies as a traditional quorum-based system 
using 3 copies. The reduction continues to grow as the replication 
factor increases - where other systems store N replicas, Aerospike 
only need to store (N / 2) + 1 to achieve a similar availability level 
during common network failures. 

4.3  Transactional consistency 

4.3.1 Never Lose Writes 
The write logic is shown in Figure 13. All writes are committed to 
every replica before the system returns success to the client. In case 
a write to one of the replicas fails, the master will ensure that the 
write is completed to the appropriate number of replicas within the 
cluster (or sub cluster in case the system has been compromised.)   
 

 
Figure 13: Write Logic 

4.3.2 Strong Consistency for Reads 
 In the strong consistency configuration, reads are always sent to 
the master partition. Note that the main invariant that the client 
software depends on is that the server maintains the single master 
paradigm.  However, Aerospike being a distributed system, it is 
possible to have a single point in time when multiple nodes think 
they are master for a partition. Consider for example the case where 
node A of a cluster is separated from the other three nodes B, C, and 
D. B automatically takes over for partition q and C becomes a new 
replica (being the next in the row for partition q in the partition 
mapping table), however, there may be a period where A is active 
but about to detect its separation and halt processing.  
 
It is important to differentiate the versions of the partitions where 
the writes are being done, to properly detect an incomplete, in-
process transaction from a fully committed transaction. Note that 
the only successful writes are those written to all the replicas. Other 
writes need to be detected as indeterminate or in-doubt, and the 
system must then resolve these subsequently by replacing them 
with successful writes. Also, it is only possible for exactly one sub 
cluster to take over as master for a partition based on rules 
mentioned earlier.  Even in this case, it is not possible to separate 
out the writes that happen in a master overhang period by using just 
machine level timestamps – which are naturally skewed from each 
other. So, Aerospike has implemented a Hybrid Logical Clock [14], 

which includes a hybrid of three clocks. Notably, it is critical to add 
the concept of regime for each partition. This regime, a Lamport 
clock [15], is incremented every time a master handoff from node 
to node for a partition happens. Only the old master uses the earlier 
regime and all writes to the new master will use the next regime. 
Therefore, writes applied at a master node that has not yet processed 
the cluster change but unable to replicate the write to its replica(s) 
can result in one of two outcomes when the cluster comes back 
together: 
 

1. The value written can either be discarded because the 
record was written in the sub-cluster excluding this node 
during the partitioning event. 

2. The write can be rolled forward as the eventual record 
value in case no further write has happened in the sub 
cluster before the full cluster forms again. 

 
Aerospike uses the following fields for isolating record updates: 
 

• 40 bits of record last update time (LUT) 
• 6 bits of partition regime 
• 10 bits of record generation 

 
The 6 bits of regime provides about 27 seconds of buffer based on 
1.5 seconds for the heartbeat timeout window and accounts for 
around 32 cluster changes happening in the period. The combination 
of regime and LUT and record generation provides an accurate path 
to determine which of the records in the system hold the right value 
for reading and writing. 

4.3.3 Linearizable operations  
Based on the above, to linearize reads at the server, every read to 
the master partition needs to verify that the partition regimes are in 
sync for the partition in which the key is located.  If the regimes 
agree, then the read is guaranteed to be current. If the regimes do 
not agree this means that a cluster change may be in process, and it 
is important to retry the read from the client. Thus, for every write, 
all copies of the partition being written need to also have the same 
regime. 

4.3.4 Session/Sequential Consistency 
If the occasional stale read between database clients is acceptable, 
radically higher performance may be achieved. In session 
consistency, the read from the master is all that is needed on the 
server-side, but the client needs to store a regime counter as part of 
its partition table based on the latest regime value it has encountered 
for a partition on its read. This ensures that the client rejects any 
reads from servers of an older regime than the one it has already 
read. This could happen due to an especially large master overhang 
caused by slow system behavior or suspension/slowdown of virtual 
machines in cloud environments, etc. This mode still maintains 
strong consistency, but by reading only from the master, an extra 
network round trip between master and replica servers is avoided. 
 
The strong consistency scheme above guarantees the strongest 
possible consistency for single-record transactions while allowing 
100% consistency and availability during rolling upgrades where 
fewer than replication factor number of nodes are taken down 
(Figure 12). This is particularly useful since most systems need to 
undergo routine maintenance for security fixes and the like. To be 
able to do that without any compromise to availability and 
consistency is extremely valuable. 

3683



  
 

 
 

 

 
Figure 14: Rack awareness for high availability 

4.4  Rack awareness for high availability 
Aerospike supports a rack-aware scheme in which the various 
copies of a specific partition are always allocated to different racks. 
This can be used to setup systems to survive site failures without 
operator intervention (See Figure 14). In many production 
environments (especially in financial services where low latency 
and high availability are both paramount), a common installation is 
to have two data centers within 10 miles of each other. This enables 
a transaction to be committed across both data centers within a few 
milliseconds while still providing high fault tolerance due to the 
different physical location of the two data centers. Using the 
Aerospike strong consistency scheme, it is possible to setup systems 
where the outage or disconnection of an entire site will result in zero 
loss of data and the system can continue from there. One of these 
configurations is illustrated in Figure 15. 

5 GEO-DISTRIBUTED TRANSACTIONS 
Geo-distribution can be done using synchronous or asynchronous 
replication.  We will describe both cases below briefly. 

5.1 Synchronous active-active replication 
Aerospike supports multi-site clustering where a single cluster spans 
multiple geographies, as shown in Figure 15.  This allows users to 
deploy shared databases across distant sites and cloud regions with 
no risk of data loss.  Automated failovers, high resiliency, and 
strong performance are the foundation of Aerospike’s 
implementation. Two features underpin Aerospike multi-site 
clustering: rack awareness and strong consistency both of which 
were described in detail in Section 4. 
 
Rack awareness allows replicas of data partitions to be stored on 
different hardware failure groups (different racks). Through 
replication factor settings, administrators can configure each rack to 
store a full copy of all data, maximizing data availability and local 
read performance. As we saw already in Sections 2 and 3, Aerospike 
evenly distributes data among all nodes within each rack.  
 
Only one node maintains a master copy of a given data partition at 
any time. Other nodes (located on other racks) store replicas, which 
Aerospike automatically synchronizes with the master. As noted in 

Section 4, the roster combined with the partition map tracks the 
locations of masters and replicas; it also understands the racks and 
nodes of a healthy cluster.   
 
In the configuration illustrated in Figure 15, each data center has 
one rack with three nodes, and each node has a copy of the 
roster.  Given a replication factor of three, this example shows the 
roster-master copy of a data partition on Node 9 (Rack 2); replicas 
exist on Node 1 (Rack 1) and Node 4 (Rack 3). 
 

 
Figure 15: A multi-site cluster that spans large distances 

 
Aerospike clients can be configured to route an application’s request 
to read a data record to the appropriate rack/node in its local data 
center. In this deployment configuration (Figure 15), a full copy of 
the database exists in each site (rack). Therefore, by intelligently 
processing read requests, Aerospike can deliver sub-millisecond 
read latencies in this cluster during normal operation. 
 
Writes are processed differently. For consistency across the cluster, 
Aerospike routes each write to the rack/node with the current 
master of the data. The master node ensures that the write is applied 
to its copy and all replicas before committing the operation. Routing 
writes and synchronizing replicas introduces overhead, so writes 
aren’t as fast as reads. In the cross-continent configuration, we have 
observed latencies averaging between 100 to 200 milliseconds. 
 
An Aerospike multi-site cluster follows the same rules for enforcing 
strong data consistency as a single-site cluster (described in Section 
4), automatically taking corrective actions for most common 
scenarios. For example, if the roster-master becomes unavailable 
due to a node or network failure, Aerospike designates a new master 
from the available replicas and creates new replicas as needed to 
satisfy the replication factor. In a multi-site cluster, the new master 
will typically be on another rack.  
 
Consider a scenario in which one site becomes unavailable, perhaps 
due to a network or power failure. Let’s say that the USA East site 
(Rack 2) is unreachable by the rest of the cluster.  Aerospike will 
automatically form a new sub-cluster consisting of USA West (Rack 
1) and USA Central (Rack 3) to continue to service reads and writes 
without any operator intervention. In this degraded system, by 
applying the consistency rules described in Section 4 all data will be 
made available with complete consistency in Racks 1 and 3, while 
no transactions (reads or writes) will be allowed in Rack 2. Note that 
when Rack 2 rejoins the cluster, the partitioning schemes, clustering 
algorithms and strong consistency rules will ensure that the 
rejoining will be done smoothly with no operator intervention and 
eventually the cluster will return to steady state after accurately and 
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safely merging in the changes that happened during the split-brain 
situation.   
 
Note that there are split-brain situations where the system will just 
become either wholly or partially unavailable to preserve 
consistency (e.g., the case where all three sites in Figure 15 lose 
contact with each other simultaneously). 

5.2 Asynchronous active-active replication 
Cross-data replication (XDR) transparently and asynchronously 
replicates data between Aerospike clusters.  Firms often use XDR to 
replicate data from Aerospike-based edge systems to a centralized 
Aerospike system. XDR also enables firms to support continuous 
operations during a crisis (such as a natural disaster) that takes 
down an entire cluster.  
 

 
Figure 16: Asynchronous replication using XDR 

 
It is notable that the asynchronous replication scheme in Aerospike 
no longer uses a log-based strategy [16] as there were severe 
problems with keeping track of all the data items to be shipped to 
various destinations. For example, slow-to-reach destinations were 
causing delays in shipping to other destinations and shipping 
proceeded at the rate of the slowest destination. Given the high rate 
of write throughput handled, keeping separate copy of change data 
logs for every destination is not a solution that scales well. 
 
The shipping algorithm in Aerospike is now based on a combination 
of last update time (LUT) and last ship time (LST). Aerospike keeps 
track of a record's digest and Last Update Time (LUT) based on write 
transactions in its index (typically memory resident). Additionally, 
Aerospike tracks a record's partition's LST. Any record in a partition 
whose LUT is greater than the partition's LST is a candidate for 
shipping. The LST is persisted by partition. If the LUT of a record is 
more recent than the LST of the record’s partition, the record will 
be shipped to remote clusters through the corresponding links that 
are active. Once shipping has completed the partition’s LST is 
updated.  
 
Aerospike supports the ability to ship sub-parts of changed records 
–  a bin (or column) –  and implements a convergence feature which 
can resolve write conflicts in active-active topologies. This feature 
makes sure that the data is eventually the same in all the connected 
sites at the end of replication even if there are simultaneous updates 
to the same record in multiple sites. To achieve this, extra 
information about each bin's LUT is stored and used appropriately.  
 

 
Figure 17: Hybrid Memory Architecture (DRAM and PMEM) 

 
A typical setup of a globally distributed deployment with 
asynchronous replication is illustrated in Figure 16. As you can see 
there can be many globally distributed sites communicating to each 
other in complex topologies, supporting both active-active and 
active-passive deployments. The absence of a manifested digest log 
and the ability to ship sub-parts means that the asynchronous 
replication in Aerospike can be used in complex deployment 
topologies without concern about varying shipping speeds across 
multiple destinations with different network characteristics. 

6 STORAGE OPTIMIZATIONS 

6.1 Hybrid Memory Architecture with DRAM 
A key component of the storage model in Aerospike is based on a 
Hybrid Memory Architecture (HMA) where data resides in flash 
storage (SSD), and indexes reside entirely in DRAM (or PMEM).  In 
this hybrid DRAM/Flash configuration (Figure 17), no disk I/O is 
required to traverse the primary index, followed by a single lookup 
of the data record from flash storage. Such a design can keep read 
latency low at high throughput because the characteristic of I/O in 
NAND Flash has little penalty for random access reads. 
 
Any database access must traverse the index tree, acquire metadata 
such as versions or sequence numbers as illustrated in Figure 17. A 
data element in a local cache can be returned without I/O access, or 
a single I/O will be executed to bring the entire element into local 
memory. Writes need to be propagated to replicas within the 
database cluster. Replica writes can be synchronous or 
asynchronous, depending on the level of durability required. 
 
Note that the fundamental parallelism in HMA for random-access 
reads eliminates the need for caching that is used in traditional 
buffer-pool based systems (see Figure 18). The read latency is 
essentially dependent on the access time to SSD and we can 
consistently achieve a few hundred microseconds on high quality 
NVMe drives. For addressing wear leveling issues in SSDs Aerospike 
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implements a log structured mechanism using large block writes 
with defragmentation to reclaim storage (Figure 19). 
 

 
Figure 18: HMA versus traditional buffer-pool based DB access 
 
The techniques used here are able to support extremely high 
application write rates while maintaining DRAM-class read 
response times with data correctness. However, this comes with a 
cost, namely rebuilding DRAM indexes is expensive (takes as much 
time as scanning all the data in storage) and committing every 
transaction to storage device is also unacceptably expensive. By 
combining large block writes, parallelized access to multiple SSDs, 
a native storage file system with direct device access that bypasses 
the operating system’s file system, this architecture can deliver high 
throughput reads and writes with low latency as seen in Section 8. 
 

 
Figure 19: Aerospike write architecture to SSD 

Avoiding index rebuild on large nodes 
To avoid rebuilding the primary index on every process restart, the 
index can be stored in a shared memory space disjoint from the 
service process’s memory space. In case maintenance only requires 
a restart of the database service, the index need not be reloaded. The 
database daemon simply attaches to the current copy of the index 
in shared memory and is ready to handle transactions. This form of 
service starts re-using an existing index is termed ‘fast start’; it 
eliminates scanning the device to rebuild the index. However, a cold 
start of the node will still need to rebuild the index from scratch but 
a tool can be used to dump the index on disk before process 
shutdown (after quiescing) so it can be populated on restart. 

6.2 Hybrid Memory Architecture with PMem 
One technology that helps mitigate both the slow restart and 
commit to device problems is Intel® Optane™ DC persistent 
memory [19], based on Intel® 3D XPoint™, a new class of storage 
technology architected specifically for data-intensive applications. 
Note that this technology is being phased out, but new alternatives 
are expected to emerge over the next few years. 
 
The tiered architecture, using this technology’s AppDirect mode, 
allows multiple deployment environments to use this as the primary 

key index layer, where its high performance and parallelism work 
best. By using a persistence layer for indexes, full restarts of 
Aerospike are possible without primary index rebuilds. In tests 
performed by Intel (shown in Figure 20), we notice that performance 
is nearly identical between PMem indexes (using the native PMem 
implementation) and DRAM indexes. Both achieved a million 
transactions per second per server.      

 
Figure 20: Throughput comparison DRAM versus PMem 

7 CPU AND NETWORK PERFORMANCE 
CPU and network performance can help to handle high ingestion 
rates using tech like Intel® Ethernet 800 Series with Application 
Device Queues (ADQ) [12]. 

 
Figure 21: Device queue & CPU core alignment 

 
NICs are meant to separate related network packets into separate 
device queues to make processing more efficient by keeping high-
priority traffic from getting stuck behind slow requests. ADQ sets 
the bar higher by letting applications define tailored rules (Traffic 
Classes) for sorting packets into device queues. The 800 Series NIC 
directly sorts packets using these rules, completely offloading the 
host processor. 
 
The workload involves many clients sending database requests to 
the database server. These are dispatched in parallel to many service 
threads. All requests are treated equally, so the ADQ strategy is to 
spread network traffic equally to all the CPU cores in the system. 
One device queue has been defined for each CPU core in the system 
and each queue is configured to generate service interrupts on a 
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particular CPU. The Traffic Classes also route all requests from a 
given client to the same device queue, as shown in Figure 21. 
Aligning device queues and CPU cores reduces context-switching 
overhead. Better still, it keeps data in local processor caches. 
Together these factors contribute to lower latency, more predictable 
response times and higher throughput. Busy polling was also 
employed to increase performance to reduce interrupts by servicing 
all packets that have accumulated. A polling interval of 50 
milliseconds was found to give optimal results because every 
millisecond matters. 
 

 
Figure 22: ADQ Throughput 

 
ADQ performance was measured in a test environment comprising 
one dual-socket, dual-NIC server and six clients, all connected to a 
100G switch. Performance data were gathered by running 18 
instances of the Aerospike C language benchmark client (3 per client 
node) against the server. The configuration used is as follows: 
 
IntelR XeonR Xeon Platinum 8280 Server (2.7GHz, 28 cores) 
768 GB total DRAM 
2 IntelR Ethernet 800 Series 100G NIC cards 
2 Aerospike 4.7 servers (NUMA configuration with CPU/ADQ pinning) 
6 IntelR XeonR E5-2699 v4 clients (2.2 GHz, 22 cores) 
125 GB total DRAM 
Single IntelR Ethernet 700 Series 40G NIC card 
3 instances of Aerospike C benchmark (async mode) per client 
 

Relative performance was measured by comparing ADQ NUMA 
pinning with the baseline case of CPU pinning. When enabling 
ADQ the performance was recorded at 15.3M transactions/sec (>75% 
improvement), as shown in Figure 22. Regarding latency, 99% of the 
requests were below 320 µsecs (>45% improvement in response time 
predictability. 

8 CLOUD PERFORMANCE RESULTS 
The techniques presented here have been extensively validated in 
scores of deployments at scale across multiple industries over the 
past decade. To illustrate the benefits, we will briefly share the 
results of a petabyte cloud benchmark that was run on a 20-node 
AWS [38] cluster with Aerospike. Each EC2 i3en.24xlarge node 
featured 768 GB of DRAM and 8 x 7500 NVMe SSDs.  For clients, 
the benchmark employed 40 AWS EC2 c5n.9xlarge nodes with 96 
GB DRAM each and EBS-only storage; operations were executed 
using Aerospike’s C client. 
 
The Aerospike server was configured with compression that yielded 
a 4 times reduction in size for the user profile database, causing it to 
store 500 TB of compressed user data (250 TB of unique user data 

and 250 TB of replicated data) with ½ trillion unique keys with 
replication factor 2. 
 

 
Figure 23: Petabyte cloud benchmark configuration 

 
 

Table 2: Benchmark results 
Test # Data Workload TPS Latency 

< 1ms 

1 
User Profile 
(1PB unique, 

uncompressed) 

Read only 5,009,980 
reads 

100% 

2 

80/20 
read/write 

3,017,340 
reads 

754,160 
writes 

100% 
 

99% 

 
Per the results of Test 1 in Table 2, Aerospike processed more than 
5 million read-only TPS with sub-millisecond latencies for user 
profile applications.  Test 2 featured an 80/20 mix of read/write mix 
operations run against the user profile database of ½ trillion unique 
records.  Under those conditions, Aerospike delivered more than 3.7 
million TPS for user profile applications, nearly all with sub-
millisecond latencies. 

9 CONCLUSION 
As validated by the above results, the techniques we have developed 
generate enormous efficiencies of scale (e.g., delivering millions of 
TPS on a 20-node 1PB, trillion object, cluster on public cloud). These 
efficiencies go a long way in keeping the cost per transaction low 
enough that handling of tens of billions of transactions per day has 
become routine in Aerospike use cases like real-time bidding, fraud 
detection for financial transactions, real-time instant payments, e-
commerce, gaming, and others.  
 
In terms of the future, we are working to enhance our system with 
multi-record transaction capabilities and improve integration with 
the parallel processing capabilities of Apache Spark as well as 
federated SQL queries of Presto/Trino. By doing so, we aim to use 
the techniques and efficiencies described here for both high 
throughput transactions and analysis of extremely large datasets 
within real-time SLAs while maintaining low total cost of 
ownership, thus ensuring that such capabilities are available to 
every small, medium, and large enterprise in the world. 
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