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ABSTRACT

Provenance encodes information that connects datasets, their gen-

eration workflows, and associated metadata (e.g., who or when

executed a query). As such, it is instrumental for a wide range

of critical governance applications (e.g., observability and audit-

ing). Unfortunately, in the context of database systems, extracting

coarse-grained provenance is a long-standing problem due to the

complexity and sheer volume of database workflows. Provenance

extraction from query event logs has been recently proposed as

favorable because, in principle, can result in meaningful prove-

nance graphs for provenance applications. Current approaches,

however, (a) add substantial overhead to the database and prove-

nance extraction workflows and (b) extract provenance that is noisy,

omits query execution dependencies, and is not rich enough for

upstream applications. To address these problems, we introduce

OneProvenance: an efficient provenance extraction system from

query event logs. OneProvenance addresses the unique challenges

of log-based extraction by (a) identifying query execution depen-

dencies through efficient log analysis, (b) extracting provenance

through novel event transformations that account for query depen-

dencies, and (c) introducing effective filtering optimizations. Our

thorough experimental analysis shows that OneProvenance can

improve extraction by up to ~18X compared to state-of-the-art base-

lines; our optimizations reduce the extraction noise and optimize

performance even further. OneProvenance is deployed at scale

by Microsoft Purview and actively supports customer provenance

extraction needs (https://bit.ly/3N2JVGF).
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1 INTRODUCTION

Data governance platforms aim to enable organizations to govern

(e.g., catalog, overview, secure, analyze, and audit) their data es-

tates. In this direction, Microsoft’s governance platform, namely,

Purview [73], makes a range of governance functionalities readily

accessible to customers. (Other such platforms include Collibra [24],

Alation [6], IBM Infosphere [58], or Informatica [57]—further high-

lighting the importance of data governance.) According to several

recent business [41, 46] and academic [1] reports, and in line with

our customer feedback, central to data governance is the ability

to capture and use provenance (i.e., a graph encoding connections

between inputs and outputs across workflows) and associated meta-

data (e.g., who executed a workflow) from across data systems.

Unsurprisingly, since databases play a critical role in data manage-

ment, capturing provenance from database systems has been one

of the most requested features from Microsoft Purview customers.

Extracting provenance from database systems is challenging,

however, due to the complexity and size of database workflows.

Provenance extractors, such as the ones supported by the major

governance platforms above, can be classified into static and dy-
namic. Static ones access information from database catalogs (e.g.,

tables, views, and stored procedures) and use static analysis to

extract provenance information from them. The main advantage

of these extractors is that they can be easily deployed. Unfortu-

nately, however, such extractors can lead to incomplete or incorrect

provenance graphs due to their inability to monitor the execution

of queries (e.g., branches, triggers, or dynamic SQL). Hence, more

recently, dynamic provenance extractors have been introduced to

address these limitations. Dynamic provenance extractors operate

by listening to events generated by database systems as a side effect

of query execution and extracting provenance from these events.

Dynamic provenance was also one of the most highly requested

features in Microsoft Purview from customers across a wide range

of industries (e.g., finance, retail, healthcare, and public services).

Designing an efficient and robust dynamic provenance extractor is

not straightforward. In particular, based on customer interviews,

we found that existing solutions have four main limitations:

Design overheads (L1): They extract provenance based on logical

or physical plans carried over events generated during query execu-

tion (e.g., SAC [81], Spline [75], or OpenLineage for Spark [36]). As
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we show in our experiments, this design adds significant overheads

(up to ~18×) to query execution and provenance extraction. In real-

world scenarios, as highlighted in our customer interviews, these

overheads can be prohibitive—both performance- and cost-wise.

Limited support for complex scenarios (L2): They focus on each

query in isolation, thus failing to capture important dependencies

among queries (e.g., queries executed by a stored procedure). Such

dependencies are ubiquitous and can be complex in practice [48].

Hence, resulting provenance graphs are largely incomplete (e.g.,

no provenance of stored procedures or how queries trigger one

another) and, as such, hard to explore and reason upon.

Absence of drill-down/roll-up capabilities (L3): Because ex-

isting extractors fail to capture dependencies among queries, cus-

tomers also pointed out that such extractors do not allow reasoning

at various levels of an application. For instance, a user might want

first to explore provenance at the stored procedure level and then,

if needed, drill down to the provenance of the queries of this stored

procedure [77]. To provide such analysis capabilities, a provenance

extractor should be able to aggregate provenance information.

Disconnect with consumer applications (L4): Finally, customers

also highlighted that existing extractors fail to provide mechanisms

to tailor the resulting provenance information to the needs of the

consumer application. For instance, they treat each query as equally

important. However, queries issued by system administrators or

backup processes are unlikely to be of interest to business users.

For such applications, the resulting provenance graphs are often

considered noisy. Similarly, existing extractors lack a rich query

runtime metadata model to provide the necessary context for up-

stream applications [53, 61] (e.g., who executed a query, fromwhich

application, or what was the CPU and IO costs).

To this end, we introduce OneProvenance, a novel dynamic

provenance extraction system that addresses the limitations of

existing extractors. In particular, our system uses a novel extraction

design that collects dynamic provenance from low-volume query

logs, without relying on plans (L1). As such, OneProvenance

avoids excessive overheads on database execution and provenance

extraction to the extent that OneProvenance extracts provenance

from even sizeable transactional workloads—extending coverage

beyond the traditional focus on analytical and ETL workloads.

OneProvenance tackles complex scenarios by identifying query

dependencies through efficient query log analysis (L2) and provid-

ing drill-down/roll-up capabilities over these query dependencies

(L3). More specifically, query dependencies are encoded in a novel

tree data structure that we refer to as QQTree. Provenance is then

aggregated based on parent-child relationships of QQTrees.

To better accommodate application-specific requirements (L4),

we introduce filtering techniques, pushed down into various points

of the extraction workflow, to eliminate noisy provenance infor-

mation. Moreover, OneProvenance employs an extensible query

runtime metadata model that allows capturing application-specific

metadata in the provenance graph. Importantly, our data model is

in compliance with open standards (Apache Atlas [11]) for better

interoperability with existing metadata management systems.

To summarize, our key contributions in this paper include:

• An expressive data model encoding dynamic provenance, meta-

data, and dependencies among queries—while complying with

open standards such as Apache Atlas (Section 3).

1 CREATE PROCEDURE CleanAndAppendSalesHistory
2 @trackingSystemVersion int
3 AS
4 BEGIN
5 IF @trackingSystemVersion = 1
6 BEGIN
7 INSERT SalesHistory
8 SELECT c.CustomerId , c.Region ,
9 r.Rate * c.Amount AS Amount
10 FROM StagedSales c JOIN
11 ConversionRate r ON c.Region = r.Region
12 END
13 ELSE
14 BEGIN
15 INSERT SalesHistory SELECT * FROM StagedSales
16 END
17 END

18 CREATE PROCEDURE SyncNewSales
19 @trackingSystemVersion int
20 AS
21 BEGIN
22 IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.TABLES
23 WHERE TABLE_NAME='StagedSales ')
24 DELETE FROM TABLE StagedSales;
25 BULK INSERT StagedSales FROM 'newSales.csv';
26 EXECUTE CleanAndAppendSalesHistory
27 @trackingSystemVersion;
28 END

29 EXECUTE SyncNewSales 2;

Figure 1: Workflow of our running example.

• An efficient and extensible dynamic provenance extractor that

overcomes several limitations of existing extractors (Section 4).

• Filtering techniques to optimize the extraction process depending

on application requirements (Section 5).

• How we integrated OneProvenance with Purview (Section 6).

• A thorough experimental analysis across workflow types (from

transactional to analytical ones) highlighting the performance

of OneProvenance (end-to-end, in individual components, and

in comparison with state-of-the-art extraction techniques), and

the benefits from our proposed optimizations (Section 7).

2 RUNNING EXAMPLE

To better highlight key points in our discussion, we use the

following running example throughout the rest of the paper.

Consider the T-SQL script in Figure 1. The stored procedure

SyncNewSales (lines 18-28) is populating the table StagedSales
(deleting its previous contents, if it already exists) using an ex-

ternal CSV file. Then, it calls the stored procedure CleanAndAp-

pendSalesHistory (lines 1-17) that is responsible for appending the

staged data from the StagedSales table to the SalesHistory table.
Finally, we execute SyncNewSales to run the workflow (line 29).

Note that the query that populates SalesHistory varies depending
on the value of the input parameter @trackingSystemVersion. As
a result, provenance information and runtime metadata for these

two stored procedures may change across their runs.

Using this example, we will show how we can extract dynamic

provenance, identify dependencies (e.g., different executions of a

stored procedure or queries that are part of a stored procedure),

attach metadata to nodes of the provenance graph (e.g., who and

when executed a stored procedure or CPU time of queries of a

stored procedure), and aggregate provenance across queries.

3 DATA MODEL AND PROBLEM STATEMENT

Our overall goal is to extract semantically rich, coarse-grained

provenance information from executed queries. In this section, we

discuss our provenance model and associated problem statement.
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Figure 2: OneProvenance Data Model. Blue lines (arrows), orange

lines (diamonds), and purple lines (circles) correspond to inheritance,

containment, and provenance relationships, respectively. (We omit

attributes per type for brevity.)

3.1 Provenance Model

At a high level, we model coarse-grained provenance as a hyper-

graph that captures the relationships between datasets (e.g., tables

or columns) and processes (e.g., queries). We now define the build-

ing blocks for modeling such a graph (i.e., our provenance model).

Since we aim to comply with open standards (recall Section 1),

our provenance model is built on top of the, heavily extensible,

Apache Atlas type system. More specifically, Apache Atlas intro-

duces the generic entity types Process and Dataset. (Both types

are derived from the generic Asset type of Apache Atlas, as

shown in Figure 2.) Metadata on processes and datasets can be in-

troduced as attributes (e.g., a dataset may have a name, size, and id)

or through relationships (e.g., a client connection invokes a process).

Apache Atlas supports inheritance and containment relationships

that are relevant to our work, as we discuss below. Provenance is

encoded as special relationships between Process and Dataset en-
tities denoting the input/output datasets of a process. (Finally, note

that Apache Atlas is only one target type system for provenance

information. Our model can also be compiled to other standards,

including OpenLineage [36] or W3C PROV-DM [64].)

With the background of Apache Atlas in place, we can now

dive into our model which is depicted in Figure 2.

Datasets. In line with prior work on coarse-grained provenance [75,

81], datasets in our model include relations (such as tables, views,

external tables, and query outputs) and their associated columns.

Processes. In our model, processes can be either queries or query
runs. The former is traditionally the target of static provenance

extractors, and the latter is the target of dynamic ones. Queries and

their runs are then sub-typed through inheritance relationships. As

shown in Figure 2, our model encodes ad-hoc statements, batches

(encoded as a series of statements), queries that are part of stored

procedures, and stored procedures. For every such static query type,

we introduce its dynamic type by subtyping on the query run.

In addition, we use attributes to encode metadata for processes.

In particular, for queries, we track the query text, and for query runs,

we track the user that executed the query; CPU time; duration; rows

inserted, updated, deleted, and returned. Finally, a client connection

is attached to each query run (containment relationship) to encode

from what application and server the query run was invoked.

Query dependencies. To support complex scenarios and enable

drill-down and rollup capabilities (addressing L2-3 from Section 1),

we introduce two types of dependencies: (1) query runs spawned by

parent query runs and (2) runs of a query. The former allows us to

encode what query runs have been triggered by other queries (e.g.,

queries executed as part of executing a stored procedure) and vice

versa (e.g., what stored procedures a query has been part of). The

latter allows us to track the runs of a particular query (e.g., the runs

of a stored procedure). Both types of dependencies are encoded

through containment relationships in our model (see also Figure 2).

Provenance. Finally, we model provenance as a hypergraph P

connecting inputs with outputs across a workflow. Logically, each

edge i

p

←→ o maps input i to output o, derived from i, through

process p. As discussed, such processes are queries or query runs,

while input and output datasets are relations and columns.

As discussed in Section 1, our main contribution to address L3

is to aggregate provenance through query dependencies. We define

the provenance of a query run as the set union of the provenance

of the query runs that were executed as a result of executing that

query (i.e., for query run Q
r
we define its output O(Q

r
) as O(Q

r
) =⋃︁

Q
r
←−Q′

r

O(Q
′
r
), where Q

r
←− Q

′
r
denotes the set of query runs Q

′
r

triggered by Q
r
; similarly for inputs). Furthermore, we define the

provenance of a query as the set union of the provenance of its

query runs (i.e., for query Q
s
we define its output O(Q

s
) as O(Q

s
) =⋃︁

Q
s
←−Q

r

O(Q
r
), where Q

s
←− Q

r
denotes the set of query runs Q

r
for

the query Q
s
; similarly for inputs). Note that provenance is defined

recursively for both definitions. The base case is the provenance of

individual statements. Similar to prior work, what constitutes an

input or output of each individual statement is based on the SQL

semantics of the statement type (e.g., a CREATE TABLE X statement

has X as output); we discuss more on this in Section 4.4.

Note that by using the set union operator to aggregate prove-

nance, we end up deduplicating multiple instances of an input or

output dataset into a single dataset instance (e.g., in our example, if

we execute SyncNewSales multiple times, each resulting in execut-

ing a query INSERT SalesHistory..., our set union semantics

will lead to having SalesHistory as output of SyncNewSales only

once). This design enables providing an overview of provenance

with reduced noise (e.g., provenance of a stored procedure shows

only single instances of inputs and outputs). At the same time, we

still allow drilling down to capture all the details with respect to

the alternative instances (e.g., on the provenance of the queries of

the stored procedure). We discuss more on this in Section 4.5.

Finally, note that although input/output relationships in Apache

Atlas can encode the input/output datasets of a process, they can-

not encode which input contributes to which output. This would

require a ternary relationship (i, p, o): input i contributes to output

o through process p. Since Apache Atlas only supports binary

relationships, a common workaround is to introduce the relation-

ship (i, p, o) as an attribute of the process (typically serialized as a

dictionary). Importantly, we still need to extract the Apache Atlas-

based input/output relationships, despite being redundant with the

information from the relationship (i, p, o), because other Apache

Atlas features (e.g., provenance visualization or label propagation)

rely on them. While not ideal, we opt for this workaround in favor

of complying with the Apache Atlas open standard.

So far, we have introduced our provenance data model that forms

the output of our system. Next, we discuss on the input: query logs.
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Figure 3: Events for activity EXECUTE SyncNewSales 2 (ordered based

on the event triggered time). Each event is associated with activity id,

event type, query text, and othermetadata not shown for brevity (e.g.,

time triggered, CPU time, or on whose behalf a query was executed).

3.2 Query Log

We assume a database creates a query log as a side effect of query

execution.Wemodel a query log as an ordered set of events (ordered

based on event trigger time). Next, we discuss the semantics we

require from query logs. To ease our discussion, Figure 3 shows a

query log created by Azure SQL DB for our running example.

Event types. Each event is associated with a query run, and can

have one of the following two types: 1) started and 2) completed,
indicating the start and completion of the corresponding query

run, respectively. Furthermore, we assume each event has a type

to encode whether its corresponding query is an individual or

batch statement. For instance, in Figure 3, event types include

[sql|sp]_statement_[started|completed] indicating the start
and completion of ad hoc statements and statements of a stored

procedure. For batches, such event types would be sql_batch_-
[started|completed] (not shown in Figure 3 for brevity).

Event schema. Each event can contain a rich set of runtime meta-

data (e.g., who, when, and from where executed a query run and

for how much CPU time). As such, each event can be modeled as a

record, where each piece of metadata is represented as an attribute.

Note that events can have different schemas depending on whether

they correspond to the start or completion of a query run, and indi-

vidual statements or batches. For instance, only completed events

contain how much CPU time was required by a query run.

Activities. Events in a log are grouped into activities, with each

activity comprising a set of events triggered for correlated query

runs. For instance, in Figure 3, all events belong to the same activity

identified as 3. In general, such grouping is required to identify the

set of dependent query runs of each query run, which is a critical

step towards addressing L2-3 of Section 1. Going back to our exam-

ple, we use this information to deduce what queries have been run

as part of SyncNewSales and CleanAndAppendSalesHistory; we

discuss this in more detail in Section 4.2. (Note that in Figure 3, the

activity id is provided by Azure SQL DB if causality tracking is en-

abled [84]. Not all databases provide such a capability, however. Yet

every database needs to track such information for query execution

purposes. Hence, we believe our discussion could also inform what

databases need to log for effective provenance extraction purposes.)

Figure 4: OneProvenance Architecture. Main components in One-

Provenance’s processing flow are in black boxes, and annotated

with types of inputs and outputs. Grey boxes are optional compo-

nents and can be used in various components of the main flow.

3.3 Problems of Focus

Having defined our model and query log, our goal is twofold:

Provenance graph extraction: First, we aim to extract the prove-

nance graph based on our model in Section 3.1. Formally, given a

query log, our goal is to: (1) create the provenance graph P(V, E)

by extracting edges E = {i

Q

←→ o | i ∈ I(Q) ⊆ V and j ∈ O(Q) ⊆ V},

where Q is either a query run or its static counterpart, and types of

inputs I(Q) and outputs O(Q) are relations (encoding relation-level

provenance) or columns (encoding column-level provenance), and

(2) associate nodes and edges in the provenance graph (i.e., inputs,

outputs, and queries) with metadata from events. We discuss how

OneProvenance addresses this problem in Section 4.

Noise reduction: Second, recall from Section 1 that a major limita-

tion of existing dynamic extractors is that they treat every query in a

query log as equally important, often resulting in noisy provenance

graphs (L4). Hence, we aim to develop techniques to reduce the

noise in the provenance graph and optimize the extraction process.

We describe our filtering optimization techniques in Section 5.

4 ONEPROVENANCE

We are now ready to introduce OneProvenance, our provenance

extraction engine. Its architecture is shown in Figure 4.

Overview. In short, events emitted by the database due to query

execution are stored in an Events Log Storage (Section 4.1). Activ-

ity Collector then reads these events periodically; identifies SQL

activities; and builds an internal representation for each activity,

namely, QQTree, that encodes dependencies between query runs in

the activity (Section 4.2). For each activity, the identified QQTree is

pushed to Runtime Information Extractor (Section 4.3) and Prove-

nance Extractor (Section 4.4) components. The former is responsible

for extracting queries, query runs, and their relationships based on

information encoded in the QQTree. The latter extracts provenance

information from individual statements in the QQTree. The outputs

of both components are encoded according to our provenance data

model of Section 3.1. These outputs, along corresponding QQTrees,

are then fed to the Stitcher component (Section 4.5), that (a) stitches

the per-statement provenance from Provenance Extractor to the
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Figure 5: Example visualization of activity and QQTree construction.

Solid and patterned fills indicate started and completed events, re-

spectively. Blue, orange, and green boxes denote execution of batches,

stored procedures or triggers, and statements, respectively.

queries and query runs extracted by Runtime Information Extrac-

tor, and (b) aggregates provenance to parent nodes and across runs

(per L2-3). The end result is an instance of our data model that

gets uploaded to the external Data Catalog through Uploader. Fi-

nally, we introduce hook points (Section 4.6) into OneProvenance

components to enable extensibility and optimizations (per L4).

We next discuss the role of each component and how OneProve-

nance addresses technical challenges per component. Note that

OneProvenance is agnostic to the source database since we expect

logs with specific semantics (Section 3.2). To ease our discussion,

however, we consider Azure SQL DB as source database, since this

is also the one we currently support in Microsoft Purview.

4.1 Event Logs Storage

At a high level, queries admitted to a database trigger the generation

of events that are persisted by the database in a storage of event

logs, as shown in Figure 4. We assume that the type of store can be

provided as a configuration to the database. For instance, in Azure

SQL DB, such events are known as xEvents, and the corresponding
xEvent Store can be a local or remote file system, or even a finite

memory buffer within the database server [84]. The choice of store

is mainly influenced by the application needs and cost constraints.

We have opted for Azure Storage [13] for our Event Logs Storage

because this was the cheapest option among alternatives.

4.2 Activity Collector

The Activity Collector identifies activities and builds QQTrees that

encode query execution dependencies in these activities. To do so,

it retrieves new events from the Event Logs Storage, parses and

groups events into activities, sorts activities by their trigger time,

and constructs a QQTree per activity based on events of the activity.

To fetch events, the Activity Collector runs periodically (by de-

fault every 6 hours). To guarantee that activities that span multiple

OneProvenance runs will eventually be processed, all while pro-

cessing activities only once, OneProvenance uses checkpointing

for runs: only events of activities that have at least one event created

after the start of the last run of OneProvenance will be processed.

Figure 5a illustrates an event log retrieved by the Activity Collec-

tor: each box represents an event, and the color and fill patterns are

used to identify event type differences. In particular, blue, orange,

and green boxes correspond to events for batches, stored proce-

dures or triggers, and statements, respectively. Execution of each

query results in the generation of two events: started (solid fill) and

completed (patterned fill) events. The Activity Collector uses event

attributes to build the QQTree for each activity, shown in Figure 5b.

Algorithm QQTree Construction

Input: Events EA = {e1 , . . . , en} of a SQL activity A ordered by time

triggered: e
time

1
< . . . < e

time

n
with e

time

i
denoting the time ei was triggered.

Output: QQTree XA for SQL activity A.

1. xStack:Stack[(event, node)] = ∅
XA :QQTree = ∅
curParent:QQTreeNode=nil

2. for each event e in EA do

3. if isStartedEvent(e) then

4. node = Node(e, curParent)

5. if xStack.isEmpty() then

6. XA .AddRoot(node)

7. curParent = node

8. else

9. curParent.AddChild(node);

10. if startsSubTree(e) then

11. curParent = node

12. xStack.Push((e, node))

13. else

14. (startedEvent, node) = xStack.Pop()

15. if CheckErrors(startedEvent, node, e) then

16. Abort()

17. node.SetCompleted(e)

18. if startsSubTree(startedEvent) then

19. curParent = node.parent

20. if !xStack.Empty() then

21. Abort()

22. return XA

Figure 6: QQTree Construction Algorithm.

A QQTree is constructed by reading the events of an activity in

the order that events were triggered, as shown in the algorithm

of Figure 6. When a started event is encountered (lines 4-12), we

generate a new node of the QQTree for this event (line 4), and push

the node along the event into the stack (line 12). The new node

either becomes the new root if the stack is empty (lines 5-7), or is

appended to the children of the current parent (line 9). Importantly,

the new node becomes the current parent (line 11) if the event

corresponds to the start of a query that might result in the execution

of other queries as part of it (e.g., stored procedure). If a completed

event is encountered (lines 14-19), we first pop the started event

and corresponding QQTree node from the stack (i.e., the completed

event matches the started one at the top), and store the completed

event in the popped node (line 17). Also, the parent of the popped

node becomes the current parent if the popped node starts a subtree

(lines 18-19). Finally, the algorithm checks for errors and aborts

accordingly (lines 15-16, 20-21). Errors include malformed logs (e.g.,

activity starts with a completed event or a completed event matches

a started one of a different type/query) or activities that have not

finished execution (i.e., started events left in the stack).

Time and space complexity. The QQTree construction algorithm

runs in O(n) time (n being #events in an activity) by exploiting the

ordering of events in the activity (i.e., a completed event always

matches the started one at the top of stack). Space-wise, since only

started events are pushed in the stack and generate a node in the

QQTree, the extra space required is O(m) (m being #started events).

Example 1. Consider the execution of SyncNewSales of our run-

ning example (Figure 1), and its corresponding query log fromAzure

SQL DB (Figure 3). (Recall all statements executed as part of Sync-

NewSales belong to the same activity.) The corresponding QQTree

is shown in Figure 7. Log entries and QQTree nodes have been color-

coded to denote matching of started and completed events along
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Figure 7: QQTree encoding query dependencies for the activity

EXECUTE SyncNewSales 2. In every node, OneProvenance tracks

metadata available in the events that the node originated from.

Figure 8: Runtime Information Extractor visits the nodes of QQTree

of each activity to generate entities and relationships related to query

and query runs per our provenance model of Section 3.1.

which QQTree nodes they contribute: The parent node denotes the

execution of EXECUTE SyncNewSales 2, with children being all

queries executed as part of EXECUTE SyncNewSales 2 colored in

green. Since SyncNewSales calls the stored procedure CleanAndAp-

pendSalesHistory, queries executed as part of CleanAndAppend-

SalesHistory become children of CleanAndAppendSalesHistory,

and introduce a second level in the QQTree colored in purple.

4.3 Runtime Information Extractor

Given a stream of identified activities, the goal of Runtime Informa-

tion Extractor is to instantiate entities and relationships based on

OneProvenance’s model. To do so, it analyzes events and query

dependencies per activity using the corresponding QQTree.

Concretely, the extractor visits the nodes of a QQTree in a DFS

traversal. If a visited node corresponds to a stored procedure exe-

cution, the extractor generates the corresponding stored procedure

and stored procedure run entities (initiating their attributes, such as

query text or CPU time, based on event metadata in the node), along

with a relationship tying the stored procedure and its runs. Similar

is the case for batches and individual statements. If a statement run

X is part of a stored procedure run Y (similarly for batch), then a

containment relationship is instantiated to encode that X is part

of Y. Finally, a client connection is associated with run entities to

encode which server and application triggered the execution.

To illustrate this process, consider again our running exam-

ple. Figure 8 shows the entities and relationships generated by

visiting (some of) the nodes of the QQTree of Figure 7. Visiting the

root EXECUTE SyncNewSales 2 results in generating the stored

procedure and stored procedure run entities for SyncNewSales (blue

boxes) along with a relationship between the stored procedure and

its run. Similarly, visiting its child generates the nodes associated

with CleanAndAppendSalesHistory. Note that the statement EXE-
CUTE CleanAndAppendSalesHistory @trackingSystemVersion,
that triggers the stored procedure CleanAndAppendSalesHistory,

Figure 9: Provenance Extractor takes as input a QQTree and gener-

ates a script with the queries of the activity (SQL Script Generator).

By analyzing the script it extracts entities (e.g., tables or columns)

and their provenance relationships (SQL Script-Based Provenance

Extractor). For proper identification of provenance relationships,

cataloged information (e.g., table definitions) can be embedded in

the script by accessing State (i.e., database catalog, catalog populated

by previous runs of OneProvenance, or cached copies of them).

is executed as part of SyncNewSales. Hence, besides generating

the stored procedure and stored procedure run entities, OneProve-

nance also generates the stored procedure statement run and the

containment relationship with the SyncNewSales run entity. The

case for the INSERT statement is similar, resulting in a stored proce-

dure statement run and a containment relationship with its parent

stored procedure run CleanAndAppendSalesHistory. Finally, all

run entities are associated with the client connection that initiated

the stored procedure execution.

The main focus of the Runtime Information Extractor is on ex-

tracting entities and relationships related to processes (queries and

query runs). Extracting datasets and provenance relationships is

the focus of Provenance Extractor and Stitcher that we discuss next.

4.4 Provenance Extractor

Provenance Extractor takes the stream of identified activities and

extracts provenance relationships and datasets (e.g., tables, views,

and columns) according to the data model of OneProvenance.

The main components that comprise Provenance Extractor are

highlighted in Figure 9: (1) SQL Script Generator and (2) SQL Script-

Based Provenance Extractor. The former takes the stream of ac-

tivities identified by Activity Collector and generates a SQL script

per activity that includes the series of queries executed as part of

the activity. The script is generated in a DFS pre-order traversal

of the QQTree that appends the query text of each visited node

to the script. Then this script is analyzed statically by the latter

component, extracting dataset entities and provenance relation-

ships from it. Importantly, SQL Script Generator is responsible for

location tracking (i.e., mapping queries back to QQTree nodes they

come from). This is necessary for stitching extracted provenance

information with runtime information, as we will see in Section 4.5.

To ensure the correctness of the output entities and provenance

information, one key technical challenge that provenance extractors

need to address is binding objects in a query to catalog objects. For

instance, for the query INSERT SalesHistory SELECT * FROM
StagedSales, we need to know the schema of SalesHistory and

StagedSales to provide column-level provenance. There are many
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Figure 10: Stitcher operates on the outputs of Runtime Information

and Provenance Extractors: unions entities and relationships from

their outputs, stitches provenance from Provenance Extractor to

statements extracted by Runtime Information Extractor, and aggre-

gates provenance from statements to parent queries and query runs

(e.g., stored procedures and their runs) based on the QQTree.

ways binding information can become available to a provenance

extractor. OneProvenance supports the following three cases.

First, queries appearing in a query log may already be bound (e.g.,

* in our example bound to the StagedSales columns). This is an

ideal situation because it allows provenance extractors to operate

in a stateless fashion. To be more precise, the ideal situation would

be if objects in the query are mapped to their name and id in the

source database catalog. This is because names alone may not be

unique over time (e.g., if we create, drop, and then create a table

with name X, then X may refer to the table before or after the drop).

If binding information is unavailable, OneProvenance needs

to infer it. To do so, Provenance Extractor maintains state to mir-

ror the source database catalog. Hence, a second case supported

by OneProvenance is to infer binding based on available state.

However, it is possible that state is either unavailable or not in sync

with the database state (e.g., Provenance Extractor runs on logs

post-mortem when the database catalog is unavailable). Under this

third case, OneProvenance extracts provenance under ambiguity,

resorting to all-inputs-affect-all-outputs in the worst case.

Overall, we believe provenance extractors need to support all

three cases, and customize behavior based on query workloads and

log semantics. If a database catalog does not change, mirroring is a

sensible option. Otherwise, either the log ensures strict serializabil-

ity [14] for catalog replay or queries in the log need to be bound. If

such approaches are infeasible, provenance extractors should run

under best-effort semantics, making suggestions under ambiguity.

4.5 Stitcher

The goal of the Stitcher is two-fold: (1) union the set of entities and

relationships from Runtime Information and Provenance Extractors,

and (2) attach and aggregate provenance from Provenance Extractor

to the process entities from Runtime Information Extractor.

Back to our running example, consider the inputs to Stitcher

from Runtime Information and Provenance Extractors (Figure 10).

For individual statements, the Stitcher attaches the provenance

extracted by Provenance Extractor to the corresponding query

and query run entities from Runtime Information Extractor. To

Figure 11: Hooks in the logic of the Activity Collector.

do so, SQL Script Generator performs location tracking to map

statements in the SQL script to QQTree nodes they came from, as

discussed in Section 4.4. Similarly, Runtime Information Extractor

maps output entities to QQTree nodes they come from. Stitching

is then performed by going from statements in the SQL script to

QQTree nodes they come from and, from there, to corresponding

query and query run entities.

Finally, note that Provenance Extractor extracts provenance at

the statement level. Stitcher is also responsible for aggregating the

provenance information across runs and to parent entities follow-

ing the QQTree structure. (Aggregation adheres to the set union

semantics of Section 3.1.) For instance, StagedSales is aggregated

as input to (a) the parent SyncNewSales run from the statement

INSERT SalesHistory ... and (b) the SyncNewSales stored pro-

cedure. The end result for our example is shown in Figure 10.

The last component in the main flow of OneProvenance is Up-

loader that uploads the instantiated provenance model to external

Data Catalogs. This step is trivial, and we defer a discussion in [71].

4.6 Hook Points and Code Injection

OneProvenance introduces hook points in its components to en-

able custom logic injection. These hook points are central to the

extensibility and optimizations of OneProvenance. In particular,

hooks are used extensively for filtering optimizations (Section 5)

but also for monitoring and debugging. Next, we discuss on hooks

in Activity Collector; principles are similar across components.

The extraction logic in Activity Collector consists of four sub-

components (see Figure 11): (1) download batch of events from

Event Logs Storage, (2) parse and deserialize events into activities,

(3) sort activities temporally, and (4) construct a QQTree per activ-

ity. Activity Collector then exposes a set of hook points for code

injection. •s correspond to points at the start of (sub-)components

while⋆s are points at the end of (sub-)components. ■s correspond
to points right before a component sends its results to other com-

ponents, while ♦s correspond to points after sending these results

(i.e., when the control flow returns to the component). Finally, ▲s
correspond to points right before the end of loops over data items

of focus in (sub-)components. For instance, we can use the ▲ point

when constructing QQTrees to filter QQTree nodes that are not

interesting for provenance applications. For a discussion on pro-

gramming interfaces and state exposed on hook points, see [71].

5 OPTIMIZATIONS

So far, we have presented the workflow of OneProvenance, assum-

ing that every event in a log is equally important. Based on customer

feedback, however, this assumption is rarely true in real-world ap-

plications. This is because event logs contain either uninteresting

(e.g., system maintenance or statistic generation queries) or redun-

dant (e.g., queries executed in loops) information that is overall

not useful for business purposes. As such, extraction over all such

events results in performance overheads only to extract noise.
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In this section, we present simple yet powerful application-aware

filtering optimizations for reducing the emitted noise. These opti-

mizations have yielded up to four orders of magnitude performance

improvements in customer workloads. Provenance applications of

such customers include end-of-fiscal-year audits, data observability

(e.g., are outputs of a stored procedure updated?), data estate under-

standing (e.g., which datasets are produced by a stored procedure?),

context-based analytics [53], or impact and root cause analysis.

As shown in Figure 4, the main items in the flow of OneProve-

nance are events, queries, activities (each modeled as a QQTree

or series of events), entities, and relationships. Our filters can be

applied on such items throughout the flow of OneProvenance:

Loop compression. Loops executing queries iteratively introduce

redundancies in the extracted provenance information and can

overwhelm a provenance extraction system. To prevent this issue,

OneProvenance introduces a filter that groups QQTree nodes

originating from multiple iterations of the same loop. Then, One-

Provenance can be configured to keep only the latest k iterations

of the loop. Using this filter, we avoid calling Provenance and Run-

time Information Extractors with a sheer volume of queries and,

thus, overloading the data catalog and applications with noise. Ad-

ditionally, this filter reduces the working memory per activity.

Drop uninteresting queries. OneProvenance can also avoid

capturing the provenance of uninteresting queries—to better meet

application needs. In particular, queries can be matched based on

several factors, including their type (e.g., SELECT or CRUD state-

ments), syntax tree (e.g., queries to compute statistics in Azure SQL

DB are structured as SELECT STATMAN(...) FROM T), access or not
to tables and columns (e.g., SET @a=2), or their query text itself (e.g.,
queries not matching a regular expression). For each matched query,

we can either (a) drop the QQTree node corresponding to the query

altogether or (b) consider the node in Runtime Information Extrac-

tor and ignore it in Provenance Extractor (e.g., filter out SET @a=2
from Provenance Extractor since it has no provenance, but consider

it in Runtime Information Extractor for metadata extraction).

Drop uninteresting activities.OneProvenance can also drop ac-

tivities if they contain uninteresting queries. For instance, filtering

out activities that do not contain DDL queries or stored procedure

executions is common in OneProvenance deployments.

Filters on event metadata.OneProvenance can also drop events

and activities by filtering on event metadata. For instance, the

condition client_app_name=’SSMS’ or username=’sa’ can filter
out events for queries coming from SSMS or by the system admin

sa. Furthermore, recall that activities can be modeled as an ordered

set of events (Section 3). As such, conditions on event metadata can

be used to drop activities as opposed to individual events (e.g., to

focus only on activities with long-running queries, we can filter out

any activity with duration < X seconds for all completed events).

Filters on activities from uninteresting connections. Based on

the above filters on event metadata and activities, OneProvenance

can filter out an activity if it is coming from an uninteresting con-

nection. A connection is considered uninteresting if (a) it has no

interesting queries or (b) has interesting queries, but it does not

include any of their last K executions (e.g., last K executions of inter-

esting stored procedure X). Note that this optimization guarantees

extraction from at least the last K executions of an interesting query,

but OneProvenance can still extract provenance from more than

K executions. This is because another interesting query (e.g., stored

procedure Y) may be in the connection, rendering the connection

interesting (e.g., the execution of X is in the last K executions of Y).

Under such a case, OneProvenance can be configured to either

consider all queries interesting or keep only the ones matching the

last K semantics (e.g., keep Y and filter out X). The former is im-

portant to provide execution context (e.g., stored procedure Y was

called after executing X), while the latter is preferable for further

noise reduction when no such context is necessary. As we will see

in the experiments, the overall effect is a substantial noise reduction

and a significant improvement in extraction latency.

Drop levels of aggregation. OneProvenance can also be con-

figured to emit provenance at different levels of aggregation to

account for different application needs. For instance, an application

may not be interested in provenance at the SQL statement level but

rather at coarser levels (e.g., stored procedure level), or vice versa,

and OneProvenance can emit provenance at the requested level.

Drop events. So far, we have assumed that logs emitted by database

engines are complete and filters on events preserve the semantics

of Section 3.2. However, for certain workloads (e.g., heavy transac-

tional) database engines emit a significant amount of events. Even

though OneProvenance optimizes the extraction process by rely-

ing on logs with query text (as opposed to query plans), such heavy

workloads can introduce high overhead to both the database and

provenance extractor. For such loads, OneProvenance can con-

tinue operating by dropping events from the input query log. In our

experiments, we will show how event retention options supported

by xEvents (dropping events based on event buffer availability) can

allow OneProvenance to process such high transactional loads.

6 INTEGRATIONWITH PURVIEW

Microsoft Purview is a governance platform that allows organiza-

tions to govern (e.g., catalog, overview, secure, analyze, and audit)

their data estate. To extract metadata and provenance, Purview

provides a rich collection of extractors. Each extractor can connect

to an underlying data system to extract metadata and provenance.

Extraction can be scheduled either as one-off or recurring. The

output of extraction is metadata and provenance modeled based on

Apache Atlas-based data models. Purview then ingests and stores

instantiated data models in its underlying Data Catalog, on top of

which it exposes data governance functionalities.

Based on this design, the integration with OneProvenance is

straightforward. Recall OneProvenance currently supports extrac-

tion from Azure SQL databases. When a customer requires dynamic

provenance, Purview sets up an xEvent session in the correspond-

ing Azure SQL database, and the database starts emitting xEvents
in Azure Storage. (Note that for security purposes the blob storage

is owned by customers and managed by Purview.) Then, Purview

schedules OneProvenance to run periodically (currently, every 6

hours). When executed, OneProvenance analyzes the underlying

logs, as discussed in Section 4, and pushes the extracted metadata

and provenance to Purview. Regarding optimizations, Purview em-

ploys all optimizations discussed in Section 5 to decrease the noise

of the extraction as much as possible. (We defer a discussion to [71]

on default filter configurations.) Finally, note that users can also

alter filters, as we also perform in our experiments.
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7 EXPERIMENTS

We now present our thorough evaluation of OneProvenance with

the goal to (a) compare OneProvenance with state-of-the-art ex-

traction techniques and (b) demonstrate the benefits of our opti-

mizations on performance improvement and noise reduction.

We begin by briefly describing our experimental setup.

Workloads and databases. For our experiments, we generate

workloads using (1) SQL-ProcBench [48], (2) TPC-H, (3) TPC-DS,

and (4) TPC-C benchmarks. These workloads provide a mix of

both real-world and realistic OLAP and OLTP use cases to help

us show the application of OneProvenance and its performance

across a wide spectrum of database workloads. Note that Microsoft

Purview does not log customer workloads internally—to comply

with privacy requirements. Moreover, the extracted provenance

is only accessible by authorized customers. Hence, it is infeasible

to run experiments using real customer workloads. Through the

workloads of our experiments, however, we have reproduced the

key insights that we observed in production workloads, drove the

design of OneProvenance, and discussed throughout the paper.

SQL-ProcBench is designed using insights derived from an anal-

ysis of SQL queries, UDFs, triggers, and stored procedures in 6500

real-world applications [48]. The workload uses the TPC-DS dataset

and consists of 63 stored procedures, out of which we selected 35

that can be run multiple times. In our experiments, we generate

the TPC-DS database with scale factor set to 1. For a database of

this size, we observed an average of 207 SQL statement runs for the

selected stored procedures, including (1) 8 statements originating

from nested triggers, (2) 48 statements originating from UDFs, (3) 33

total loop iterations, and (4) up to 6 levels of nested dependencies.

TPC-H and TPC-DS are standard benchmarks for performance

evaluation of decision support systems. They consist of 22 and

99 ad hoc analytical queries, respectively. For workloads using

these queries, we generated the corresponding TPC-H and TPC-

DS databases with scale factors 1 and 10. (Insights on TPC-H and

TPC-DS are similar for both scale factors. As such, we report results

mainly on TPC-H with scale factor 1 to avoid redundant insights.)

TPC-C is a standard benchmark for performance evaluation of

OLTP systems. In contrast to prior analytical workloads, which are

the traditional focus of dynamic provenance extraction systems,

the transactional load of TPC-C serves as a stress test that can help

us identify the extent of our coverage over high-load workloads.

It involves a mix of 5 concurrent transactions of different types

and complexity. We generated a database with 40 warehouses, and

observed 109 statement runs per transaction on average. The work-

load mainly consists of many low-latency simple statements, but

also includes IF conditions and up to 16 iterations of WHILE loops.

Workload Generator. We used HammerDB [50, 51], an open-

source benchmarking tool hosted by TPC, to generate and run

workloads based on TPC-C, TPC-H, TPC-DS, and SQL-ProcBench.

For TPC-C and TPC-Hworkloads, HammerDB builds a configurable

#client threads to concurrently run a configurable #transactions

(for TPC-C) or #queries (for TPC-H). Also, we extended HammerDB

to generate workloads from SQL-ProcBench and TPC-DS, with the

same configurations (i.e., #client threads, #transactions, #queries).

Platform.We run all workloads against a serverless Azure SQL DB

instance [79], with 8 cores and 24 GB memory, which emits logs to

an Azure Storage account. HammerDB and OneProvenance are

installed on a Standard D8s v3 Azure VM (8 cores, 32 GB memory).

All resources and services are deployed in the same Azure region.

Outline. We start our discussion by breaking down the perfor-

mance of OneProvenance in comparison with state-of-the-art

prior work (Section 7.1), followed by experiments highlighting the

benefits of our optimizations (Section 7.2), and concluding with a

discussion comparing OneProvenance with SAC [81], Spline [75],

and the OpenLineage Spark extractor [36] (Section 7.3). Settings

and compared techniques are outlined inline, per experiment.

7.1 OneProvenance Performance Breakdown

We start our experiments with a performance breakdown of the dif-

ferent extraction components in the OneProvenance architecture.

Note that our goal is to compare OneProvenance against state-

of-the-art techniques for the provenance capture problem of our

focus. Such techniques are employed by dynamic provenance ex-

traction systems (e.g., SAC [81], Spline [75], and OpenLineage for

Spark [36]). These systems, however, target Spark as their source of

query event logs. In contrast, OneProvenance targets Azure SQL

DB. Differences in logging by Spark and Azure SQL DB, and overall

network topology of systems (e.g., SAC and Spline run in the master

node of Spark, OpenLineage uses Azure functions, and OneProve-

nance runs outside of Azure SQL DB) are the main reasons why

performance comparisons do not reveal meaningful insights on the

core provenance capture problem of our focus.

At their core, however, these systems operate on query plans. As

such, we alter OneProvenance to operate on plans to mimic the

behavior of these extractors in Azure SQL DB, and perform mean-

ingful comparisons. We denote this system (OneProvenance with

physical plans as input) as QPlan and compare it with OneProve-

nance. (A discussion on SAC, Spline, and OpenLineage is included

in Section 7.3.) To better understand overheads on source databases,

we also compare OneProvenance and QPlanwith query execution
without provenance capture (denoted as Baseline).

7.1.1 Logging. The first major difference between OneProve-

nance and prior work is on logging events. Prior work uses events

with query plans, whereas OneProvenance uses only events with

query text. Hence, next, we compare the database overheads be-

tween logging query plans (prior work) and text (OneProvenance).

In comparison. More specifically, recall from Section 3.2 that

Azure SQL DB provides a configurable query log architecture that

allows us to log events of different types. OneProvenance logs

started and completed events for executions of sql_statement,
sp_statement, and sql_batch. To mimic the behavior of state-of-

the-art dynamic provenance extractors that rely their extraction on

plans, we introduce QPlan that logs the query_post_execution_-
plan_profile event type that carries query plans. Note that QPlan
logs the query_post_execution_plan_profile event type on top
of the rest of the event types because the query text and runtime

metadata (that are carried only in the rest event types) need to be

in the output provenance models (of both ours and prior work)

anyways. To compute the overhead of each technique, we use the

performance of the database with logging turned off as Baseline.
Metrics. We compare OneProvenance and QPlan on logging

based on their I/O requirements and database overheads. For the
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(a) TPC-C (b) TPC-H (c) SQL-ProcBench

Figure 12: Characteristics of query text (OneP) vs. query plan (QPlan)
logging across different workloads. Characteristics include #events

and required storage (in KBs) per transaction, query, or stored pro-

cedure. The results show that QPlan events are significantly larger.

former, we report the size of logs (in KBs) and number of events

per granularity of interest (i.e., KBs and #Events per transaction for

TPC-C, query for TPC-H, and stored procedure for SQL-ProcBench).

For the latter, we rely on transaction rate (TPM) metric, average

execution latency (in ms), and database CPU utilization (in % used).

Figure 12 shows the results of our comparison on I/O require-

ments for the different workloads of our experiments.

I/O requirements. Across workloads, we observe that QPlan logs

a few more events per granularity of interest. For instance, TPC-

C transactions run 109 SQL statements on average—hence, the

database emits at least 218 (started, completed) event pairs. QPlan

captures 263 events due to the extra logging of query_post_execu-
tion_plan_profile. As query plans are intrinsically large, QPlan
logs require up to ~18X larger storage compared to OneProve-

nance logs. This means query plan logging exhibits a very high

demand for critical event buffer and I/O resources, that put prohib-

itive pressure on the database engine and event storage (esp. for

high-load workloads). (Note that allocating a large event buffer is

not recommended [25], and, indeed, in our experiments, increasing

the buffer did not yield better results for plan-based logging.)

Next, we analyze the overheads of logging on database perfor-

mance (Figure 13) while increasing the client threads to collect ad-

ditional data points. For this experiment, we focus only on TPC-C:

due to the high-load and low-latency requirements of transactional

workloads we consider TPC-C a stress test in our setup.

Impact of logging on database performance. Figures 13a to 13c

show that logging query plans (QPlan) leads to significantly lower

TPM (up to 3× lower), higher CPU utilization (up to 2× increase),
and slower transaction execution (up to 3× increase in transaction

execution latency). Finally, Figures 13a to 13c also highlight that

the performance numbers (TPM, CPU, transaction latency) of One-

Provenance are negligible wrt. those of the baseline, indicating

that OneProvenance can still operate on such transactional work-

loads without regressing the database performance considerably.

Takeaways: Our results highlight that relying on query text, as

opposed to query plan, significantly improves logging performance

(18× less storage) and database overheads (negligible overheads,

avoiding 2-3× lower TPM, slower transaction latency, and higher

CPU of query plans). We conclude that provenance extractors rely-

ing on query text are low-cost and more practical solutions.

(a)Avg. TPM (b)Avg. DB CPU load (c)Avg. Tx Latency

Figure 13: Comparison of Tx/min (TPM), CPU load, and Tx latency

overheads of query text (OneP) vs. query plan (QPlan) logging over

no logging (Baseline) for 8 and 32 clients running TPC-C workloads.

7.1.2 OneProvenance Components. We now focus on the perfor-

mance evaluation of the main OneProvenance components (both

in isolation and end-to-end). Our analysis focuses on understanding

the performance of (1) OneProvenance and its components, (2)

OneProvenance compared to QPlan on provenance extraction,

and (3) aggregating provenance information.

Benchmarks. For this analysis, we used HammerDB to run 25 iter-

ations of TPC-H and SQL-ProcBench query sets. These workloads

can better reveal the performance of OneProvenance components

and the overheads of QPlan, since they contain complex analytical

queries. Furthermore, we run the TPC-C workload with #transac-

tions ranging between 8K and 32K. With this workload, we aim to

test how OneProvenance scales as query loads increase.

In comparison. In this experiment, we run OneProvenance with

two optimizations on. More specifically, we enable the filtering out

of activities from uninteresting connections and loop compression

optimizations. For both, we enable their most aggressive filtering

out options (i.e., admit only activities with the latest runs of SPs and
last loop iterations). These optimizations and their configurations

are on by default in production deployments and, as such, better

reflect OneProvenance’s performance. (We discuss the perfor-

mance of OneProvenance with and without these optimizations

in Section 7.2.) Finally, we compare OneProvenance with QPlan.

Note that, to gain meaningful insights on overheads of processing

query plans, we enable the same set of optimizations for QPlan.

Components.We break down the latency of OneProvenance per

component: (1) ProvEx (Provenance Extractor), (2) Stitcher, and (3)

RInfo (Runtime Information Extractor). For Activity Collector, we

drill down into its sub-components for moremeaningful insights: (4)

LgRead (download logs from event storage), (5) LgPars (deserialize
events from logs), and (6) QQT (analyze events and build QQTrees).

Query plan processing overheads. As seen in Figure 14a for

SQL-ProcBench, processing plans (QPlan) is 2× slower compared to

OneProvenance’s processing query text. This is because LgRead,
LgPars, and QQT for QPlan have to process 10× additional log bytes—
dominating the end-to-end latency. Extraction from TPC-H logs

witnesses similar overheads, shown in Figure 14b. Recall that the

TPC-H query logs are rather small (e.g., logs corresponding to 100

iterations of the 22 queries are less than 30 MB). Consequently,

LgRead, LgPars, and QQT (Section 4.4) terminate rather quickly. Fi-

nally, for both workloads ProvEx has sizeable latency requirements;
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(a) SQL-ProcBench (b) TPC-H (c) TPC-C

Figure 14: Latency (end-to-end and by component; measured in sec-

onds) of OneProvenance and QPlan on (a) SQL-ProcBench and (b)

TPC-H, and OneProvenance latency while increasing #Tx in (c)

TPC-C. Main results include: 1) processing query plans (QPlan) is

costlier than query text (OneProvenance), 2) latency of aggregat-

ing provenance is negligible compared to other components, and

3) latency of OneProvenance increases linearly with query load.

this is expected since TPC-H and SQL-ProcBench contain complex

analytical queries. Interestingly, we observed that the latency of

ProvEx for QPlan is a bit higher than the one of OneProvenance

primarily due to the difference in the sizes of plans and query texts.

Provenance aggregation. As also seen in Figure 14a, the latency

required for aggregating provenance information (Stitcher) is negli-

gible in comparison to the ones required by other components. As

such, OneProvenance addresses the limitations L2-3 of prior work

originating from lack of aggregations (as discussed in Section 1) by

incurring a negligible overhead in provenance extraction.

Stress test-Latency under query load increase. Figure 14c il-

lustrates that OneProvenance remains stable when subjected to

higher loads, and the end-to-end latency increases linearly with

the load. (QPlan incurs prohibitive costs for TPC-C as we discussed

in Section 7.1.1 and we omit its performance). Furthermore, an in-

teresting insight from this experiment is that the extraction engine

spends the majority of its time in LgPars and QQT tasks. This is

because TPC-C consists of many low latency queries which are

executed repeatedly, thousands of times. In such a workload, our

default optimizations manage to filter out repetitive queries. These

optimizations are applied right after QQT (i.e., after the Activity

Collector)—leading to reduced load for ProvEx, RInfo, and Stitcher,

and explaining why LgPars and QQT dominate the latency.

Takeaways: Overall, our results highlight (1) the importance of

avoiding query plans for provenance extraction, (2) that aggregating

provenance has negligible overhead, and (3) OneProvenance is

an efficient provenance extraction system to the extent that it can

support even considerably high transactional workloads.

7.2 Optimizations

As discussed in Section 5, filtering techniques we introduced in One-

Provenance can speed up the processing of query logs, and reduce

the noise of traditional dynamic provenance extraction systems.

We evaluate the strengths of these techniques next.

Benchmark. For these experiments, we run TPC-C for a total of 4K

TPC-C transactions (16 clients), of which new_order and payment
transactions are invoked 1707 and 1738 times, respectively. The

database emits ~250 events/transaction (~1M events overall).

(a) Total Execution Time (b) Provenance Graph Size

Figure 15: Time taken and output size for processing logs of 4K TPC-

C Txs, while varying admissibility settings of SP-Runs Admitted

and Loop-Iters Admitted. The most admissible setting (256,8) is ~20×
slower than (1,1) and the generated graph is ~450× larger.

Optimizations. We compare OneProvenance with and without

optimizations. Our comparisons are one optimization at a time

to better understand the value of the corresponding optimization.

More specifically, recall that the TPC-C statements are executed

100s of times, and some of the executions result in 100s of loop

iterations. As such, (1) loop compression, (2) dropping uninteresting

activities, and (3) filters on activities from uninteresting connections

are valuable. We denote the loop compression optimization as Loop-
Iters Admitted and vary the #admitted iterations. The other two

filters (i.e., uninteresting activities and filters on activities from

uninteresting connections) interoperate in OneProvenance, as we

discussed in Section 5. Thus, we group them, denote the technique

as SP-Runs Admitted, and vary how many of the latest runs are

admitted (per the last-K semantics of Section 5). Finally, we aim

to see the effect of dropping levels of aggregation and events.

(We omit experiments filtering on event metadata and queries for

brevity, noting that their impact varies based on their selectivity.)

Metrics.We evaluate OneProvenance with and without optimiza-

tions based on end-to-end latency and size of provenance graphs

emitted. We define the graph size to be the total #nodes and #edges.

Loop-Iters Admitted and SP-Runs Admitted. The results of our
evaluation for these two optimizations are shown in Figure 15. The

most aggressive setting is (1,1), bottom-left corner tile in Figure 15,

which prompts SP-Runs Admitted to remove all but the latest

run of the 5 TPC-C SPs, and Loop-Iters Admitted to identify

unique control flows in an activity and retain the latest iteration.

For instance, with the setting (1,1), 1706 (out of 1707) QQTrees

corresponding to new_order runs would be dropped, and the lat-

est QQTree would have 75% fewer SQL statements. Consequently,

Provenance Extractor analyzes only 191 SQL statements, thereby

reducing end-to-end latency. Setting the optimization to (256, 8),

shown in the top-right corner tile in Figure 15a, means an admission

of at most 256 runs of SPs and at most 8 loop iterations. This leads

to 110K SQL statements being analyzed by Provenance Extractor,

which results in a ~20× slowdown over processing 191 statements.

Finally, the top-right tile in Figure 15b corresponds to the worst-

case scenario for the provenance graph sizes (i.e., the output of

OneProvenance without optimizations). In absolute terms, the

output has more than 450K nodes and edges. The large size of the
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graph is due to modeling of recurring SPs and SQL statement runs.

Such a large graph can be overwhelming for upstream applications.

In contrast, the aggressive optimization setting (1,1) leads to a

concise, noise-free output model with just over 1K nodes and edges.

Drop levels of aggregation. Using this optimization, we configure

OneProvenance to report provenance only at aggregate levels

(i.e., at stored procedures), and we drop statement runs and their

provenance for noise reduction purposes. This leads to an ~80% drop

over the provenance graph size of OneProvenance without the

optimization. Note that this optimization is applied in Stitcher (i.e.,

we do not push down aggregation to earlier components because the

provenance of individual statements needs to be extracted anyway)

and, as such, does not improve end-to-end latency.

Drop Events. Recall that this optimization drops events based on

database event buffer availability, leading to extracting reduced

provenance graphs. OneProvenance with this optimization drops

only 3% of #nodes and #edges for the TPC-C workload (over One-

Provenance without the optimization). To better understand this

result, we also run QPlan with Drop Events on. The drop was

~50%—further highlighting the prohibitive overheads of query plans

and OneProvenance’s ability to process higher TPM workloads.

Provenance querying. Finally, note that our experiments focus on

the problem of provenance capture of Section 3.3. We omit analysis

on provenance querying since OneProvenance is external to the

data catalog that serves provenance queries. We note, however, that

in production workloads, we have not observed non-interactive

query response times (>.5s) over OneProvenance’s output.

Takeaways: Our results demonstrate that our application-aware

optimizations lead to substantial noise reduction over provenance

graphs (more than two orders of magnitude graph size reduction)

and improve extraction performance significantly (~20× speedup).

7.3 Discussion on other systems

We conclude our discussion with a comparison between OneProve-

nance and SAC [81], Spline [75], and OpenLineage for Spark [36].

For these experiments, we used the TPC-DS benchmark (25 itera-

tions of 99 queries) since these systems target analytical workloads,

and we focus our analysis only on the output graph. (As discussed

in Section 7.1, performance comparisons are not meaningful. This

is why we introduced QPlan in Section 7.1, to compare OneProve-

nance with state-of-the-art techniques in a principled way.)

Overall, OneProvenance supports provenance aggregation,

query runtime metadata (CPU and #records), user and client con-

nection details, inference of static queries, and column-level prove-

nance that SAC, Spline, and OpenLineage for Spark lack. In contrast,

these systems embed Spark plans in their output model that One-

Provenance does not. Such plans can be large in size. As such,

while OneProvenance outputs more metadata, its output is often

on par or smaller than the one of such systems. Furthermore, cus-

tomer feedback highlighted a disconnect: data governance teams

that consume the output of provenance extractors are not DBAs

to understand or make use of such plans. Finally, we note that our

optimizations further reduce the output size in contrast to SAC,

Spline, and OpenLineage which do not provide noise reduction

optimizations during extraction (e.g., in our TPC-DS workload, the

output of OneProvenance is ~10× smaller compared to SAC).

8 RELATEDWORK

We describe related work in the areas of metadata and prove-

nance management. To highlight the importance of these do-

mains, we note that several techniques and applications of meta-

data and provenance management have been included in many

high-profile products and open source systems. Adaptive [5], Ala-

tion [6], Acryl Data [4], Alex [7], ASG [10], Collibra [24], Data

Advantage Group [29], Datakin [32], data.world [33], Amazon [12],

erwin [37], Global IDs [45], Google [42], IBM [58], Informatica [57],

Microsoft [73], Precisely [70], Semantic Web Company [76], Smart-

logic [78], and Syniti [80] are only a few companies with offerings

that include metadata and provenance capabilities. Open source

systems in the same domains include Apache Atlas [11], Egeria [35],

OpenLineage [36], DataHub [31], and Spline [75], among others.

Metadata management is a sub-field of data management with

over five decades of research and practice [15, 65]. Problems of focus

in this space include discovery [34, 40, 63], classification [19, 66], ex-

traction [39, 86], or storage and querying of metadata [49, 53, 72, 82].

Furthermore, metadata management systems are central for many

metadata-driven applications and problems, including: data integra-

tion and exchange [9, 20, 30, 38, 52], schema (and general metadata)

evolution [27, 28], lifecycle management and versioning [17, 18, 62],

profiling [2, 3], data cleansing [39, 67, 85], reproducibility [21, 74],

enterprise search [59], and auditing [22, 43]. Our work is closely

related and largely orthogonal to these lines of work. In particu-

lar, our proposed techniques can extract a rich provenance model

with a multitude of metadata on queries, query runs, client connec-

tions, and datasets (e.g., tables or outputs of ad hoc queries). With

such rich information, we can better assist metadata management

applications to better drive their logic.

Provenance management is a subfield of data and metadata man-

agement with a focus on capturing, modeling, and querying the con-

nections between input and output data elements across a workflow.

Traditionally, in the context of databases, provenance is classified

into coarse-grained [8, 23, 54, 55, 60, 62, 69, 75, 81] and fine-grained

[16, 23, 26, 44, 47, 54, 56, 68, 72, 82, 83]. The latter encodes the re-

lationships between input and output records or cells, while the

former focuses on modeling relationships at a coarse level (e.g.,

tables and columns). Our proposal is related to capturing dynamic

coarse-grained provenance information in the context of database

systems. In contrast to prior work, however, we highlighted unique

challenges and proposed corresponding techniques to extract se-

mantically rich provenance information from event logs efficiently.

9 CONCLUSION

In this paper, we presented OneProvenance, our provenance ex-

traction engine over database logs that currently powers dynamic

provenance extraction in Microsoft Purview. OneProvenance im-

proves over prior work by processing database query execution

event logs carrying query text, aggregating provenance informa-

tion, and filtering noise during extraction. We believe our work

is a step towards optimized provenance extraction systems, and a

pointer towards important future work (e.g., introduce more com-

plicated filtering techniques, extract provenance by processing logs

in a distributed fashion to cope with even higher loads, or push

down application logic during dynamic provenance extraction).
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