

Techniques and Efficiencies from Building a Real-Time DBMS

V. Srinivasan
 Aerospike

Mountain View, U.S.A.
 srini@aerospike.com

Thomas Lopatic
 Aerospike

Berlin, Germany
 thomas@aerospike.com

Andrew Gooding
Aerospike

Mountain View, U.S.A.
 andy@aerospike.com

Kevin Porter
Aerospike

Mountain View, U.S.A.
kporter@aerospike.com

Sunil Sayyaparaju
 Aerospike

Bengaluru, India
 sunil@aerospike.com

Ashish Shinde
Aerospike

Bengaluru, India
ashish@aerospike.com

B. Narendran
 Aerospike

Berkeley Heights, U.S.A.
 bnarendran@aerospike.com

ABSTRACT
This paper describes a variety of techniques from over a decade of
developing Aerospike (formerly Citrusleaf), a real-time DBMS that
is being used in some of the world’s largest mission-critical systems
that require the highest levels of performance and availability. Such
mission-critical systems have many requirements including the
ability to make decisions within a strict real-time SLA (milliseconds)
with no downtime, predictable performance so that the first and
billionth customer gets the same experience, ability to scale up 10X
(or even 100X) with no downtime, support strong consistency for
applications that need it, synchronous and asynchronous replication
with global transactional capabilities, and the ability to deploy in
any public and private cloud environments.

We describe how using efficient algorithms to optimize every area
of the DBMS helps the system achieve these stringent requirements.
Specifically, we describe, effective ways to shard, place and locate
data across a set of nodes, efficient identification of cluster
membership and cluster changes, efficiencies generated by using a
‘smart’ client, how to effectively use replications with two copies
replication instead of three-copy, how to reduce the cost of the real-
time data footprint by combining the use of memory with flash
storage, self-managing clusters for ease of operation including
elastic scaling, networking and CPU optimizations including
NUMA pinning with multi-threading. The techniques and
efficiencies described here have enabled hundreds of deployments
to grow by many orders of magnitude with near complete uptime.

PVLDB Reference Format:

V.Srinivasan, Andrew Gooding, Sunil Sayyaparaju, Thomas Lopatic, Kevin
Porter, Ashish Shinde, and B. Narendran. Techniques and Efficiencies from
Building a Real-Time DBMS. PVLDB, 16(12): 3676-3688, 2023.
doi: 10.14778/3611540.3611556

1 INTRODUCTION
Real-time services requiring extremely high performance and
availability have used a variety of solutions over time, including
mainframes, clustered relational databases, in-memory databases,
and most recently, NoSQL [2] and New SQL databases like
CockroachDB [17] and YugabyteDB [18]. Real-time applications
create enormous strain on these systems, as follows:

• Overwhelming consumer demand from mobile devices
that produces enormous real-time load on their systems,
with the DBMS quickly becoming the bottleneck.

• Requirement for a richer set of application features
combined with a great real-time consumer experience.

• Virtually 100% online user interactions from multiple
remote endpoints making real-time security, risk
computation and fraud detection mandatory.

• Round-the-clock availability making any breach of a
service-level agreement (SLA) via increased latencies,
downtime, and maintenance windows, unacceptable.

Here are some real-world use cases that illustrate the point.

1.1 Use Cases
Let us consider high traffic use cases in three areas, an operational
database at the edge of the datacenter, a real-time system of record
(SOR) and a global transaction system for high throughput
applications. All of these areas require high performance, high
availability and various levels of data consistency.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi: 10.14778/3611540.3611556

3676

https://creativecommons.org/licenses/by-nc-nd/4.0/

1.1.1 Operational system at the edge
Typically, in these use cases, models generated in an off-line process
are applied to transactional meta data in real-time for applications
like fraud detection, recommendation engines, real-time bidding for
advertising, etc. As seen in this example of fraud detection for
payment systems at PayPal [3], the machine learning and AI
algorithms require gathering, maintaining, and accessing in real-
time a vast amount of historical data related to entities in the
payment network like users, devices, network switches, Wi-Fi
routers, etc. When a new transaction arrives, it is necessary to use
the transaction meta-data and analyze it combined with recent
history of the activities attributed to the actors in this transaction.
Therefore, a database that can retrieve and save more data for
analysis can improve its effectiveness by minimizing false positives
and false negatives while still meeting the stringent real-time SLA
of ~100-200ms for generating a fraud score. Consistency is
important as the algorithms are only effective if recent behavioral
data is input to the AI model for scoring. So, providing consistent
access to recently written transaction histories is imperative for
preventing fraud before it happens rather than detecting it after the
fact.

1.1.2 Real-time system of record
One of the best examples of this was highlighted by Airtel [11] in
India, one of the largest mobile operators in the world. Airtel re-
invented their customer engagement model with “Customer 360,” a
methodology that understands each customer intelligently and
contextually and powers a completely personalized customer
experience. Using a high-performance database as the real-time data
backbone behind this “digital brain,” Airtel could mine trillions of
records to create deep learning capabilities at a more than 25,000
transactions per second run-rate with sub-millisecond latency.
Access to the latest data is critical here since having outdated data
would result in poor customer experience for hundreds of millions
of users.

1.1.3 Global distributed transaction system
Let’s look at interbank money transfers. The basics of money
transfer - simply moving money and tracking those transactions at
massive scale - haven’t changed. But the benefits of optimizing -
digitally transforming - a core, existing practice are massive at scale.
An overnight wire transfer (the old standard) is costly, time-
consuming, and very inefficient with various points of human and
machine intervention. Today this must happen in seconds without
any manual intervention. A good example of this is the Banca
d’Italia launch of TIPS (Target Instant Payment Settlement) [5],
which “guarantees settlement within seconds and is unique in doing
this directly in central bank money.” These systems have a dual
requirement of being global (active-active across multiple data
centers) with the ability to continue without losing a single write in
the case of an entire data center failure. Consistency requirements
are most stringent here and not a single record can be lost in any
case whatsoever. At the same time extremely high availability and
excellent real-time performance (very high throughput at low
latency) are absolutely necessary to have a successful system.

The challenges of building database systems to handle the above are
manifold. First, extremely high performance and complete system
availability are required. Tunable consistency is important: the first
case above can benefit from a high level of consistency, the second
will suffer if consistency falls below a relatively high threshold and
the third needs strong consistency all the time. Note that the
performance and ability to scale to hundreds of millions to billions
of users is critical for the success of all three applications. The user
experiences provided to the first user and the billionth user need to
be identical.

As these systems encounter the problem of explosive growth,
efficiencies of how the DBMS uses the resources available to it are
critical for its ability to support such mission-critical deployments
at higher and higher scale. The rest of this paper will describe the
techniques we have developed for running an efficient DBMS for
real-time applications. We will divide the discussion into the
following areas: data partitioning (Section 2), cluster self-
management (Section 3), minimizing replicas and maximizing
availability (Section 4), geo-distributed transactions (Section 5),
storage optimizations (Section 6), and CPU and network
performance (Section 7). We conclude by summarizing our results
in Section 8.

2 DATA PARTITIONING
A key aspect to parallel execution in Aerospike [7], formerly
Citrusleaf [42], is the ability to divide and conquer the problem
using a data partitioning scheme that distributes data across nodes
as shown in Figure 1. A record’s primary key is hashed into a 160-
bit digest using the RIPEMD algorithm, which is extremely robust
against collisions [8]. The digest space is partitioned into 4096 non-
overlapping ‘partitions.’ A partition is the primary unit of data
segmentation. Records are assigned to partitions based on the
primary key’s hash digest. Even if the distribution of keys in the key
space is skewed, the distribution of keys in the digest space and
therefore in the partition space is uniform.

Figure 1: Data Partitioning

The next step is to assign partitions to nodes at random. The
partition assignment algorithm has the following objectives:

1. Deterministic, so that each node in the distributed
system can independently compute the same partition
map,

2. Uniform distribution of master partitions and replica
partitions across all nodes in the cluster, and

3677

3. Minimize data migrations of partitions during cluster
changes (e.g., node arrivals and departures).

The algorithm is described as pseudo code in Table 1 and is
deterministic, achieving objective 1. The heart of the assignment is
the NODE_HASH_COMPUTE function, which maps a node id and
a partition id to a hash value. Note that a specific node’s position in
the partition replication list is its sort order based on the node hash.
We have found that running a Jenkins one-at-a-time hash [40] on
the FNV-1a [41] hashes of the node and partition ids gives a good
distribution and achieves objective 2 to an extent.

Table 1: Partition Assignment Algorithm
function REPLICATION_LIST ASSIGN(partitionid)
 node_hash = empty map
 for nodeid in node_list
 node_hash[nodeid] = NODE_HASH_COMPUTE(nodeid, partitionid)
 replication_list = sort_ascending(node_hash using hash)
 return replication_list
function NODE_HASH_COMPUTE(nodeid, partitionid)
 nodeid_hash = fnv_1a_hash(nodeid)
 partition_hash = fnv_1a_hash(partitionid)
 return jenkins_one_at_a_time_hash(<nodeid_hash, partition_hash>)

Figure 2: Partition to Node Assignment

Figure 2 shows the partition assignment for a 5-node cluster with a
replication factor of 3. Only the first three columns (equal to the
replication factor) in the partition map are used; the last two
columns are unused.

Consider the case where a node goes down. It is easy to see from
the partition replication list that this node would simply be removed
from the replication list, causing a left shift for all subsequent nodes
as shown in Figure 2(b). If this node did not host a copy of the
partition, this partition would not require data migration. If this
node hosted a copy of the data, a new node would take its place.
This would, therefore, require copying the records in this partition
to the new node. Once the original node returns and becomes part
of the cluster again, it would simply regain its position in the
partition replication list, as shown in Figure 2(c). Adding a brand-
new node to the cluster would have the effect of inserting this node
at some position in the various partition replication lists, and,
therefore, result in the right shift of the subsequent nodes for each
partition. Assignments to the left of the new node are unaffected.
This discussion shows how the algorithm minimizes data
migrations during cluster reconfiguration and achieves objective 3.

2.1 Uniform Partition Balance
While assigning keys to partitions automatically generates a
uniform distribution of keys into partitions, assigning partitions to
nodes may be skewed if we are not careful. We noticed that as
cluster sizes increased to a hundred nodes or higher, there was
significant skew in the partition assignment to nodes. For example,
a 100-node cluster should have approximately of 40-41 partitions
assigned to each node, but we routinely noticed skew in these
assignments up to 20-30% depending on cluster size (e.g., a 100-node
cluster could have some nodes with 45 partitions and other with just
35). The most occupied node now hits system limits earlier and the
entire cluster suffers from inefficient usage of its available capacity.

To fix this, we came up with a modified algorithm that creates
uniform balancing of partitions across nodes while minimizing the
data migrations, as much as possible. The original algorithm was
designed to incur the fewest amount of data migrations on node
arrivals and departures.

We define a threshold for the number of claims that need to be
assigned to a node for each replica-set before the uniform-balance
adjustments begin. For a system that does not use rack awareness,
we set the claim threshold to be:

 (n_partitions – 128) / n_active_nodes

Empirically we found that since rack-aware configuration applies
additional restrictions to the possible balance adjustments, it needed
more buffer to ensure near-uniform balance. Therefore, for systems
that use rack awareness the claim threshold is set to:

 (n_partitions – 1024) /n_active_nodes

For a hundred node cluster the threshold is 39 for a standard cluster
or 30 for a rack-aware cluster, respectively. Therefore, balance
adjustments will start at shortly before or after partition 3968
(standard) or 3072 (rack-aware).

Figure 3: 20-way parallelism with 4 nodes and 5 disks each

The uniform balance adjustments take place when the node initially
selected to claim a replica has reached the claim threshold. We
choose the node that has the most unfilled claims or, in the case of
a tie, also has fewer overall claims allocated to it. Interestingly, we
initially assumed that we should choose the node with the most
overall claims on a tie but, counter-intuitively, simulations
empirically demonstrated that it was better to choose the node with
fewer overall claims during a tie. Our rationale is that if the node

3678

with fewer claims were to overflow, it would appear to be a node
that received a remainder.

2.2 Parallelism without Hot Spots
The uniform data-partitioning significantly enables parallel
processing to use system resources in a balanced and efficient
manner. Data is uniformly distributed across homogeneous cluster
nodes, and, within a node, data can be further distributed randomly
into storage devices. This combination provides the opportunity for
highly concurrent workload execution resulting in high levels of
parallelism, as illustrated in Figure 3. Extrapolating, a 100-node
cluster with 16 storage devices per node can drive a 1600-way
parallel execution of a high throughput workload of individual
record writes in the millions of transactions per second. With the
scale up available in a hybrid memory/flash configuration, up to
100TB can be stored per node resulting in database storage of 10
petabytes (in a 100-node cluster) that can be processed at a very high
rate of throughput with sub-millisecond read/write latency.

Remarkably, this architecture also works well in reverse when data
needs to be fetched from the database. Such a workload can consist
of single record operations, batch operations (multi-get) or even a
database query with or without a matching secondary index. The
data partitioning and distributed layout across nodes and storage
devices helps again as the 4K partitions lend themselves to be
scanned in parallel.

Figure 4: Parallel processing, Aerospike & Apache Spark

Furthermore, scans can be initiated to start from predetermined
positions within a partition (in order of hash digests). This means
that data can be scanned in parallel in more streams than there are
data partitions. Therefore, the database queries can be aligned with
the parallel processing available in machine learning systems like
Apache SparkTM [21]. For example, it is possible to deploy 32K
parallel streams scanning data from the database into a machine
learning system in parallel at the rate of hundreds of terabytes per
hour (Figure 4). Similar parallel integrations are possible between
Aerospike and Presto/Trino for SQL queries.

3 CLUSTER SELF-MANAGEMENT
The basic Aerospike partitioning scheme described in Section 2 is
unique to Aerospike and is the basis for the self-management of the
cluster. There are three components to clustering (Figure 5):

1. the heartbeat subsystem that stores and exchanges
information (status of neighboring nodes in adjacency
lists) between nodes.

2. the clustering subsystem that maintains the membership
information (node succession list) corresponding to the
current active cluster.

3. the exchange subsystem that communicates the
partition state and triggers the rebalancing algorithm.

Figure 5: Clustering Subsystems

When a node is added to the cluster to provide increased capacity
or throughput, the arriving node must contact at least one existing
cluster member. The system is configured to use multicast IP or a
well-known automatically updated DNS address or a list of
individual IP addresses to contact the other nodes in the cluster.
When the new node locates the cluster, it begins the process of
joining the cluster, first at the heartbeat level, and then through the
process of being accepted by the current principal node in the
cluster. If accepted, data partitions are allocated to the new node and
will be “migrated” from existing nodes to the new hardware. The
new node becomes the data master for some partitions and a replica
for other partitions, according to the data distribution system
outlined in Section 2. As data is migrated, the current data layout is
broadcast to connected clients, which automatically route future
requests to the correct node.

When a node is removed from the cluster due to hardware failure
or shut down for an upgrade, the inverse happens. The heartbeat
system will detect absence of the node. The cluster either elects a
new principal, or the existing principal will reorganize the cluster.
A departing node’s partitions will be reallocated to existing nodes
by default, maintaining replication factor reliability. For each of the
departing node's partitions, one of its current replicas is promoted
to be the new master if necessary, and a new replica is selected from
among the remaining nodes. Data migration is performed to fill the
new replica. Like node addition, clients automatically receive a new
partition map as replicas are promoted, and as data migration
continues, clients will become aware of new data location.

3679

Figure 6: Adding a Node

3.1 Increasing Availability During Node Arrivals
and Departures

There are two key optimizations to increase availability during
cluster changes. The first is quantum-based event detection for
cluster changes that allows multiple complex network changes to be
merged into one event and thus handled efficiently with fewer state
transitions. The second ensures that the total amount of partition
related data that needs to be transferred during cluster change
events is bounded by the fraction of the cluster nodes that impact
the total number of partitions (4096) times the replication factor
(typically 2 or 3), as determined by the partition rebalancing
algorithms described in Section 2. This scheme reduces, by an order
of magnitude, the information being exchanged in a large cluster of
50-100 nodes. An example node addition is illustrated in Figure 6.

Additionally, it is important to set longer clock quanta settings for
detecting cluster changes for public cloud environments for
enabling the clustering system to complete all the message transfers
and reach a quiescent state within a few seconds after a cluster
change. This allows the system to quickly ramp up to the full extent
of transactional throughput after only a few seconds of slow down
during cluster node arrival and departure events.

3.2 Data Migration Optimizations
The process of moving records from one node to another node is
termed a migration. After every cluster view change, the objective
of data migration is to have the latest version of each record
available at the current master and replica nodes for each of the data
partitions.

Clusters will self-heal even at demanding times without operator
intervention. Capacity planning and system monitoring capabilities
provide you the ability to handle virtually any unforeseen failure
with negligible loss of service. You can configure and provision your
hardware capacity and set up replication/synchronization policies
so that the database recovers from failures without affecting users.

The data rebalancing mechanism ensures that the transaction
volume is distributed evenly across all nodes and is robust in the
event of node failure happening during rebalancing itself. The
system is designed to be continuously available, so data rebalancing
doesn't impact cluster behavior. There is only a short period when
the cluster internal redirection mechanisms are used while clients
discover the new cluster configuration by assembling a copy of the
partition map by polling the server nodes. Thus, this mechanism
optimizes for continuous transactional availability in a scalable
shared-nothing environment.

To optimize data migrations, Aerospike defines a notion of partition
ordering using partition version numbers that change every time
cluster node composition changes. These version numbers help

determine whether a partition retrieved from disk needs to be
migrated or not. The process of data migration would be a lot more
efficient and easier if a total order could be established over
partition versions. However, enforcing total ordering of partition
version numbers is problematic. When version numbers diverge on
cluster splits caused by network partitions, this would require the
partial order to be extended to a total order (order extension
principle). Yet, this would still not guarantee the retention of the
latest versions of each record since the system will end up either
choosing the entire version of the partition, or completely rejecting
it. Moreover, the amount of information needed to create a partial
order on version numbers would only grow with scale. Thus,
Aerospike maintains this partition lineage up to a certain number of
partition changes.

When two versions come together, nodes negotiate the difference in
actual records and send over the data corresponding only to the
differences between the two partition versions. In certain cases,
migration can be avoided completely based on the knowledge that
the content of a partition is a subset of the same partition on another
node. In other cases, like rolling upgrades, the delta of changes is
small and are shipped over and reconciled instead of shipping the
entire partition content.

3.3 Operation during Data Migration
If a read operation lands on a master node while migrations are in
progress, Aerospike guarantees that the copy of the most recently
written record value available within the cluster will be returned.
For partial writes to a record, Aerospike guarantees that the partial
write will happen on the copy that eventually wins. To ensure these
semantics, operations enter a duplicate resolution phase during
migrations. While this feature provides added data correctness, it
adds latency to transactions during this period. More specifically,
the read and write latency for the first transaction on a record may
be affected (if the record’s partition has not completed migration).

Therefore, it is good to complete migrations as quickly as possible,
but a migration should not be prioritized over normal read/write
operations and other cluster management operations. Therefore,
Aerospike contains several configuration options and performance
throttles that can be applied in real-time to either speed, or delay,
data migrations. These flow control systems reduce the impact of
data migrations on normal application read/write workloads or can
be used to improve cluster reorganization cycles in a lightly loaded
cluster.

Uniform distribution of data, indexes, and transaction workload
across cluster nodes make capacity planning and scale-up and scale-
down decisions precise and simple for Aerospike clusters. Aerospike
needs redistribution of data only on changes to cluster membership.
This contrasts with alternate key range based partitioning schemes,
which require redistribution of data whenever a range becomes
“larger” than the capacity of a node.

Note also, that the Aerospike smart client shares the partition maps
with the server by polling cluster nodes. This enables Aerospike
clients to adapt quickly to changing conditions within the cluster
and is another facet of Aerospike’s ability to scale to larger data sizes
and workloads continuously and efficiently.

3680

4 MINIMIZING REPLICAS & MAXIMIZING
AVAILABILITY

In AP-mode configuration where availability is prioritized over
consistency, Aerospike allows reads and writes to continue during
split-brain situations as well as in situations where the number of
cluster nodes unavailable is at or more than the replication factor.
This could cause inconsistencies and lost writes as shown in writes
happening to item A in a split-brain scenario shown in Figure 7.

Figure 7: Choosing Availability over Consistency Results in

Lost Writes

It is uncommon to violate consistency in a properly running system
except during the following two scenarios:

• When the cluster splits into two or more sub-clusters that
continue to take reads and writes, and

• When the cluster simultaneously loses a set of nodes that
is equal to or greater than the replication factor, causing
some partitions to completely disappear from the
remaining cluster. Note that the failures need to be within
an interval shorter than what is required for partitions to
migrate to other nodes.

The required improvement for data correctness, then, is a scheme
that disallows multiple masters for the same partition active at the
same time. This limitation automatically limits availability in the
cluster. For example, a simple scheme on a split-brain would be to
avoid writes during such an event and allow only reads. This
however is unnecessarily restrictive.

Most systems for providing such strong consistency require a
minimum of three copies to ensure proper consistency [1]. So, if a
cluster splits as shown in Figure 7, one of the two sub parts can allow
writes if it has a majority (two out of three) copies of the data item.
Aerospike optimizes this further by regularly storing only two
copies but using an adaptive scheme that adds more write copies on
the fly in situations where they are necessary, thus optimizing the
performance in the normal case while incurring a small amount of
overhead in edge cases that rarely occur. Note that a two-copy
system still needs a minimum of three nodes to preserve availability.

Our scheme allows us to effectively have the theoretically correct
result of a three-copy distributed system [1], while paying for only

two copies of the data. This in turn reduces network traffic resulting
from handling additional copies as well as CPU and storage costs.
In clusters handling petabytes of data, this could make a huge
difference in terms of hardware and operational costs.

As we shall demonstrate in the rest of this Section, achieving higher
availability using such an optimized replication scheme requires a
sophisticated algorithm for maintaining strong consistency.

4.1 Roster
With strong consistency configured, Aerospike defines a roster for
strong consistency within a cluster. This roster is the set of nodes
which are intended to be present at steady state.

When all the roster nodes are present, and all the partitions are in
their correct computed location, the cluster is in its steady state and
provides optimal performance. As we described in the partition
algorithm earlier, the master and replica partitions are assigned to
nodes in a cluster using a random assignment of partitions to nodes.
In the case of strong consistency, these partitions are referred to as
roster-master and roster-replica. To simplify the discussion, we will
restrict ourselves to a system with replication factor set to 2. Every
partition in the system will have one master and one replica. First,
some terminology:

roster-replica – For a specific partition, the roster-replica
refers to the nodes that would house the replicas of this
partition if all nodes in the roster were part of the single
cluster, i.e., the cluster was whole.

roster-master – For a specific partition, the roster-master
refers to the node that would house the master of this
partition if all nodes in the roster were part of the single
cluster, i.e., the cluster was whole.

The following rules are now applied to the visibility of partitions:

1. If a sub cluster (e.g., split-brain) has both the roster-
master and all the roster-replicas for a partition, then the
partition is active for both reads and writes in that sub
cluster

2. If a sub cluster contains a majority of roster nodes and has
either the roster-master or a roster-replica for the
partition within its component nodes, the partition is
active for both reads and writes in that sub cluster. If the
roster-master is not present, a roster-replica will be
promoted, and other nodes will become “effective
replicas”

3. If a sub cluster has exactly half of the nodes in the roster
and it has the roster-master within its component nodes,
the partition is active for both reads and writes. There are
some further refinements of these rules later in Section
4.2.

The above rules also imply the following:

100% availability on rolling upgrade: If a sub cluster has
fewer than replication factor number of nodes missing,
then it is termed a super-majority sub-cluster and all
partitions are active for reads/writes within the cluster

3681

100% availability on two-way split-brain: If the system
splits into exactly two sub clusters, then all partitions are
active for reads and writes in one or the other sub cluster
(we will later show how to use this in a creative way for
a rack-aware based HA architecture)

Consider as an example, partition p in a 5-node cluster where node
4 is the roster-replica for p and node 5 is the roster master for p.
You can see below in Figure 8, Figure 9 and Figure 10, examples of
when a partition is available or not available in various network
partitioning situations. Note that Figure 11 represents the state of
the cluster that further split from the state depicted in Figure 10.
So, the state of partition p in Nodes 3, 4 and 5 reflect this
transition.

Figure 8: The cluster is whole, p is active

Figure 9: A minority sub-cluster with both roster-master and
roster-replica, cluster is split, p is active

Figure 10: The roster-replica is in majority sub-cluster,
promoted to master, alt replica created in node 3, cluster is split,
p is active

Figure 11: The roster-master and roster-replica are in minority
clusters, cluster is split, p is inactive

4.2 Full partitions versus subsets
As you can see above, in steady state, partitions are considered full
if they have all the relevant data. In some cases, for example in
Figure 10 above where an alternate replica of the partition p was
created in Node 3, the partition on node 3 is only a subset until all
of the data in the partition copy on Node 4 is synchronized with
Node 3. Note that Node 4 has a full copy of partition p since it split
off from a fully available cluster. Certain rules must be followed for
maintaining consistency. We will illustrate these using the
following scenario.

In a cluster with five nodes A, B, C, D, E, let us consider partition q
that has Node A as roster-master and Node B as roster-replica. Let
us consider a rolling upgrade (Figure 12) where one node is taken
down at a time.

• Initially Nodes A and B start out as full partitions for q.
• When Node A is taken down, Node B which is roster-

replica promotes to alternate master for q and Node C
becomes alternate replica for q. Node C’s copy of partition
q is now a subset.

• Soon enough, Node A rejoins the cluster (as subset) after
the successful software upgrade and the node B now goes
down for its turn to be upgraded. At this point, there has

not been enough time for the roster-master A to complete
synchronization of all its data with B (that was Full).

• So, we are left with Node A as roster-master that is a
subset for partition q and node C that is another subset
for q. At this point, because this is a super-majority
cluster, we are guaranteed that among all the nodes in the
cluster, all updates to the partition are available.

Therefore, we can state the following:

1. Every update must be written to at least two nodes

(replication factor 2) and at most one node has been down
at any one time. So, all changes must still be in one of
these nodes.

2. However, what this means is that for all reads to records
that go to A (roster-master) every request has to resolve
itself on a record-by-record basis with the partition subset
stored in node C. This will temporarily create extra
overhead for reads.

3. Write overhead is never increased as Aerospike writes to
both copies all the time.

Figure 12: Subset and full partitions during rolling upgrade

Based on the above, the earlier rules are qualified further as follows:

1. If a sub cluster (e.g., split-brain) has both the roster-
master and all roster-replicas for a partition, and a full
partition exists within the sub cluster, then the partition
is active for both reads and writes in that sub cluster.

2. If a sub cluster has a majority of nodes and has either the
roster-master or any roster-replica for the partition within
the component nodes and it has a full partition, then the
partition is available.

3. If a sub cluster has exactly half of the nodes in the full
roster and it has the roster-master within its component
nodes, and it has a full copy of the partition, then the
partition is active for both reads and writes.

4. If the sub cluster has a super majority (i.e., fewer nodes
than replication factor are missing from the sub-cluster),
then a combination of subset partitions are sufficient to
make the partition active.

Note there are some special kinds of nodes that are excluded while
counting the majority and super-majority conditions.

• A previously departed node rejoins the cluster with
missing data (e.g., one or more empty drives).

• A node that was not cleanly shutdown is enabled.

3682

Such nodes will have a special flag called “evade flag” set until they
are properly inducted into the cluster with all the data.

While we discussed the above using replication factor 2, the
algorithm extends to higher replication factors. All writes are
written to every replica, so the write overhead will increase as
replication factors increase beyond 2.

From the discussion here, our scheme provides equivalent level of
availability with 2 copies as a traditional quorum-based system
using 3 copies. The reduction continues to grow as the replication
factor increases - where other systems store N replicas, Aerospike
only need to store (N / 2) + 1 to achieve a similar availability level
during common network failures.

4.3 Transactional consistency

4.3.1 Never Lose Writes
The write logic is shown in Figure 13. All writes are committed to
every replica before the system returns success to the client. In case
a write to one of the replicas fails, the master will ensure that the
write is completed to the appropriate number of replicas within the
cluster (or sub cluster in case the system has been compromised.)

Figure 13: Write Logic

4.3.2 Strong Consistency for Reads
 In the strong consistency configuration, reads are always sent to
the master partition. Note that the main invariant that the client
software depends on is that the server maintains the single master
paradigm. However, Aerospike being a distributed system, it is
possible to have a single point in time when multiple nodes think
they are master for a partition. Consider for example the case where
node A of a cluster is separated from the other three nodes B, C, and
D. B automatically takes over for partition q and C becomes a new
replica (being the next in the row for partition q in the partition
mapping table), however, there may be a period where A is active
but about to detect its separation and halt processing.

It is important to differentiate the versions of the partitions where
the writes are being done, to properly detect an incomplete, in-
process transaction from a fully committed transaction. Note that
the only successful writes are those written to all the replicas. Other
writes need to be detected as indeterminate or in-doubt, and the
system must then resolve these subsequently by replacing them
with successful writes. Also, it is only possible for exactly one sub
cluster to take over as master for a partition based on rules
mentioned earlier. Even in this case, it is not possible to separate
out the writes that happen in a master overhang period by using just
machine level timestamps – which are naturally skewed from each
other. So, Aerospike has implemented a Hybrid Logical Clock [14],

which includes a hybrid of three clocks. Notably, it is critical to add
the concept of regime for each partition. This regime, a Lamport
clock [15], is incremented every time a master handoff from node
to node for a partition happens. Only the old master uses the earlier
regime and all writes to the new master will use the next regime.
Therefore, writes applied at a master node that has not yet processed
the cluster change but unable to replicate the write to its replica(s)
can result in one of two outcomes when the cluster comes back
together:

1. The value written can either be discarded because the
record was written in the sub-cluster excluding this node
during the partitioning event.

2. The write can be rolled forward as the eventual record
value in case no further write has happened in the sub
cluster before the full cluster forms again.

Aerospike uses the following fields for isolating record updates:

• 40 bits of record last update time (LUT)
• 6 bits of partition regime
• 10 bits of record generation

The 6 bits of regime provides about 27 seconds of buffer based on
1.5 seconds for the heartbeat timeout window and accounts for
around 32 cluster changes happening in the period. The combination
of regime and LUT and record generation provides an accurate path
to determine which of the records in the system hold the right value
for reading and writing.

4.3.3 Linearizable operations
Based on the above, to linearize reads at the server, every read to
the master partition needs to verify that the partition regimes are in
sync for the partition in which the key is located. If the regimes
agree, then the read is guaranteed to be current. If the regimes do
not agree this means that a cluster change may be in process, and it
is important to retry the read from the client. Thus, for every write,
all copies of the partition being written need to also have the same
regime.

4.3.4 Session/Sequential Consistency
If the occasional stale read between database clients is acceptable,
radically higher performance may be achieved. In session
consistency, the read from the master is all that is needed on the
server-side, but the client needs to store a regime counter as part of
its partition table based on the latest regime value it has encountered
for a partition on its read. This ensures that the client rejects any
reads from servers of an older regime than the one it has already
read. This could happen due to an especially large master overhang
caused by slow system behavior or suspension/slowdown of virtual
machines in cloud environments, etc. This mode still maintains
strong consistency, but by reading only from the master, an extra
network round trip between master and replica servers is avoided.

The strong consistency scheme above guarantees the strongest
possible consistency for single-record transactions while allowing
100% consistency and availability during rolling upgrades where
fewer than replication factor number of nodes are taken down
(Figure 12). This is particularly useful since most systems need to
undergo routine maintenance for security fixes and the like. To be
able to do that without any compromise to availability and
consistency is extremely valuable.

3683

Figure 14: Rack awareness for high availability

4.4 Rack awareness for high availability
Aerospike supports a rack-aware scheme in which the various
copies of a specific partition are always allocated to different racks.
This can be used to setup systems to survive site failures without
operator intervention (See Figure 14). In many production
environments (especially in financial services where low latency
and high availability are both paramount), a common installation is
to have two data centers within 10 miles of each other. This enables
a transaction to be committed across both data centers within a few
milliseconds while still providing high fault tolerance due to the
different physical location of the two data centers. Using the
Aerospike strong consistency scheme, it is possible to setup systems
where the outage or disconnection of an entire site will result in zero
loss of data and the system can continue from there. One of these
configurations is illustrated in Figure 15.

5 GEO-DISTRIBUTED TRANSACTIONS
Geo-distribution can be done using synchronous or asynchronous
replication. We will describe both cases below briefly.

5.1 Synchronous active-active replication
Aerospike supports multi-site clustering where a single cluster spans
multiple geographies, as shown in Figure 15. This allows users to
deploy shared databases across distant sites and cloud regions with
no risk of data loss. Automated failovers, high resiliency, and
strong performance are the foundation of Aerospike’s
implementation. Two features underpin Aerospike multi-site
clustering: rack awareness and strong consistency both of which
were described in detail in Section 4.

Rack awareness allows replicas of data partitions to be stored on
different hardware failure groups (different racks). Through
replication factor settings, administrators can configure each rack to
store a full copy of all data, maximizing data availability and local
read performance. As we saw already in Sections 2 and 3, Aerospike
evenly distributes data among all nodes within each rack.

Only one node maintains a master copy of a given data partition at
any time. Other nodes (located on other racks) store replicas, which
Aerospike automatically synchronizes with the master. As noted in

Section 4, the roster combined with the partition map tracks the
locations of masters and replicas; it also understands the racks and
nodes of a healthy cluster.

In the configuration illustrated in Figure 15, each data center has
one rack with three nodes, and each node has a copy of the
roster. Given a replication factor of three, this example shows the
roster-master copy of a data partition on Node 9 (Rack 2); replicas
exist on Node 1 (Rack 1) and Node 4 (Rack 3).

Figure 15: A multi-site cluster that spans large distances

Aerospike clients can be configured to route an application’s request
to read a data record to the appropriate rack/node in its local data
center. In this deployment configuration (Figure 15), a full copy of
the database exists in each site (rack). Therefore, by intelligently
processing read requests, Aerospike can deliver sub-millisecond
read latencies in this cluster during normal operation.

Writes are processed differently. For consistency across the cluster,
Aerospike routes each write to the rack/node with the current
master of the data. The master node ensures that the write is applied
to its copy and all replicas before committing the operation. Routing
writes and synchronizing replicas introduces overhead, so writes
aren’t as fast as reads. In the cross-continent configuration, we have
observed latencies averaging between 100 to 200 milliseconds.

An Aerospike multi-site cluster follows the same rules for enforcing
strong data consistency as a single-site cluster (described in Section
4), automatically taking corrective actions for most common
scenarios. For example, if the roster-master becomes unavailable
due to a node or network failure, Aerospike designates a new master
from the available replicas and creates new replicas as needed to
satisfy the replication factor. In a multi-site cluster, the new master
will typically be on another rack.

Consider a scenario in which one site becomes unavailable, perhaps
due to a network or power failure. Let’s say that the USA East site
(Rack 2) is unreachable by the rest of the cluster. Aerospike will
automatically form a new sub-cluster consisting of USA West (Rack
1) and USA Central (Rack 3) to continue to service reads and writes
without any operator intervention. In this degraded system, by
applying the consistency rules described in Section 4 all data will be
made available with complete consistency in Racks 1 and 3, while
no transactions (reads or writes) will be allowed in Rack 2. Note that
when Rack 2 rejoins the cluster, the partitioning schemes, clustering
algorithms and strong consistency rules will ensure that the
rejoining will be done smoothly with no operator intervention and
eventually the cluster will return to steady state after accurately and

3684

safely merging in the changes that happened during the split-brain
situation.

Note that there are split-brain situations where the system will just
become either wholly or partially unavailable to preserve
consistency (e.g., the case where all three sites in Figure 15 lose
contact with each other simultaneously).

5.2 Asynchronous active-active replication
Cross-data replication (XDR) transparently and asynchronously
replicates data between Aerospike clusters. Firms often use XDR to
replicate data from Aerospike-based edge systems to a centralized
Aerospike system. XDR also enables firms to support continuous
operations during a crisis (such as a natural disaster) that takes
down an entire cluster.

Figure 16: Asynchronous replication using XDR

It is notable that the asynchronous replication scheme in Aerospike
no longer uses a log-based strategy [16] as there were severe
problems with keeping track of all the data items to be shipped to
various destinations. For example, slow-to-reach destinations were
causing delays in shipping to other destinations and shipping
proceeded at the rate of the slowest destination. Given the high rate
of write throughput handled, keeping separate copy of change data
logs for every destination is not a solution that scales well.

The shipping algorithm in Aerospike is now based on a combination
of last update time (LUT) and last ship time (LST). Aerospike keeps
track of a record's digest and Last Update Time (LUT) based on write
transactions in its index (typically memory resident). Additionally,
Aerospike tracks a record's partition's LST. Any record in a partition
whose LUT is greater than the partition's LST is a candidate for
shipping. The LST is persisted by partition. If the LUT of a record is
more recent than the LST of the record’s partition, the record will
be shipped to remote clusters through the corresponding links that
are active. Once shipping has completed the partition’s LST is
updated.

Aerospike supports the ability to ship sub-parts of changed records
– a bin (or column) – and implements a convergence feature which
can resolve write conflicts in active-active topologies. This feature
makes sure that the data is eventually the same in all the connected
sites at the end of replication even if there are simultaneous updates
to the same record in multiple sites. To achieve this, extra
information about each bin's LUT is stored and used appropriately.

Figure 17: Hybrid Memory Architecture (DRAM and PMEM)

A typical setup of a globally distributed deployment with
asynchronous replication is illustrated in Figure 16. As you can see
there can be many globally distributed sites communicating to each
other in complex topologies, supporting both active-active and
active-passive deployments. The absence of a manifested digest log
and the ability to ship sub-parts means that the asynchronous
replication in Aerospike can be used in complex deployment
topologies without concern about varying shipping speeds across
multiple destinations with different network characteristics.

6 STORAGE OPTIMIZATIONS

6.1 Hybrid Memory Architecture with DRAM
A key component of the storage model in Aerospike is based on a
Hybrid Memory Architecture (HMA) where data resides in flash
storage (SSD), and indexes reside entirely in DRAM (or PMEM). In
this hybrid DRAM/Flash configuration (Figure 17), no disk I/O is
required to traverse the primary index, followed by a single lookup
of the data record from flash storage. Such a design can keep read
latency low at high throughput because the characteristic of I/O in
NAND Flash has little penalty for random access reads.

Any database access must traverse the index tree, acquire metadata
such as versions or sequence numbers as illustrated in Figure 17. A
data element in a local cache can be returned without I/O access, or
a single I/O will be executed to bring the entire element into local
memory. Writes need to be propagated to replicas within the
database cluster. Replica writes can be synchronous or
asynchronous, depending on the level of durability required.

Note that the fundamental parallelism in HMA for random-access
reads eliminates the need for caching that is used in traditional
buffer-pool based systems (see Figure 18). The read latency is
essentially dependent on the access time to SSD and we can
consistently achieve a few hundred microseconds on high quality
NVMe drives. For addressing wear leveling issues in SSDs Aerospike

3685

implements a log structured mechanism using large block writes
with defragmentation to reclaim storage (Figure 19).

Figure 18: HMA versus traditional buffer-pool based DB access

The techniques used here are able to support extremely high
application write rates while maintaining DRAM-class read
response times with data correctness. However, this comes with a
cost, namely rebuilding DRAM indexes is expensive (takes as much
time as scanning all the data in storage) and committing every
transaction to storage device is also unacceptably expensive. By
combining large block writes, parallelized access to multiple SSDs,
a native storage file system with direct device access that bypasses
the operating system’s file system, this architecture can deliver high
throughput reads and writes with low latency as seen in Section 8.

Figure 19: Aerospike write architecture to SSD

Avoiding index rebuild on large nodes
To avoid rebuilding the primary index on every process restart, the
index can be stored in a shared memory space disjoint from the
service process’s memory space. In case maintenance only requires
a restart of the database service, the index need not be reloaded. The
database daemon simply attaches to the current copy of the index
in shared memory and is ready to handle transactions. This form of
service starts re-using an existing index is termed ‘fast start’; it
eliminates scanning the device to rebuild the index. However, a cold
start of the node will still need to rebuild the index from scratch but
a tool can be used to dump the index on disk before process
shutdown (after quiescing) so it can be populated on restart.

6.2 Hybrid Memory Architecture with PMem
One technology that helps mitigate both the slow restart and
commit to device problems is Intel® Optane™ DC persistent
memory [19], based on Intel® 3D XPoint™, a new class of storage
technology architected specifically for data-intensive applications.
Note that this technology is being phased out, but new alternatives
are expected to emerge over the next few years.

The tiered architecture, using this technology’s AppDirect mode,
allows multiple deployment environments to use this as the primary

key index layer, where its high performance and parallelism work
best. By using a persistence layer for indexes, full restarts of
Aerospike are possible without primary index rebuilds. In tests
performed by Intel (shown in Figure 20), we notice that performance
is nearly identical between PMem indexes (using the native PMem
implementation) and DRAM indexes. Both achieved a million
transactions per second per server.

Figure 20: Throughput comparison DRAM versus PMem

7 CPU AND NETWORK PERFORMANCE
CPU and network performance can help to handle high ingestion
rates using tech like Intel® Ethernet 800 Series with Application
Device Queues (ADQ) [12].

Figure 21: Device queue & CPU core alignment

NICs are meant to separate related network packets into separate
device queues to make processing more efficient by keeping high-
priority traffic from getting stuck behind slow requests. ADQ sets
the bar higher by letting applications define tailored rules (Traffic
Classes) for sorting packets into device queues. The 800 Series NIC
directly sorts packets using these rules, completely offloading the
host processor.

The workload involves many clients sending database requests to
the database server. These are dispatched in parallel to many service
threads. All requests are treated equally, so the ADQ strategy is to
spread network traffic equally to all the CPU cores in the system.
One device queue has been defined for each CPU core in the system
and each queue is configured to generate service interrupts on a

3686

particular CPU. The Traffic Classes also route all requests from a
given client to the same device queue, as shown in Figure 21.
Aligning device queues and CPU cores reduces context-switching
overhead. Better still, it keeps data in local processor caches.
Together these factors contribute to lower latency, more predictable
response times and higher throughput. Busy polling was also
employed to increase performance to reduce interrupts by servicing
all packets that have accumulated. A polling interval of 50
milliseconds was found to give optimal results because every
millisecond matters.

Figure 22: ADQ Throughput

ADQ performance was measured in a test environment comprising
one dual-socket, dual-NIC server and six clients, all connected to a
100G switch. Performance data were gathered by running 18
instances of the Aerospike C language benchmark client (3 per client
node) against the server. The configuration used is as follows:

IntelR XeonR Xeon Platinum 8280 Server (2.7GHz, 28 cores)
768 GB total DRAM
2 IntelR Ethernet 800 Series 100G NIC cards
2 Aerospike 4.7 servers (NUMA configuration with CPU/ADQ pinning)
6 IntelR XeonR E5-2699 v4 clients (2.2 GHz, 22 cores)
125 GB total DRAM
Single IntelR Ethernet 700 Series 40G NIC card
3 instances of Aerospike C benchmark (async mode) per client

Relative performance was measured by comparing ADQ NUMA
pinning with the baseline case of CPU pinning. When enabling
ADQ the performance was recorded at 15.3M transactions/sec (>75%
improvement), as shown in Figure 22. Regarding latency, 99% of the
requests were below 320 µsecs (>45% improvement in response time
predictability.

8 CLOUD PERFORMANCE RESULTS
The techniques presented here have been extensively validated in
scores of deployments at scale across multiple industries over the
past decade. To illustrate the benefits, we will briefly share the
results of a petabyte cloud benchmark that was run on a 20-node
AWS [38] cluster with Aerospike. Each EC2 i3en.24xlarge node
featured 768 GB of DRAM and 8 x 7500 NVMe SSDs. For clients,
the benchmark employed 40 AWS EC2 c5n.9xlarge nodes with 96
GB DRAM each and EBS-only storage; operations were executed
using Aerospike’s C client.

The Aerospike server was configured with compression that yielded
a 4 times reduction in size for the user profile database, causing it to
store 500 TB of compressed user data (250 TB of unique user data

and 250 TB of replicated data) with ½ trillion unique keys with
replication factor 2.

Figure 23: Petabyte cloud benchmark configuration

Table 2: Benchmark results
Test # Data Workload TPS Latency

< 1ms

1
User Profile
(1PB unique,

uncompressed)

Read only 5,009,980
reads

100%

2

80/20
read/write

3,017,340
reads

754,160
writes

100%

99%

Per the results of Test 1 in Table 2, Aerospike processed more than
5 million read-only TPS with sub-millisecond latencies for user
profile applications. Test 2 featured an 80/20 mix of read/write mix
operations run against the user profile database of ½ trillion unique
records. Under those conditions, Aerospike delivered more than 3.7
million TPS for user profile applications, nearly all with sub-
millisecond latencies.

9 CONCLUSION
As validated by the above results, the techniques we have developed
generate enormous efficiencies of scale (e.g., delivering millions of
TPS on a 20-node 1PB, trillion object, cluster on public cloud). These
efficiencies go a long way in keeping the cost per transaction low
enough that handling of tens of billions of transactions per day has
become routine in Aerospike use cases like real-time bidding, fraud
detection for financial transactions, real-time instant payments, e-
commerce, gaming, and others.

In terms of the future, we are working to enhance our system with
multi-record transaction capabilities and improve integration with
the parallel processing capabilities of Apache Spark as well as
federated SQL queries of Presto/Trino. By doing so, we aim to use
the techniques and efficiencies described here for both high
throughput transactions and analysis of extremely large datasets
within real-time SLAs while maintaining low total cost of
ownership, thus ensuring that such capabilities are available to
every small, medium, and large enterprise in the world.

ACKNOWLEDGMENTS
We thank Ginger Gilsdorf, Tibor Szaboky, and Cindy Saracco for
their contributions to the performance results described in this
paper.

3687

REFERENCES
[1] Leslie Lamport. Lower Bounds for Asynchronous Consensus. Microsoft Research,

Microsoft Corporation, MSR-TR-2004-72 (2006).
[2] Michael Stonebraker. SQL databases v. NoSQL databases. Communications of the

ACM, 53, 4 (April 2010), 10-11.
 DOI: https://doi.org/10.1145/1721654.1721659
[3] Mikhail Kourjanski. ML Data Pipelines for Real-Time Fraud Prevention @ PayPal.

QCon 2018. https://www.infoq.com/presentations/paypal-ml-fraud-prevention-
2018/

[4] Michael Stonebraker. New opportunities for New SQL. Communications of the
ACM, 55, 11 (November 2012), 10-11.

 DOI: https://doi.org/10.1145/2366316.2366319
[5] TIPS. European Central Bank Website.
 https://www.ecb.europa.eu/paym/target/tips/html/index.en.html
[6] Intel® Optane Technology, Intel Website.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-
optane-technology.html

[7] V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew
Gooding, Rajkumar Iyer, Ashish Shinde, Thomas Lopatic. Aerospike: Architecture
of a Real-Time Operational DBMS. Proceedings of the VLDB Endowment, Vol. 9,
No. 13 (2016).

[8] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen.
On the collision resistance of RIPEMD-160. Proceedings of the 9th international
conference on Information Security, (2006).

[9] Kyle Kingsbury, Aerospike 3.99.0.3 Jepsen report, March 7, 2018,
 http://jepsen.io/analyses/aerospike-3-99-0-3
[10] Eric Brewer, CAP Theorem,
 Wikipedia https://en.wikipedia.org/wiki/CAP_theorem
[11] Harmeen Mehta, Customer 360: Powering Airtel’s “Digital Brain” for Personalized

Customer Engagement, Aerospike Summit, 2019.
 https://www.aerospike.com/resources/videos/summit19/ty-airtel/
[12] Intel® Ethernet 800 Series with Application Device Queues (ADQ), Intel Website.

https://www.intel.com/content/www/us/en/architecture-and-
technology/ethernet/application-device-queues-technology-brief.html

[13] Intel® Optane SSD DC P4800X Series NVMe, Intel Website.
https://www.intel.com/content/www/us/en/products/memory-storage/solid-
state-drives/data-center-ssds/optane-dc-p4800x-series.html

[14] Sandeep Kulkarni, Murat Demirbas, Deepak Madeppa, Bharadwaj Avva, and
Marcelo Leone, Logical Physical Clocks and Consistent Snapshots in Globally
Distributed Databases. University of Buffalo, Tech report, 2014-04.
https://cse.buffalo.edu/tech-reports/2014-04.pdf

 [15] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21, 7 (July 1978), 558-565.

 [16] Donald. J. Haderle & Cindy. M. Saracco, (2013). The History and Growth of IBM’s
DB2. IEEE Annals of the History of Computing, Annals of the History of
Computing, IEEE, IEEE Annals Hist. Comput, 35(2), 54ñ66. https://doi-
org.proxy1.ncu.edu/10.1109/MAHC.2012.55

 [17] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al.,
Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1493–
1509.

[18] YugabyteDB. URL https://www.yugabyte.com
[19] Intel® Optane Technology, Intel Website.
 https://www.intel.com/content/www/us/en/architecture-and-technology/intel-

optane-technology.html
[20] Caleb Henry, (2020). SpaceX Launches 58 Starlink Satellites, Three Planet SkySats

on Falcon 9. URL https://spacenews.com/spacex-launches-58-starlink-satellites-
three-planet-skysats-on-falcon-9/

[21] Apache Spark Website. https://spark.apache.org
[22] Qualcomm 5G Website. https://www.qualcomm.com/research/5g
[23] Steven Vaughan-Nichols, (2020). SpaceX Starlink Internet Prepares for Beta Users.

URL https://www.zdnet.com/article/spacex-starlink-internet-prepares-for-beta-
users/

[24] Clark Fredricksen, Jaganath Achari and Supratibh Srivastava. Running Ad Tech
Workloads with Aerospike at Petabyte Scale.

 URL https://aws.amazon.com/blogs/industries/running-ad-tech-workloads-on-
aws-with-aerospike-at-petabyte-scale/

[25] Theresa Melvin. HPE: AI at Hyperscale – How to go faster with a smaller
footprint. Aerospike Summit 2019.

 URL https://aerospike.com/resources/videos/summit19/ty-hpe/
[26] Jason Yanowitz. Signal: Rebuilding on a Strong Foundation: from Cassandra to

Aerospike, One Year On. Aerospike Summit 2019. URL
 https://aerospike.com/resources/videos/summit19/ty-signal/
[27] Matthias Baumhof, Nick Blievers. Replacing Cassandra: A Digital Transformation

for the World’s Largest Digital Identity Network. Aerospike Summit 2018. URL
https://aerospike.com/resources/videos/replacing-cassandra-a-digital-
transformation-for-the-worlds-largest-digital-identity-network/

[28] Mikhail Kourjanski. The Science Behind Delightful User Experience. Aerospike
User Summit 2018. https://aero-media.aerospike.com/2018/05/1000.E-Science-
Behind-Delightful-User-Experience-PayPal.pdf

[29] Apache Cassandra Website. URL https://cassandra.apache.org/_/index.html
[30] Non-uniform memory access. Wikipedia. URL
 https://en.wikipedia.org/wiki/Non-uniform_memory_access
[31] Dennis Padia. SAP HANA Persistent Memory using Intel’s DCPM or IBM’s

vPMem. URL https://blogs.sap.com/2020/01/24/sap-hana-of-persistent-memory-
using-intels-dcpm-or-ibms-vPMem/

[32] Terracotta distributed cache. URL https://www.terracotta.org/
[33] Couchbase developer site. URL https://developer.couchbase.com/
[34] Planning and testing DataStax enterprise deployments. URL
 https://docs.datastax.com/en/dse-planning/doc/planning/capacityPlanning.html
[35] Oracle RAC. URL https://www.oracle.com/database/real-application-clusters/
[36] PrestoDB. URL https://prestodb.io/
[37] Trino (formerly PrestoSQL). URL https://trino.io/
[38] Amazon Web Services. URL https://aws.amazon.com/
[39] Yahoo Cloud Serving Benchmark. URL
 https://github.com/brianfrankcooper/YCSB
[40] Jenkins's one-at-a-time hash,
 https://en.wikipedia.org/wiki/Jenkins_hash_function#one-at-a-time
[41] FNV-1a hash,
 https://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function#FNV-1a_hash
[42] Srinivasan, V. & Bulkowski, B., Citrusleaf: A Real-Time NoSQL DB which

Preserves ACID., PVLDB 4, (2012).

3688

https://doi.org/10.1145/1721654.1721659
https://www.infoq.com/presentations/paypal-ml-fraud-prevention-2018/
https://www.infoq.com/presentations/paypal-ml-fraud-prevention-2018/
https://doi.org/10.1145/2366316.2366319
https://www.ecb.europa.eu/paym/target/tips/html/index.en.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
http://jepsen.io/analyses/aerospike-3-99-0-3
https://en.wikipedia.org/wiki/CAP_theorem
https://www.aerospike.com/resources/videos/summit19/ty-airtel/
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-technology-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-technology-brief.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://cse.buffalo.edu/tech-reports/2014-04.pdf
https://doi-org.proxy1.ncu.edu/10.1109/MAHC.2012.55
https://doi-org.proxy1.ncu.edu/10.1109/MAHC.2012.55
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://spacenews.com/spacex-launches-58-starlink-satellites-three-planet-skysats-on-falcon-9/
https://spacenews.com/spacex-launches-58-starlink-satellites-three-planet-skysats-on-falcon-9/
https://spark.apache.org/
https://www.qualcomm.com/research/5g
https://www.zdnet.com/article/spacex-starlink-internet-prepares-for-beta-users/
https://www.zdnet.com/article/spacex-starlink-internet-prepares-for-beta-users/
https://aws.amazon.com/blogs/industries/running-ad-tech-workloads-on-aws-with-aerospike-at-petabyte-scale/
https://aws.amazon.com/blogs/industries/running-ad-tech-workloads-on-aws-with-aerospike-at-petabyte-scale/
https://aerospike.com/resources/videos/summit19/ty-hpe/
https://aerospike.com/resources/videos/summit19/ty-signal/
https://aerospike.com/resources/videos/replacing-cassandra-a-digital-transformation-for-the-worlds-largest-digital-identity-network/
https://aerospike.com/resources/videos/replacing-cassandra-a-digital-transformation-for-the-worlds-largest-digital-identity-network/
https://aero-media.aerospike.com/2018/05/1000.E-Science-Behind-Delightful-User-Experience-PayPal.pdf
https://aero-media.aerospike.com/2018/05/1000.E-Science-Behind-Delightful-User-Experience-PayPal.pdf
https://cassandra.apache.org/_/index.html
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://blogs.sap.com/2020/01/24/sap-hana-of-persistent-memory-using-intels-dcpm-or-ibms-vpmem/
https://blogs.sap.com/2020/01/24/sap-hana-of-persistent-memory-using-intels-dcpm-or-ibms-vpmem/
https://www.terracotta.org/
https://developer.couchbase.com/
https://docs.datastax.com/en/dse-planning/doc/planning/capacityPlanning.html
https://www.oracle.com/database/real-application-clusters/
https://prestodb.io/
https://trino.io/
https://aws.amazon.com/
https://github.com/brianfrankcooper/YCSB
https://en.wikipedia.org/wiki/Jenkins_hash_function#one-at-a-time
https://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function#FNV-1a_hash

