
Anser: Adaptive Information Sharing Framework of AnalyticDB
Liang Lin

Alibaba Group
Hangzhou, China

yibo.ll@alibaba-inc.com

Yuhan Li
Alibaba Group

Hangzhou, China
lyh200442@alibaba-

inc.com

Bin Wu
Alibaba Group

Hangzhou, China
binwu.wb@alibaba-

inc.com

Huijun Mai
Alibaba Group

Hangzhou, China
huijun.mhj@alibaba-

inc.com

Renjie Lou
Alibaba Group

Hangzhou, China
json.lrj@alibaba-inc.com

Jian Tan
Alibaba Group

Hangzhou, China
j.tan@alibaba-inc.com

Feifei Li
Alibaba Group

Hangzhou, China
lifeifei@alibaba-inc.com

ABSTRACT
The surge in data analytics has fostered burgeoning demand for
AnalyticDB on Alibaba Cloud, which has well served thousands of
customers from various business sectors. The most notable feature
is the diversity of the workloads it handles, including batch process-
ing, real-time data analytics, and unstructured data analytics. To
improve the overall performance for such diverse workloads, one of
the major challenges is to optimize long-running complex queries
without sacri�cing the processing e�ciency of short-running inter-
active queries. While existing methods attempt to utilize runtime
dynamic statistics for adaptive query processing, they often focus
on speci�c scenarios instead of providing a holistic solution.

To address this challenge, we propose a new framework called
Anser, which enhances the design of traditional distributed data
warehouses by embedding a new information sharing mechanism.
This allows for the e�cient management of the production and
consumption of various dynamic information across the system.
Building on top of Anser, we introduce a novel scheduling pol-
icy that optimizes both data and information exchanges within
the physical plan, enabling the acceleration of complex analyti-
cal queries without sacri�cing the performance of short-running
interactive queries. We conduct comprehensive experiments over
public and in-house workloads to demonstrate the e�ectiveness
and e�ciency of our proposed information sharing framework.

PVLDB Reference Format:
Liang Lin, Yuhan Li, Bin Wu, Huijun Mai, Renjie Lou, Jian Tan, and Feifei
Li. Anser: Adaptive Information Sharing Framework of AnalyticDB.
PVLDB, 16(12): 3636 - 3648, 2023.
doi:10.14778/3611540.3611553

1 INTRODUCTION
As modern organizations struggle with managing diverse work-
loads including batch processing, real-time data analytics, and un-
structured data analytics, they face the challenge of maintaining
optimal performance. To meet this challenge, there has been a trend

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611553

(a) The distribution of diverse workloads.

(b) Resource consumption of JOIN queries.

Figure 1: Statistics collected from AnalyticDB ’s production
workloads.

towards system convergence, with many organizations transition-
ing towards uniform systems that can handle diverse workloads.
One of the most widely adopted industry solutions is Spark [9, 49],
a fast and �exible data processing engine that can handle diverse
workloads. Similarly, Redshift [10, 26], a cloud-based data ware-
housing solution, o�ers automatic tuning capabilities to handle
complex workloads more e�ciently.

AnalyticDB [14, 46] is a high-performance data warehouse de-
veloped by Alibaba Cloud. It has been extensively adopted both
internally for Alibaba Group’s business operations and externally
across a range of industries, such as e-commerce, �nance, logistics,
education, and entertainment. Within AnalyticDB , we have noticed
a trend of increasing diversity in terms of query response times.
As shown in Figure 1a, many simple and short queries, such as
business-critical intelligence queries issued from dashboards, can
be processed in milliseconds. These queries account for up to 80% of
the customers’ workloads in our production environments. To sat-
isfy the quality of service requirements, it is essential to ensure that
these interactive short queries have su�cient resources. Meanwhile,
it is also common to have complex analytical queries that exceed
hundreds of KB in size, involving aggregations, multi-way joins,
and nested subqueries. Statistics show that long queries with re-
sponse times (RT) more than 10 seconds account for over 10% of the

3636

https://doi.org/10.14778/3611540.3611553
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611553

workloads, which yet consume more than 50% of the computation
resources. To evaluate the resource consumption of the complex
analytical queries, we collect related statistics of JOIN queries from
AnalyticDB ’s production workloads (as shown in Figure 1b), in-
cluding the query CPU time and the number of shu�ed rows. As
the number of join operators increases, the required resources also
grow dramatically.

As evidenced by the statistics above, optimization techniques
for expensive batch computing tasks and ETL jobs play a vital role
in improving the overall performance of modern data warehous-
ing systems. As the number of concurrent queries increases, the
competition for resources (e.g., CPU, memory and network) be-
tween queries has become very serious. In some cases, long queries
may exhaust resources in a database instance and subsequent short
queries belonging to the same instance will not be processed. We
summarize several key challenges that remain unsolved:

Challenge 1: Scenario customization for adaptive query processing.
As workloads become increasingly diverse and statistics become
less available, it has become clear that traditional "optimize-then-
execute" strategies [24, 31, 41] are no longer su�cient. This realiza-
tion has led to a broad range of studies in the �eld of adaptive query
processing [20]. Many commercial databases have implemented
various adaptive techniques, but the current approaches tend to
build scenario-customized solutions for each technique, which can
introduce unnecessary complexity into the system [7, 34, 44, 50].
For example, Spark’s adaptive query execution [50] supports four
features: mid-query re-optimization, dynamically coalescing shu�e
partitions, dynamically switching join strategies, and dynamically
optimizing skew joins. Each feature individually collects dynamic
statistics and makes adjustments. A general-purpose information
framework that can �t into these di�erent scenarios would signif-
icantly reduce costs. By developing a framework that can share
information across di�erent adaptive techniques, it would be pos-
sible to eliminate redundant e�orts and minimize the complexity
of the system. Such a framework would enable data warehousing
systems to optimize their performance without having to build
scenario-customized solutions for each individual technique. Fur-
thermore, the same statistics could be used by di�erent cases (for
example, all of the four features that Spark supports require shu�e
�le statistics), yet implementing each case individually deprives the
opportunity for the same information to be used multiple times. In
particular, when statistics collection is resource-consuming (such
as with a bloom �lter), sharing information among multiple cases
could potentially signi�cantly reduce costs.

Challenge 2: E�ective and e�cient management of dynamic statis-
tics. To potentially identify and share common dynamic statistics,
the information collection and utilization need to be decoupled
from existing modules of query engine, and a holistic management
of the information lifecycle is required to register, collect, store,
disperse, and destroy the information. None of the previous studies
have clearly de�ned the scope of the information that can be used
in di�erent adaptive techniques, nor have they framed a mechanism
to manage the information lifecycle. In a production environment,
information collection, transmission, and storage all lead to addi-
tional overhead. High-performance data warehouse requires such
overhead to be diminished and separated from query execution

process. Moreover, a carefully designed mechanism is necessary to
limit the memory usage of the information storage that the dynamic
statistics does not a�ect the overall system.

Challenge 3: Coordination with query scheduler. The statistics
information can be holistically leveraged to optimize the adaptive
adjustments. To this end, the scheduler naturally comes into the
picture to orchestrate the execution orders of information consumer
and producer. However, none of the previous studies have clearly
de�ned a scheduler that is aware of the information dependencies.
In batch processing systems, the transmission of adaptive statis-
tics is mostly implemented as part of the execution process. Some
approaches [12, 25, 32] add checkpoints in the execution plan that
monitor statistics during execution and trigger re-optimization if
necessary, while others rewrite the provider of information explic-
itly as a sub-expression in the query execution to provide adaptive
statistics as part of the query execution process. Both approaches
tie information transmission strictly with data processing, which
means that the information consumer can only receive information
from its upstream operators without considering the possibilities of
receiving information sideways or discarding informationwith high
production costs. Some real-time data analytics systems support
passing information sideways, but mostly through tailored services.
For example, Impala [5] implements a dynamic �lter service to pass
information sideways. Such services are customized for speci�c use
cases and cannot be easily extended to others. Moreover, the sched-
uler is not aware of such information transmission. The consumer
of the information either waits a static time period for statistics
to arrive or only consumes available statistics before running. As
execution plans become more complicated, useful statistics may not
be consumed to provoke adaptive execution without cooperation
with the scheduler. Therefore, a more sophisticated mechanism is
required to manage the transmission and consumption of adap-
tive statistics, which takes into account the collaboration with the
scheduler.

To this end, a novel information sharing framework, namely
adaptive information sharing framework (Anser), is developed in
AnalyticDB . Our major contributions are summarized as follows:

(1) The framework provides a uniform and e�ective interface
for di�erent modules to share various types and levels of in-
formation. At the operator level, Anser collects various types
and levels of information, classi�es according to their types
and granularities, and passes to di�erent modules across the
query to tune for better performance during execution.

(2) The framework supports the automatic matching and trans-
mission of the information between information producer
and information consumer once the relationship is registered.
It supports many-to-one and one-to-many information pass-
ing in a complex physical execution tree. The transmission
is both low latency and e�cient by the usage of information
merging and push-based communication model.

(3) In conjunctionwith the framework, we design an information-
aware scheduler, allowing for prioritization of scheduling se-
quences based on information dependencies. Anser improves
query performance by sending information sideways based
on pre-determined dependencies that the information can be

3637

e�ectively consumed. The scheduler provides decoupled in-
formation transmission and data processing links, enabling
e�cient and optimized scheduling of complex queries.

(4) We conduct extensive experimental studies to demonstrate
the e�ectiveness and e�ciency of the proposed method over
public and in-house datasets.

The rest of this paper is organized as follows. In § 2, we intro-
duce the architecture of AnalyticDB and the lifecycle of a query
in AnalyticDB . We show the design of Anser in § 3. In § 4, we
introduce how the scheduler coordinates with Anser to improve
the query processing e�ciency. We conduct experimental studies
in § 5 to demonstrate the e�ectiveness of Anser. In § 6, we discuss
the related works, and we conclude in § 7.

2 BACKGROUND
In this section, we �rst present the overall architecture of Analyt-
icDB in Section 2.1. Then, we provide in Section 2.2 a description
of the query execution process, including query planner/optimizer
and query scheduling/execution, which is further illustrated using
an end-to-end example in Section 2.3.

Coordinate Nodes

……

Follower

Coordinator

Op�mizer Scheduler

Parser

Follower

Coordinator

Leader Coordinator

Load Balancer
Metadata

Synchronizer

Workload

Manager

Resource

Manager

Adap�ve Informa�on Sharing Framework

Analyzer

……

……

Executor Nodes

Executor

MPP Engine BSP Engine

task … task

Executor

MPP Engine BSP Engine

task … task

Storage

Built-in

Storage

……

Storage Nodes

OSS

Open-

Repository

Storage

Built-in

Storage

Open-

Repository

Figure 2: The architecture of AnalyticDB

2.1 Architecture of AnalyticDB
AnalyticDB adopts amassively-parallel and elastically-scalable query
execution engine, which is decoupled from the storage engine. Fig-
ure 2 shows the overall three-tiered architecture. The three layers
are all deployed on nodes, which are instances running on the
Alibaba Cloud Elastic Compute Service [3].

The �rst layer is deployed on coordinator nodes and consists
of a single leader and one or more followers. The leader serves
as a centralized metadata synchronizer, collecting and notifying
other followers of cluster-wide metadata through remote procedure
calls (RPCs) when necessary. The followers act as frontends for
query executions and manage one or more executors through RPCs.
Upon receiving a query, a follower is responsible for compiling,
planning, optimizing, and orchestrating its execution across the
distributed executors.

The second layer consists of multiple symmetric executors de-
ployed on executor nodes. The executor is responsible for query
processing and supports both massively parallel processing (MPP)
and bulk synchronous parallel (BSP), corresponding to an Inter-
active and a Batch compute mode, which is explicitly determined
by users. The executor also supports an adaptive execution by in-
teracting with the coordinator to adjust execution plans, resource
allocations, degrees of parallelism, and access paths through adap-
tive information collected by Anser, which will be illustrated more

in § 3. InAnalyticDB , the executor nodes could be easily and �exibly
scaled out within seconds to meet the business requirements.

The third layer is deployed on the storage nodes. It includes a
built-in storage and open-repositories with collections of external
connectors (e.g., OSS [6], HDFS [4], Kafka [2], etc.). The built-in
storage system is a distributed storage system, and supports real-
time data ingestion with strong consistency and high availability in
compliance with the Raft consensus protocol. The storage system
uses a data sharding partitioning strategy and a multi-raft architec-
ture to support parallel processing. It supports a tiered storage that
separates hot and cold data to reduce costs and a hybrid row-column
storage layout with a fast and powerful index engine that supports
predicate push-down to further accelerate query processing.

Executor NodeCoordinator Node

Workload Representa�on

Logical Plan Physical Plan Stage Stage Group

Analyzer

& Parser
Query Op�mizer Scheduler Executor Result

Adap�ve Informa�on Sharing Framework

Execu�on Plan

Task

Task

Task

Task

Figure 3: The query lifecycle management by AnalyticDB
Runtime

2.2 Query execution of AnalyticDB
The AnalyticDB Runtime controls the entire lifecycle for each query
from client submission to distributed execution. Figure 3 shows the
overall pipeline.

Query Planner and Optimizer. After the SQL statement is submit-
ted and assigned to one of the follower coordinators, the ANTLR-
based parser �rst converts the statement into a syntax tree, then
the analyzer resolves the relations and data types to build an initial
logical plan in the form of a tree of logical plan nodes, where each
node represents a logical operation (JOIN, FILTER, PROJECTION,
etc.) and the parent-child relationship represents the data �ow.

The optimizer, which supports both rule-based optimization
(RBO) and the Cascades cost-based optimization (CBO) [23, 24,
36, 39, 41], further optimizes the basic logical plan. The RBO reads
the initial logical plan tree as input, rewrites the plan tree based
on a set of static rules without considering the data layouts and
the physical characteristics of operations, and outputs a physical
plan in the form of a tree of physical plan nodes. In this tree, each
node stands for a physical operator that exactly maps to a phys-
ical implementation. Later, the CBO considers both the various
costs associated with the operations as well as the data layout char-
acteristics brought about by the distributed nature of executors
and storage. Speci�cally, the optimizer collects 1) table statistics,
including the number of rows and the average row length; 2) col-
umn statistics, including the number of distinct values (NDV) in a
column, the minimum and maximum values in a column, data distri-
butions (e.g., histograms), and extended statistics to describe logical
relationships among columns like a function dependency; 3) system

3638

Stage 1

Stage 2

Stage 0

Output [COUNT(*)]

Aggrega�on

Filter [price > 1000]

InnerJoin [ON

item_id]

Scan [sales] Scan [items]

Output

Aggregate Final

Aggrega�on Par�al

Hash Join

Sequen�al Scan Index Scan And Filter

gather shu=e

par��oned shu=e

(a) The initial logical plan

Stage 1

Stage 2

Stage 0

Output [COUNT(*)]

Aggrega�on

Filter [price > 1000]

InnerJoin [ON

item_id]

Scan [sales] Scan [items]

Output

Aggregate Final

Aggrega�on Par�al

Hash Join

Sequen�al Scan Index Scan And Filter

gather shu=e

par��oned shu=e

(b) The optimized physical plan

Stage 1 Operator chain

Stage 0

Task 0.0

HashAggregateOperator

HashBuilderOperator

IndexScanAndFilterOperator

Task 1.0 Task 1.1 Task 1.2 Task 1.3

Stage 2

Task 2.0 Task 2.1 Task 2.2 Task2. 3

Task 1.3

TaskInstance 1.3.0

TaskInstance 1.3.1

TaskInstance 1.3.2

TaskInstance 1.3.7

…

(c) The distributed execution within a stage

Figure 4: An end-to-end example

statistics, including CPU and I/O performance and usage. These
optimizer statistics are either collected from pre-analyzed o�ine
metadata, or calculated by online sampling [8, 28, 35]. The CBO
takes as input an initial physical plan tree, explores its equivalent
implementations in a pruned space using techniques of a Cascades
framework, analyzes and compares their costs using the collected
optimizer statistics, and �nally chooses an optimal physical plan.

During the CBO process, the distributed nature of executors
and storage are considered. The distributed storage system stores
data in partitions, and the executors deployed on di�erent executor
nodes process partitioned data in parallel. The distributed property
in physical plan node describes how its processed data are parti-
tioned. A subtree of physical plan nodes with the same distributed
property (i.e., process the data in the same partitions) forms a stage.
Between two adjacent stages, in-memory or spillable data transfers,
or shu�es are performed. The blocking property in physical plan
node describes whether the physical operation needs to hold inter-
mediate state to compute its output. Examples of operations with
blocking property include hash-based sorting, aggregation or join
operations [20]. The blocking property provides breakpoints in the
execution process and opportunities for unscheduled physical plan
nodes to be adjusted adaptively.

Query Scheduling and Execution. To execute the query plan, the
scheduler �rst determines an order to schedule stages, then decides
how and which nodes each stage is executed on the executors. The
scheduler �rst divides stages into stage groups. A stage group holds
one or more consecutive stages with at least one stage contain-
ing a physical plan node with blocking property, so that at least
one breakpoint exists in the stage group to pause the execution. A
Directed Acyclic Graph (DAG) is then formed with stage groups
being nodes and shu�es between stage groups being edges. Analyt-
icDB Runtime supports two distinct scheduling policies: all-at-once
policy and group-phased policy. The former dispatches all stage
groups at once and bene�ts the latency-sensitive queries, whereas
the latter schedules in a topological order according to DAG node
dependencies.

AnalyticDB Runtime supports a two-level parallelism to acceler-
ate the execution process. At the inter-node level, a stage is divided
into tasks to run in parallel on one or more executor nodes. At
the intra-node level, a task is further divided into task instances to
run in parallel across threads. A task instance contains a chain of
operators. Each operator corresponds to one physical plan node

and performs corresponding computation on the input data. The
task instances of the same task run on the same node so that execu-
tion states like hash tables, dictionaries and adaptive information
can be shared among task instances. The degree of parallelism is
determined by the scheduler to maintain stability of the overall
cluster without sacri�cing the query response time. The scheduler
considers not only the current resource utilization but also the
possible resources consumed by the subsequent scheduled tasks.

The scheduler interacts with the resource manager on the leader
coordinator to allocate resources for tasks. For the all-at-once sched-
uling policy, the scheduler estimates and allocates resources at a
query-level and only triggers execution if there are enough re-
sources to run all query tasks. The query may throw an out-of-
memory exception and fail if any task exhausts the cluster resource.
For the group-phased scheduling policy, the scheduler estimates
and allocates resources at a stage-group-level. In Batch mode, data
is exchanged among stage groups in a spillable manner. Standard
checkpoints are inserted throughout the data processing, and An-
alyticDB is designed with a stage-group-level fault tolerance to
automatically retry operations in the case of transient errors, which
ensures the reliability of data processing.

2.3 An end-to-end example
Consider an example of SQL query:
1 SELECT COUNT (*) from
2 sales JOIN items on sales.item_id = items.item_id
3 WHERE items.price > 1000;

It executes against two tables sales and items, partitioned by sales_id
and item_id respectively. Figure 4a shows an initial logical plan.
The RBO applies one logical optimization rule that pushes the �lter
on items into the connector to �lter data as early as possible, also
known as Predicate Pushdown [42]. Then, the optimized logical
plan is assigned an initial physical plan, and the CBO evaluates the
costs of its equivalent transformations and chooses the join order,
the join and aggregation physical implementations, and the access
path of table scans. Figure 4b shows a chosen optimal physical
plan, with stages segmented by the distributed property of physical
plan nodes and shu�es inserted between stages. Lastly, Figure 4c
shows the stage and task scheduling process. The execution plan
is scheduled in a bottom-up manner. For stage 1, four tasks are
scheduled and by default eight task instances in each task are run
in parallel simultaneously.

3639

3 ADAPTIVE INFORMATION SHARING
FRAMEWORK

In this section we present the design of Anser in details. We �rstly
de�ne the adaptive information in §3.1, and introduce the design
of Anser in § 3.2. Then, we present step-by-step implementation
details in § 3.3 and discuss overhead introduced into the system and
how we reduce the costs in § 3.4. Lastly, we show some applications
of Anser developed in AnalyticDB in § 3.5.

3.1 De�nition of adaptive information
The adaptive information is de�ned as all relevant statistics that
could be collected or computed during execution to improve the
query processing e�ciency. It includes re-evaluated optimizer sta-
tistics as well as sideways information [30], that through equivalent
relation inference, statistics from one relation could be applied to
another. We characterize the adaptive information into two types:
primitive information and non-primitive information. The primitive
information is directly collected with trivial costs (e.g., row count
and MIN/MAX of columns), while non-primitive information is
either directly detected from other primitive statistics (e.g., NDV),
or calculated with extra costs (e.g., bloom �lters [47, 48]). Using
adaptive information, we could choose a better physical operator
implementation (e.g., replacing the original Sort-Merge JOIN op-
erator with a Hash JOIN operator [22]), perform early pruning of
unnecessary computations (e.g., with the help of magic sets [41] or
hash �lters [16]), or adjust the degree of parallelism at either inter-
or intra- node level.

With the distributed nature of our system, the information is
associated with its granularity, in order to describe whether it is
a partition or an aggregation statistic of the data set. During exe-
cution, data are divided into partitions and processed in parallel.
As a result, a physical operator can only collect statistics on the
partition it processes. If the information is passed to another oper-
ator with the same distributed property, the other operator could
use partition-level statistics directly. Otherwise, for information
consumed by operators with di�erent distributed properties, or the
optimizer/scheduler module which makes whole-picture adjust-
ments, we need to integrate them into aggregated statistics.

The framework supports information sharing to avoid redundant
computation. For information collected from di�erent operators,
if they describe the same data set, the information can either be
reused if they are the same type of statistics, or be inferred if one
can derive the other. For example, in Figure 5, table t1 scans 28-
billions rows of data and joins with three aggregated rows of table
t2. Without adaptive information, normally, a full scan and a hash
join will be executed. However, two adaptive strategies could be
used to reduce the computation cost. In Case 1, the builder side
of join could collect and pass a runtime �lter to t1 and performs a
bloom join [36] before scan. In Case 2, a histogram could be used
by the builder side of hash join to determine the output o�sets to
perform a radix partitioning [45]. The runtime bloom �lter and the
histogram are the two feasible adaptive information, where we only
collect once from the hash table built by the aggregate operator.
We could compute both the bloom �lter and the histogram [48]
respectively.

join

agg

t2

3 rows

28-billions
rows

(b) Find the publishers (in blue)
and subscribers (in green)

bloom filter

bloom filter

(c) Combine information(a) The original
logical plan

Case 1:

runtime filter

Case 2:

radix join

t1

join

agg

t2

t1

join

agg

t2

t1

histogram

histogram

join

agg

t2

t1

hash table

histogram

bloom filter

Figure 5: An example of derivable information.

The information used in adaptive applications such as bloom
joins [47] requires strict currency control to ensure correctness.
Furthermore, it is abundant in terms of its varying types and levels
of granularity. Given the dynamic query workloads and the space-
consuming characteristics of certain non-primitive information, we
determine to merely collect and utilize the query-level data without
persisting it for future use.

3.2 The architecture of Anser
Anser consists of three parts as shown in Figure 6: publisher, sub-
scriber and channel. The publisher is implemented as a query op-
erator that could be seamlessly ingested to a query plan, and it
collects information and publishes the information to the channel.
The channel works in a centralized mode. It contains a manager
that matches publisher-subscriber relationship and manages the in-
formation lifecycle, and a service that receives, deduces, and passes
the information to the subscriber. The subscriber is the consumer of
the information which is also implemented as a query operator. It
can interact with other operators, the optimizer, and the scheduler,
to orchestrate the query execution.

Publisher Channel Subscriber
Operators

Scheduler

Op�mizer

…

Channel

Manager

Channel

Service

Logical passage and

lifecycle management

Physical passage

Figure 6: The architecture of the Anser.

Publisher. We utilize di�erent semantics of operators to reduce
the collection cost, without interrupting the pipeline of operators.
All operators collect some primitive statistics like the number of
rows and the data volume during execution, which can be directly
used without introducing additional costs. Some operators derive
non-primitive statistics with negligible cost. For example, the hash
table is generally built by hash-based aggregation and join operators.
We could use the hash table to obtain a hash set, a histogram, or
to calculate the number of distinct values. The cost of collecting
such derivable non-primitive statistics brings negligible costs. For
the non-primitive statistics that cannot be derived, we de�ne a
PubOperator to compute the required information, and it is inserted
into the original physical query plan to compute the non-primitive
statistics during execution.

3640

Subscriber. Based on di�erent adaptive execution cases, the sub-
scribers interact with operators, the optimizer or the scheduler to
optimize the options of physical plan node, the execution plan, or
the resource allocations of tasks. For example, for hash-based joins,
we normally build the hash table over the relation of the smaller
size. Due to the estimation error, the optimizer could be misled
to build the hash table over the larger relation during the query
planning phase. To re-optimize the join order, the optimizer needs
to calibrate the real volume of the two input relations of the JOIN
operator with a subscriber. Then the join reordering is triggered
by a re-optimization step only if the adaptive information di�ers
from the estimation. We de�ne a SubOperator to consume the infor-
mation and guide the adaptive execution. During execution, each
subscriber has a weak dependency on corresponding publishers.
Normally, the subscriber operator blocks the task instance and
waits until the information is received and consumed. However, the
information we pass is used to tune for better performance instead
of calculating the �nal results. In abnormal circumstances that no
information is received due to failures (e.g., network), we cancel
the blocking of the task instance after timeout. Such cancellable
dependency is called a weak dependency.

Channel. The publisher and subscriber are linked via a channel,
including a channel manager and a channel service. The channel
manager builds the logical linkage between the publisher and the
subscriber, and manages the lifecycle of the associated dynamic in-
formation. During the query planning phase, the manager matches
each pair of publisher and subscriber and registers the correspond-
ing channel. The matching relationship is built upon case-speci�c
rules, and these rules will be explained in § 3.3. For reusable or
derivable information, its publisher could be connected with more
than one subscriber. During execution, once the information is in-
voked, the manager decides where to send it and when to destroy
it. The manager stores two key data structures: 1) a graph consists
of nodes representing publishers and subscribers and edges describ-
ing the relationship between them; 2) a hash map used to store
information with its state as the value. The state represents the
lifecycle and status of the information and contains instructions
to clean and recycle memory allocated for the information once
all relevant subscribers are destroyed. The key-value pairs in the
hash map are accessible through information identi�ers, and the
states are updated based on the events triggered by the publishers
and subscribers. The channel service establishes the physical con-
nection between the publisher and the subscriber, determines the
appropriate executor nodes to send the information, and manages
information transfer. Additionally, it processes publishers as query
operators in parallel across di�erent executor nodes. Partition-level
information from each operator/publisher is collected by the chan-
nel service, then transmitted to corresponding coordinator node
using a client-server model. If global information is required, the
information is aggregated then broadcasted to all subscribers.

3.3 Implementation
Information registration. To enable adaptive execution in each

case, we design a greedy algorithm to declare the required infor-
mation, specify the corresponding publishers and subscribers, and
register them in the channel manager. This process involves several

steps. Firstly, we de�ne the necessary information for each adaptive
execution case and identify the plan node in the plan node tree that
produces or consumes that information. For instance, for bloom
joins, the required information consists of bloom �lters generated
from all builder sides of hash joins, where builder nodes produce the
information and probe nodes consume it. We create a global context
to store information de�ned by a key-value hash map. The keys
and values are symbols that represent the relations that produce
or consume the information, respectively. The symbols are gener-
ated by the optimizer through algebraic equivalence that uniquely
mark an attribute of the same sub-expression. Next, we traverse the
plan node tree top-down and �nd the �rst-visited plan node whose
output symbols match any of the keys in the global context. We
only match one plan node for each information to avoid repetitive
production of information. We add a plan node PubNode as the
parent node of the matched plan node to collect and publish the
information through processing output data from the matched plan
node. At the same time, we search for all plan nodes whose input
symbols match any of the values in the global context. For each
matched plan node, we add a SubNode as a child node to subscribe
to the information.

Secondly, we employ standard optimization rules such as those
proposed in [17, 21] to push down the PubNodes and SubNodes.
PubNodes are pushed as deep as possible in the query plan to ensure
that information could be produced as early as possible. SubNodes
are pushed down in a cost-based manner. For SubNode that prunes
intermediate results and bene�ts downstream operators like bloom
�lters, we evaluate its data reduction rate and push it down if the
rate is higher than its child plan nodes.

Lastly, we try to merge each PubNode/SubNode with their child
plan nodes that provide derivable information (e.g., bloom �lter
as the publisher and AggregationNode as its child plan node) or
have the same functionality (e.g., bloom �lter as subscriber and
FilterNode as its child plan node), which helps to avoid duplicate
production and consumption of information. PubNodes/SubNodes
that are not combined with existing plan nodes are translated into
PubOperators/SubOperators. Following this, we set up channels for
every pair of �nalized publisher and subscriber and register them
in the channel manager. Figure 7 depicts an example of the entire
process.

TableScan
t1c1, t1c2, t1c3

TableScan
t2c1, t2c3

Project
t1c3’ = len(t1c3)

Filter
t1c3’ > 0

Join
t1c1 = t2a1

Aggrega�on
t2a1 =

min(t2c1)

Join
t1c2 = t3c2

TableScan
t3c2

GlobalContext: {t3c2: t1c2, t2a1: t1c1}

TableScan
t1c1, t1c2, t1c3

TableScan
t2c1, t2c3

Project
t1c3’ = len(t1c3)

Filter
t1c3’ > 0

Join
t1c1 = t2a1

Aggrega�on
t2a1 = min(t2c1)

Join
t1c2 = t3c2

TableScan
t3c2

SubNode
t1c2 in

bloomKlter(t3c2

)

PubNode
BloomKlter(t3c2

)

SubNode
t1c1 in

bloomKlter(t2a1

)

PubNode
BloomKlter(t2a1

)

reduc�

on rate

= 10%

reduc�

on rate

= 50%

reduc�

on rate

= 90%

0 1 2 3

TableScan
t1c1, t1c2, t1c3

TableScan
t2c1, t2c3

Project
t1c3’ = len(t1c3)

Filter
t1c3’ > 0

Join
t1c1 = t2a1

Aggrega�on
t2a1 = min(t2c1)

Join
t1c2 = t3c2

TableScan
t3c2

SubNode
t1c2 in

bloomKlter(t3c2

)

PubNode
BloomKlter(t3c2

)

SubNode
t1c1 in

bloomKlter(t2a1

)

PubNode
BloomKlter(t2a1

)

reduc�

on rate

= 90%

reduc�

on rate

= 50%

reduc�

on rate

= 10%

TableScan
t1c1, t1c2, t1c3

Where t1c2 in

bloomKlter(t3c2)

TableScan
t2c1, t2c3

Project
t1c3’ = len(t1c3)

Filter
t1c3’ > 0 and

subscriber:

t1c1 in

bloomKlter(t2a1)

Join
t1c1 = t2a1

Aggrega�on
t2a1 =

min(t2c1)

publisher:Bloo

mKlter(t2a1)

Join
t1c2 = t3c2

TableScan
t3c2

PubNode
publisher:

BloomKlter(t3c2)

Figure 7: An example of information registration.

Information collection and consumption. We implement PubOp-
erator/SubOperator to collect and consume the information respec-
tively. The PubOperator is simply a statistics collection operator. It
outputs the original input data along with required statistics. We

3641

set a threshold for each PubOperator, which determines whether
to cancel information passing during execution. The threshold is
heuristically set to limit the memory and the CPU consumption
that arise from collecting, transmitting, and consuming the infor-
mation. The implementation of the SubOperator varies depending
on speci�c use case. For cases where information subscription is
resource-consuming, we evaluate the costs and bene�ts using stan-
dard cost models proposed in [41, 43], but with during-execution
statistics as inputs, and set a threshold on the SubOperator. For ex-
ample, in the case of bloom join, the SubOperator is a �lter operator
that prunes its input data streams with a bloom �lter summary of
information collected from the builder side. We estimate the data
reduction rate of the published bloom �lter, and cancel the sub-
scription if the reduction rate is lower than the threshold. In other
scenarios, the SubOperator may need to interact with the optimizer
or the scheduler. The current implementation supports stage-group-
level plan re-optimization and intra-node parallelism tuning. In the
former case, the optimizer takes a hash map generated from the
SubOperator as input, with keys as the plan nodes to be optimized
and values as the collected statistics, and re-optimizes the physical
plan based on during-execution statistics. In the latter case, the
scheduler takes the upstream data size as input and heuristically
estimates an appropriate number of task instances to be scheduled.

Information transmission. The channel service collects informa-
tion from publishers, aggregates it if necessary, and shares the
processed information with subscribers. The service is developed
to �t the two-level parallelism of our system architecture, where
each executor node deploys a local service, and the coordinator
deploys a remote service. The local service collects information
generated by PubOperators in task instances and aggregates them
at the partition level once all PubOperators in the current task com-
plete the information production. The local service then sends the
partition-level information to the remote service through RPCs as
soon as it is aggregated. The remote service collects information
from the local services and aggregates it at the query level as soon
as all tasks have �nished running. Finally, the remote service sends
the query-level information back to local services through RPCs
for SubOperators to consume.

Several essential implementation details are in place to ensure
the accuracy and timeliness of information transmission. Firstly, to
handle network failures or operator cancellations, each informa-
tion is labeled with a binary cancellation �ag. This enables us to
distinguish between actual empty information and failed or can-
celed information. Furthermore, we have implemented an ACK
(acknowledgement) mechanism in conjunction with a retry policy
allowing for a maximum of three attempts. If the RPC fails or the
operator cancelled publication, we send an empty information with
the cancellation �ag set to true. This information is then directed to
all subscribers, allowing for prompt cancellation of their subscrip-
tions without waiting for other partitions. Secondly, we declare the
expected partition number in the channel manager, and the remote
service keeps track of the number of received partition-level infor-
mation during transmission. Only when all partitions are collected
successfully without cancellation, will we then construct the aggre-
gated information and send it back to the local services. Thirdly,
to optimize performance and reduce transmission delays, we have

implemented a push-based model that allows information to be sent
to subscribers as soon as it is published. If the information is ready
before the subscriber/SubOperator is scheduled, it is cached locally
and consumed asynchronously by the subscriber when scheduled.

3.4 Cost analysis
Adding publishers and subscribers during execution can lead to
increased overhead due to the production, transmission, and con-
sumption of information, potentially leading to a negative impact
on response time. In this section we discuss how Anser diminishes
such costs.

Firstly, we restrict the memory usage of Anser to reduce pro-
duction and storage overheads. The information is only used at
the query level and is destroyed as soon as the query is completed,
with a memory limit of 1MB per information record and 200MB per
channel service. The limits are set heuristically. We set a threshold
(= 1MB/number of task instances) for each PubOperator to cancel
production. Furthermore, we clean the oldest information cached
in the service when the total size exceeds 200MB. This explicit
resource restriction ensures that extremely large data is not cached,
keeping CPU and network expenses insigni�cant. Secondly, we
optimize data transmission and network costs by sending only nec-
essary information. We support sharing the same information with
multiple subscribers. In such cases, the information is sent to the
coordinator node once and broadcasted to all associated executor
nodes. For multiple subscribers on the same executor node, the
information is sent only twice: once to the coordinator and once to
the executor node, eliminating unnecessary network connections.
We also merge multiple information records on the same executor
node into a single RPC to reduce network requests. Additionally, in
cases where partition-level information is required, the data is sent
directly to subscribers on the same executor node through the local
service, eliminating transmission through the network. Thirdly,
to reduce information consumption costs, we set a case-speci�c
threshold for each SubOperator and cancel consumption when its
cost outweighs its bene�ts. Besides, the SubOperator blocks the ex-
ecution of downstream operators until the information is received,
which may lead to regressions on query response time. Section 4
will explain more on how the block time is adaptively adjusted to
avoid such regressions.

3.5 Applications
We have built various adaptive applications on top of Anser . In this
subsection, we discuss three of them implemented in the framework.
We provide a general description of how each case improves query
performance and how they are implemented in the framework.

Runtime �ltering. Runtime �ltering is supported in many open-
source databases including Impala, Spark, Hive and Doris [5, 50].
It passes a dynamically built �lter from one small sub-relation
(the publisher in Anser) to a large sub-relation correlated by a
join condition (the subscriber in Anser), and performs a bloom
join on the subscriber with the runtime �lter, in order to prune
irrelevant results before we perform an expensive operation. Some
systems such as Impala [5] limit subscribers and publishers to table
scan operators directly joined by a condition. Spark’s [50] dynamic
partition pruning (DPP) additionally limits the table scans to be

3642

partitioned on join columns. In both implementations, the table
scan waits a �xed amount of time for the �lter to arrive and perform
a bloom join. By early pruning of reading data, unnecessary I/O and
network transmission could be avoided. Other implementations like
AIP [30] deduce correlations during execution and set no limitations
on subscribers and publishers, but a large table scan operation will
only be avoided if a runtime �lter is already built. Anser performs
the greedy algorithm before execution to match as many publisher-
subscriber pairs as possible, and multiple publishers that provide
the same bloom �lter will be merged.

Early stopping for joins with an empty subrelation. A join with
an empty subrelation can be thought of as a runtime �lter with
no matching rows, which means the �lter will prune all the rows
from the other relation, resulting in an empty join output. Thus,
all operators in the subscriber’s operator chain could stop early.
This technique is rarely implemented as an optimization rule since
little optimizer statistics implies an empty relation for sure. Spark’s
adaptive query execution has a similar feature to dynamically detect
and propagate empty relations [50]. In Anser, we do not need to
collect extra information and could directly apply early stopping
with information collected from runtime �ltering.

Adaptive partial aggregation. Partial aggregation push-down is
a well-studied optimization technique [15, 27, 33] to reduce input
data size by pushing group-by below certain operators. While it
reduces computation and shu�e costs, it adds CPU and I/O costs
due to the added aggregation operator. To evaluate the trade-o�,
the aggregation reduction ratio, which refers to the percentage of
data reduced by pre-aggregation, is commonly used. Some systems,
such as [37], estimate it using o�ine statistics, while others, such as
[13, 38], use online sampling during execution. The former approach
relies on accurate estimations while the latter introduces extra
costs during execution. We improve upon the latter approach by
integrating information collection into Anser, reducing sampling
overhead. We initially register partial aggregation as the publisher
and the subscriber, and push down the publisher node, trying to fuse
with other operators who produce information that could derive
the aggregation reduction ratio such as hash tables.

4 ANSER-BASED SCHEDULER
In this section, we present the Anser-based group-phased scheduler.
It utilizes a novel scheduling policy that optimizes both data and in-
formation exchanges in the physical execution plan. The optimizer
builds a physical plan and divides it into stages, which are then
organized into a DAG of stage groups, as described in §4.1. Each
stage group is assigned a priority, based on the scores de�ned in
§4.2. The scheduler then dispatches stages in a step-by-step process,
illustrated in §4.3. Finally, we discuss some implementation details
in §4.4.

4.1 Stage group
The stage groups are created in a manner that ensures there are no
cyclic dependencies among the data streams in the groups. Addition-
ally, at least one source stage or one stage with blocking property is
included in each group. This creates a DAG where the stage groups
represent nodes, and shu�es between stages in di�erent groups

agg

scan

scanscan

probe1

build1

probe2

build2

Stage 1

Stage 2

Stage 3 Stage 4

Stage 6Stage 5

output
Stage 0

Stage 1

Stage 2

Stage 3 Stage 4

Stage 6Stage 5

Stage 0

(a) The dependencies
among stages

agg

scan

scanscan

probe1

build1

probe2

build2

Stage 1

Stage 2

Stage 3 Stage 4

Stage 6Stage 5

output
Stage 0

Stage 1

Stage 2

Stage 3 Stage 4

Stage 6Stage 5

Stage 0

(b) The strongly con-
nected components

agg

scan

scanscan

probe1

build1

probe2

build2

Stage 1

Stage 2

Stage 3 Stage 4

Stage 6Stage 5

output
Stage 0

Stage 1

Stage 2

Stage 3 Stage 4

Stage 6Stage 5

Stage 0

(c) The generated
stage groups

Figure 8: Three steps to generate stage groups

represent edges. The skeleton graph of the DAG prescribes a �xed
order for query evaluation. The stage groups are generated in three
steps.

Step 1. We de�ne a strong dependency between stages as follows:
Stage A is strongly dependent on Stage B if there exists an operator
in Stage A that requires data stream input from operators in Stage
B. For instance, in-memory shu�es require the source operator to
consume the data produced from the sink operator, or else the sink
operator would be blocked. Another example is hash join where
the probing operator is blocked by the builder side to build the hash
table, meaning that all the probing stages are strongly dependent
on all stages at the builder side to �nish building. The presence
of a strong dependency requires Stage B to be scheduled before
Stage A. Figure 8a illustrates a sample graph where the directed
edges represent strong dependencies. In this example, the query
is in interactive mode with in-memory shu�es inserted between
stages, and a hash join is selected as the join method. Blue lines
connect sources to sinks, and green lines connect builders to probes,
with both lines pointing from the stage that must be scheduled �rst
to its dependent stage.

Step 2. We identify the strongly connected components in the
graph generated in the previous step. Stages within a strongly con-
nected component have cyclic dependencies and must be scheduled
at the same time to avoid deadlocks. Figure 8b illustrates a strongly
connected component, where all the stages within the red rectangle
must be scheduled concurrently. Consider Stages 4 and 6 as an
example. If Stage 6 is scheduled while Stage 4 is not, the output sink
operator in Stage 6 would be blocked since the source operator in
Stage 4 is not consuming data. Conversely, if Stage 4 is scheduled
while Stage 6 is not, the probe operator in Stage 4 would be blocked
since there is no input data from Stage 6 to build the hash table. As
a result, stages with cyclic dependencies, such as Stages 4 and 6,
must be scheduled concurrently.

Step 3. To generate the stage groups, we merge one or more
strongly connected components into one stage group and require
at least one source or blocking stage in each group. A stage is con-
sidered a blocking stage if it contains a physical plan node with a
blocking property. This property provides natural breakpoints in
the execution process, allowing for the re-evaluation of the query

3643

execution plan [20]. We use a depth-�rst search to traverse the
graph from the output stage and treat strongly connected com-
ponents as nodes. We cache visited components in a list until we
encounter a component that contains either a source stage or a
blocking stage. We then create a stage group consisting of all com-
ponents in the cached list, clear the list, and continue traversing to
form the next stage group. Figure 8c illustrates the resulting stage
groups.

4.2 The priority of a stage group
Anser de�nes a weak dependency between operators such that a sub-
scriber is weakly dependent on its corresponding publisher. Ideally,
the publisher should run �rst and pass the required information
before the subscriber starts running. Our scheduling algorithm
takes this weak dependency into consideration. Unlike the strong
dependency where the order of stages is required to avoid dead-
locks, the order is preferred when there is a weak dependency. This
is because the execution results are not a�ected by the order of
weakly dependent stages.

We assign priorities of the generated stage groups to suggest a
preferred order when multiple stage groups are to be scheduled
in the DAG. The weak dependency is de�ned between operators,
and one stage or one stage group may contain multiple publishers
and subscribers. We assign an integer priority score B 2 [0, 5] to
each stage group and schedule according to B in a descending order,
where stage groups with B = 0 are scheduled �rst.

Firstly, we assign B = 0 to stage groups that are not strongly
dependent on others or whose strong dependencies have already
been scheduled, to make sure these stage groups are scheduled �rst.
We then assign B 2 [1, 5] to stage groups falling under the following
�ve categories respectively: (1) stage groups with subscribers whose
corresponding publishers have all �nished; (2) stage groups with
publishers only; (3) stage groups without subscribers or publishers;
(4) stage groups with subscribers whose publishers are running; (5)
stage groups with subscribers whose publishers are pending. The
priority scores are re-evaluated whenever multiple stage groups
are ready to be scheduled.

4.3 The execution of Anser-based scheduler
The Anser-based scheduler follows four steps to schedule queries.
Figure 9 shows an example. Assuming in the example all stage
groups take the same amount of time to execute, we demonstrate a
static order to show how priorities are assigned and stage groups
are chosen.

Step 1. We construct a DAG with stage groups as nodes and
strong dependencies as directed edges. The DAG is generated by
the process described in §4.1. The priority score of each node is
calculated according to the rules described in §4.2.

Step 2. In brief, the execution order of all stage groups is de-
termined by the topological sorting algorithm. In the implemen-
tation, we manage all stage groups with two priority queues. The
unblocked queue consists of all stage groups with no strong depen-
dencies on others, meaning they are ready to be dispatched. The
blocked queue holds the remaining stage groups. Both queues are
arranged as priority queues based on the priority scores of each

stage group, which are dynamically updated by the stage group
state listener. The state listener keeps track of the execution status
of task instances, tasks, stages, and stage groups. After a stage group
in the unblocked queue completes its execution, its dependents in
the blocked queue are moved to the unblocked queue.

Step 3. To optimize resource utilization while still taking weak
dependency into account, we dispatch # stage groups at a time
based on the concurrency control factor # , which can be adjusted
according to cluster resources usage. The # stage groups are prior-
itized in the unblocked queue �rst, and if there are only< (< < #)
stage groups in the unblocked queue, we dequeue (# �<) stage
groups from the blocked priority queue to execute.

Step 4. Within each dispatched stage groups, all stages are dis-
patched at the same time. Each stage is then broken into multiple
tasks and runs in parallel on executor nodes.

Blocked queue

0

1 53

2

4

6

6

unblocked queue

1: 5

1: {pub0, pub1} ; 2: {sub1};

3: {sub0, pub2}; 4: {sub2}

0:

6 1 5 3 2 4 0

0 +0 +10

1 +10+4 - - - - -

2 +10+5 - -

3 +10+2 +10+2 - - -

4 +10+2

5 +10+3 - - - -

6 - - - - - -

{6} {1} {3, 5} {3} {2, 4} {0, 4} {0}

to be scheduled

stage group

N=2

unblocked queue

Figure 9: An example of scheduling orders of stage groups

4.4 Implementation details and discussion
The scheduler of AnalyticDB , powered by a uni�ed hybrid com-
pute engine, e�ciently handles workloads that consist of both
low-latency high-concurrency interactive analytics and large-scale
fault-tolerant o�ine jobs. To avoid maintaining multiple scheduling
algorithms, we rely on a general-purpose scheduler that e�ectively
allocates system resources.

To handle both short and simple as well as long and complex
queries with no signi�cant execution overhead, the scheduler of
AnalyticDB needs to be versatile. For simple queries consisting of
less than �ve stages, we apply the all-at-once scheduling policy
without constructing stage groups to eliminate additional sched-
uling costs. However, for complex queries, scheduling all stages
at once may hamper the downstream stages without input data
as they cannot proceed until their upstream stages are completed.
To address this issue, we use the group-phased scheduler, which
schedules stages when their upstream stages start outputting data.
It results in improved resource utilization and reduced idle-spinning
of resources. In production, network connections are reduced by
50%-95%, peak memory utilization is reduced by 50%, and pend-
ing tasks are reduced by up to 99% for large and complex clusters.
The average scheduling time cost of the group-phased scheduler
is only 327 microseconds. Meanwhile, for batch workloads, typi-
cally involving large-scale data ETL from multiple tables, schedul-
ing all table-scan tasks simultaneously as the bottom-most stages
can cause concentrated hotspot distribution on I/O, resulting in
degraded performance. To mitigate this issue, the group-phased
scheduler restricts the number of concurrently scheduled stage
groups, reducing hotspot distribution density.

3644

5 EXPERIMENTAL STUDY
In this section, we conduct an experimental evaluation to vali-
date the performance improvements of Anser discussed in §3 and
§4. Firstly, we evaluate the overall performance on a benchmark
workload. Then, we analyze three applications discussed in §3.5 on
production workloads.

5.1 Experiments on benchmark
5.1.1 Experiment setup. We run benchmark tests on the TPC-DS
workload with a scale factor of 1000. Our baseline system is Spark
[50], which features the adaptive query execution (AQE) and the
dynamic partition pruning (DPP). We compare Spark’s DPP with
Anser ’s runtime �ltering (RTF), which targets similar optimization
scenarios. We use the built-in storage engine with a decoupled
executor and storage design in AnalyticDB and the Hive [1] storage
engine with a coupled executor and storage design in Spark. We
set up three AnalyticDB clusters to simulate di�erent system loads:
idle, normal, and busy. All nodes have 16 CPU cores and 64GB
main memory for bothAnalyticDB and Spark. The idle/normal/busy
AnalyticDB clusters respectively have 36/24/12 executor nodes and
they all have 24 storage nodes. The Spark cluster has the same
settings as the idle AnalyticDB cluster of 36 executor nodes.

5.1.2 Overall results. We run all 99 TPC-DS queries, and evaluate
total response time with both AQE and DPP disabled in Spark, and
Anser disabled in AnalyticDB . Then we turn on AQE and DPP/RTF
separately, and �nally we enable both features. The improvements
of the query response time are shown in Figure 10. Compared with
the baseline, for AnalyticDB , there is a 30% and 10% reduction
on response time with RTF and AQE enabled respectively, and an
overall of 61% improvement with both features enabled.

Figure 10: Overall performance comparison betweenAnalyt-
icDB and Spark.

5.1.3 Ablation study. We conducted an ablation study using the
RTF feature to demonstrate the e�ectiveness of our proposed meth-
ods. Enabling RTF results in a 57% improvement in response time
(from 990.25s to 430.25s) for the TPC-DS 99 queries. Then, we se-
lect 22 relatively long-running queries (response time > 2s) out
of 99 TPC-DS queries and analyze their response time. Figure 11
shows the response time of the 22 selected queries, with an average
improvement of 81%. We then construct the following three experi-
ments on the 22 selected queries to demonstrate the e�ectiveness
of our designs.

Firstly, we evaluate the e�ectiveness of the greedy algorithm
which declares required information and �nds its publisher and
subscriber by searching the entire plan node tree to maximize the
number of subscribers through top-down traversal. Thresholds are
set on PubOperator/SubOperator to cancel production or consump-
tion if costs become signi�cant, which are evaluated against during-
execution statistics. In contrast, other approaches like Impala [5],
limit the search space of options and only consider subscriber-
publisher pairs as directly joined table scan operators, and use esti-
mated statistics to decide whether to add these subscriber-publisher
pairs, making it easier to miss optimization opportunities and ef-
fective subscribers. We compared our approach against a baseline
algorithm following Impala’s implementation. Before execution, a
runtime �lter is considered e�ective if its publisher and subscriber
are correlated through a join criterion. With limitations on e�ective
patterns and estimated cost upper bounds, the baseline algorithm
generates 61 �lters, whereas the greedy algorithm generates 170
�lters. During execution, a runtime �lter is considered e�ective if it
�lters more than 60% of input data. Out of the 170 �lters generated,
104 of them are e�ective during execution. Therefore, with a greedy
algorithm, more e�ective information can be extracted and utilized.

Secondly, we validate the bene�ts of constructing channels dur-
ing the planning phase rather than execution. Pre-execution chan-
nels allow the scheduler to adjust priorities and block the subscriber
until the �lter is built and received. In contrast, during-execution
search algorithms like AIP [30] fails to control the scheduler’s priori-
ties. For example, if the table scan-like subscribers may be processed
before the arrival of the �lter. We evaluate the total scanned data
size with and without pre-execution channels. Without introducing
the group-phased scheduler (to be evaluated in the third experi-
ment), we apply an all-at-once scheduling policy and manually set
the lowest priority on table scan subscribers, then compare both
cases in the idle cluster. Figure 12 shows a comparison of scanned
data size in gigabytes. Pre-execution channel registration reduces
scanned data size by over 96%, resulting in signi�cant reductions
in network and I/O costs. Therefore, implementing a framework
to manage information channels before execution is vital to make
sure information is consumed as much as possible.

Thirdly, we evaluate the response time of two di�erent schedul-
ing policies, the all-at-once scheduling policy (SP1) and the Anser-
aware-group-phased scheduling policy (SP2), under di�erent sys-
tem loads. We set the concurrency-control factor # to 4, 6, and 8 for
busy, normal, and idling clusters, respectively. We set a �xed wait
time on all subscribers for both policies, which is the maximum time
allowed for subscribers to receive and consume the information. If
the subscribers receive information before timeout, they start to
consume as soon as the information is received. We vary the wait
time from 0ms to 1200ms with a step size of 200ms, and add a wait
time of 9999s as a baseline assuming all �lters could be consumed.
Figure 13 shows that the group-phased scheduler outperforms any
wait time variation of the all-at-once scheduler. It also has similar
performance with varying wait time, suggesting that the wait time
is adaptively selected with stability and is relatively optimal due to
priority control.

3645

Figure 11: Response time test of RTF.

Figure 12: Scanned datasize test of RTF.

Figure 13: Comparison between group-phased-scheduler
and all-at-once scheduler.

5.2 Performance evaluation in production
environment

Anser along with the proposed scheduler has been deployed in
more than 90% of AnalyticDB ’s clusters in production environment.
In this subsection, we present three representative cases on the
performance of Anser’s applications on multiple production work-
loads. We also perform an analysis on the information management
mechanism that evaluates whether certain information should be
collected, using pre- versus during-execution statistics.

5.2.1 Adaptive partial aggregation. There are more than 50% partial
aggregation operators with an aggregation reduction ratio of less
than 20%, while 5% operators with a reduction ratio of more than
99%. We evaluate the e�ectiveness of adaptively bypassing partial
aggregation in Cluster A. The aggregation operator is the most
CPU intensive operator in the cluster, and the cluster has a mixed
distribution of aggregate reduction ratios. The cluster has 24 storage
nodes and 24 executor nodes (16 CPU cores and 64GBmain memory
for each node). The partial aggregation operator takes up 34% CPU
time of all aggregation operators. 92% of the partial aggregation
operators have a reduction ratio of 0%, and more than 96% have
a reduction ratio of less than 20%. Figure 14 shows the results
of this test. We analyze four common patterns occurring more

than 1000 times daily. These patterns involve sub-relations join
and aggregation with distinct (A1 and A2), count (A3), or sum
(A4) functions. We compare the average processed data size and
wall time of the partial aggregation operator, as well as the query
response time with adaptive partial aggregation ON versus OFF.
We can see that, by skipping partial aggregation operators with low
reduction ratio, CPU resources are saved and the end-to-end query
response time also decreases.

Figure 14: Evaluation of adaptive partial aggregation.

5.2.2 Early stopping for joins. For all online patterns with at least
one join operator, about 10% of them can bene�t from empty join
early stopping, de�ned by one side of join being empty while the
other side processing more than 1MB data. We select two typical
workloads to evaluate the e�ect. Cluster B has 6 executor nodes and
3 storage nodes (24 CPU cores and 96GB main memory for each
executor node and 16 CPU cores and 64GB main memory for each
storage node). Pattern B1 with more than 1000 daily occurrence
has 7 joins and its execution plan is a left deep tree whose left-most
source table is empty. By enabling early stopping on this pattern,
all join operators as well as all operators at the builder sides are
terminated. Cluster C has 3 executor nodes and 3 storage nodes
(16 CPU cores and 64GB main memory for each node). 30% of its
patterns with join operators can apply early stopping. Pattern C1 (or
C2) has deep/bushy tree execution plans with 5 (or 3) joins, where
the second-left-most/right-most source table is empty. Figure 15
shows the volume of data that are pruned and the reduction ratio of

3646

the query response time. These results demonstrate the signi�cant
performance bene�ts of early stopping for join over empty input
relation.

Figure 15: Evaluation of early stopping for joins.

5.2.3 Runtime filtering. RTF is e�ective in more than 85% online
clusters. Two clusters are chosen to show its e�ectiveness. Cluster D
has 8 executor nodes and 12 storage nodes (24 CPU cores and 96GB
main memory for each executor node and 16 CPU cores and 64GB
mainmemory for each storage node). Cluster E has 2 executor nodes
and 3 storage nodes (16 CPU cores and 64GBmain memory for each
node). We compare the scanned data size and query response time
of 3 query patterns from each cluster’s workload, with and without
RTF enabled. Patterns D1/D2/D3/E1 include 2 tables joins with one
side having less than 1000 rows and the other having millions of
rows. Pattern E2/E3 are 5/9 joins with multiple RTF generated and
pushed to multiple subrelations including table-scans. Figure 16
shows the results. We can see that by pruning irrelevant data in
sub-relations, RTF reduces the query response time and the scanned
data size considerably, thus saves CPU, IO and network resources
as a result.

Figure 16: Evaluation of runtime �ltering

5.2.4 Evaluations on statistics. We evaluate the accuracy of sta-
tistics collected before versus during execution. As mentioned in
§ 3.3, we have implemented thresholds on the publisher nodes to
cancel production and transmission if the costs exceed a certain
level. Anser uses during-execution statistics to evaluate such costs.
We evaluate the e�ectiveness of the during-execution cost estima-
tions based on aggregated analysis from all online clusters with
Anser enabled. We take RTF as an example, whose threshold eval-
uates the �lter_rate, which is an estimation of the data size that

could be reduced by a runtime �lter. We calculate act_�lter_rate =
9>8=_02C_A>FB
;4 5 C_02C_A>FB , pre_est_�lter_rate =

9>8=_4BC_A>FB
;4 5 C_4BC_A>FB , and

adaptive_est_�lter_rate = A86⌘C_02C_A>FB
;4 5 C_02C_A>FB , and compute a confusion

matrix to compare the accuracy with 0.6 as the heuristic thresh-
old. For starters, 8.11% of pre-estimated statistics are not a number
(NaN). Table 1 shows the confusion matrices. The accuracy (the
degree of closeness to true value, i.e.,)% +)#) of pre-execution
cost estimation is 62.78%, while the accuracy of during-execution
adaptive cost estimation is 84.05%, which is an increase of more
than 25%. Therefore, using a during-execution evaluation is more
accurate both in terms of eliminating the useless information (TN)
and keeping the useful information (TP).
Table 1: Confusion matrices for pre- versus adaptive- esti-
mations

TP FN FP TN

pre-estimation 50.64% 16.14% 20.99% 12.23%

adaptive-estimation 60.97% 5.46% 10.49% 23.08%

6 RELATEDWORKS
Adaptive query processing in literates is not only widely studied,
but also extensively implemented in many commercial databases
including Oracle [34], SQL Server [7], Spark [50], DB2 [44], etc.
Most of these systems focus on a plan re-optimization with few
alterations of the execution process, either with feedback statis-
tics collected post-execution that improves the plan the next time
it is generated [19, 44] or with dynamic optimization similar as
our work that re-optimizes the plan during execution [50]. Other
plan-based techniques require slight modi�cations on the execution
process. A progressive parametric optimization such as [19, 29],
generates parametric plans and caches the plans in an adaptive
cursor sharing framework [50], which is progressively optimized
based on execution statistics. Another array of techniques termed
proactive reoptimization generates multiple sub-plans per pipeline
in the query, and uses a choose-plan operator [25] or a switch
operator [12] to choose between di�erent sub-plans during exe-
cution in the pipeline based on run-time statistics. Also, there are
row-routing techniques, originated from the Eddies framework
[11, 18, 19, 40], that implement a run-time optimizer to route each
row independently through a sequence of join operators. Though a
routing-based technique reduces compile-time optimization over-
head and provides high �exibility, it requires major changes in
our push-style query processing engine and is not adopted in our
system.

7 CONCLUSION
In this paper, we present a novel adaptive information sharing
framework, called Anser, that has been implemented in the data
warehousing service innovated by Alibaba Cloud, AnalyticDB . In
this framework, we present the abstraction of dynamic information
along with its applications. Such information could be generally
used to improve the processing e�ciency of query engines. The
results of the experimental study also demonstrate the functionality
of this framework.

3647

REFERENCES
[1] [n. d.]. Apache Hive. https://hive.apache.org/. Last accessed 2023-03-01.
[2] [n. d.]. Apache Kafka. https://kafka.apache.org/. Last accessed 2023-03-01.
[3] [n. d.]. Elastic Compute Service. https://www.alibabacloud.com/product/ecs.

Last accessed 2023-03-01.
[4] [n. d.]. HDFS Architecture Guide. https://hadoop.apache.org/docs/r1.2.1/hdfs_

design.html. Last accessed 2023-03-01.
[5] [n. d.]. Impala Runtime Filtering. https://impala.apache.org/docs/build/html/

topics/impala_runtime_�ltering.html. Last accessed 2023-03-01.
[6] [n. d.]. Object Storage Service (OSS). https://www.alibabacloud.com/product/

object-storage-service?spm=a3c0i.23458820.2359477120.2.26a77d3fagA3sE. Last
accessed 2023-03-01.

[7] [n. d.]. Parameter Sensitive Plan optimization. https://learn.microsoft.com/en-
us/sql/relational-databases/performance/parameter-sensitivity-plan-
optimization?view=sql-server-ver16. Last accessed 2023-03-01.

[8] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European conference on
computer systems. 29–42.

[9] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. 2015.
Spark sql: Relational data processing in spark. In Proceedings of the 2015 ACM
SIGMOD international conference on management of data. 1383–1394.

[10] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta,
Sebastian Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the
2022 International Conference on Management of Data. 2205–2217.

[11] Ron Avnur and Joseph M Hellerstein. 2000. Eddies: Continuously adaptive query
processing. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data. 261–272.

[12] Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive re-optimization.
In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data. 107–118.

[13] Srikanth Bellamkonda, Hua-Gang Li, Unmesh Jagtap, Yali Zhu, Vince Liang, and
Thierry Cruanes. 2013. Adaptive and Big Data Scale Parallel Execution in Oracle.
Proc. VLDB Endow. 6 (2013), 1102–1113.

[14] Chuangxian Wei Xiaoqiang Peng Liang Lin Sheng Wang Zhe Chen Feifei Li Yue
Pan Fang ZhengChengliang Chai Chaoqun Zhan,Maomeng Su. 2019. AnalyticDB:
Realtime OLAP Database System at AlibabaCloud. In Proceedings of the VLDB
Endowment, Vol. 12. 2059–2070.

[15] Surajit Chaudhuri and Kyuseok Shim. 1994. Including group-by in query opti-
mization. In VLDB, Vol. 94. 12–15.

[16] Ming-Syan Chen, Hui-I Hsiao, and Philip S Yu. 1997. On applying hash �lters
to improving the execution of multi-join queries. The VLDB journal 6 (1997),
121–131.

[17] Ming-Syan Chen, Hui-I Hsiao, and Philip S Yu. 1997. On applying hash �lters
to improving the execution of multi-join queries. The VLDB journal 6 (1997),
121–131.

[18] Amol Deshpande. 2004. An initial study of overheads of eddies. ACM SIGMOD
Record 33, 1 (2004), 44–49.

[19] Amol Deshpande, Joseph M Hellerstein, et al. 2004. Lifting the burden of history
from adaptive query processing. In VLDB. Citeseer, 948–959.

[20] Amol Deshpande, JosephMHellerstein, and Vijayshankar Raman. 2006. Adaptive
query processing: why, how, when, what next. (2006), 806–807.

[21] Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li,
Ying Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-
optimized data layouts for cloud analytics workloads. In Proceedings of the 2021
International Conference on Management of Data. 418–431.

[22] David J. DeWitt Donovan A. Schneider. 1989. A Performance Evaluation of Four
Parallel Join Algorithms in a Shared-Nothing Multiprocessor Environment. 1989
ACM SIGMOD international conference on Management of data) (1989), 110–121.

[23] Mostafa Elhemali, César A Galindo-Legaria, Torsten Grabs, and Milind M Joshi.
2007. Execution strategies for SQL subqueries. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of data. 993–1004.

[24] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[25] Goetz Graefe and Karen Ward. 1989. Dynamic query evaluation plans. In Pro-
ceedings of the 1989 ACM SIGMOD international conference on Management of
data. 358–366.

[26] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon redshift and the case for simpler

data warehouses. In Proceedings of the 2015 ACM SIGMOD international conference
on management of data. 1917–1923.

[27] Ashish Gupta, Venky Harinarayan, and Dallan Quass. 1995. Aggregate-query
processing in data warehousing environments. In VLDB, Vol. 95. Citeseer, 358–
369.

[28] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. 2007. 2007 Test-of-time
Award “Online Aggregation”. (2007), 1.

[29] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. 1997.
Parametric query optimization. The VLDB Journal 6 (1997), 132–151.

[30] Zachary G. Ives and Nicholas E. Taylor. 2008. Sideways Information Passing for
Push-Style Query Processing. 2008 IEEE 24th International Conference on Data
Engineering (2008), 774–783.

[31] Matthias Jarke and Jürgen Hartmut Koch. 1984. Query Optimization in Database
Systems. ACM Comput. Surv. 16 (1984), 111–152.

[32] Navin Kabra and David J DeWitt. 1998. E�cient mid-query re-optimization of
sub-optimal query execution plans. In Proceedings of the 1998 ACM SIGMOD
international conference on Management of data. 106–117.

[33] P-A Larson. 2002. Data reduction by partial preaggregation. In Proceedings 18th
International Conference on Data Engineering. IEEE, 706–715.

[34] Allison W. Lee and Mohamed Zaït. 2008. Closing the query processing loop in
Oracle 11g. Proc. VLDB Endow. 1 (2008), 1368–1378.

[35] Kaiyu Li and Guoliang Li. 2018. Approximate Query Processing: What is New
and Where to Go? Data Science and Engineering 3 (2018), 379–397.

[36] Lothar F Mackert and Guy M Lohman. 1986. R* Optimizer Validation and Perfor-
mance Evaluation. Very Large Data Bases: Proceedings 149 (1986), 149.

[37] Abhishek Modi, Kaushik Rajan, Srinivas Thimmaiah, Prakhar Jain, Swinky Mann,
Ayushi Agarwal, Ajith Shetty, Shahid K I, Ashit Gosalia, and Partho Sarthi.
2021. New query optimization techniques in the Spark engine of Azure synapse.
Proceedings of the VLDB Endowment 15, 4 (2021), 936–948.

[38] M. Oyamada. 2018. Accelerating Feature Engineering with Adaptive Partial
Aggregation Tree. 2018 IEEE International Conference on Big Data (Big Data)
(2018), 5417–5419.

[39] Glenn Norman Paulley. 2001. Exploiting functional dependence in query optimiza-
tion. University of Waterloo.

[40] Vijayshankar Raman, Amol Deshpande, and Joseph M Hellerstein. 2003. Using
state modules for adaptive query processing. In Proceedings 19th International
Conference on Data Engineering (Cat. No. 03CH37405). IEEE, 353–364.

[41] Praveen Seshadri, Joseph M Hellerstein, Hamid Pirahesh, TY Cli� Leung, Raghu
Ramakrishnan, Divesh Srivastava, Peter J Stuckey, and S Sudarshan. 1996. Cost-
based optimization for magic: Algebra and implementation. In Proceedings of the
1996 ACM SIGMOD international conference on Management of data. 435–446.

[42] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.
2019. Presto: SQL on everything. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1802–1813.

[43] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost Models for Big Data Query Processing: Learning, Retro�tting, and Our
Findings. Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (2020).

[44] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO-
DB2’s learning optimizer. In VLDB, Vol. 1. 19–28.

[45] Michael Stonebraker. 1986. The case for shared nothing. Database Engineering
Bulletin) (1986), 4–9.

[46] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: a hybrid analytical engine towards query
fusion for structured and unstructured data. Proceedings of the VLDB Endowment
13, 12 (2020), 3152–3165.

[47] Rongbiao Xie, Meng Li, Zheyu Miao, Rong Gu, He Huang, Haipeng Dai, and
Guihai Chen. 2021. Hash Adaptive Bloom Filter. 2021 IEEE 37th International
Conference on Data Engineering (ICDE) (2021), 636–647.

[48] Yanjun Yao, Sisi Xiong, Hairong Qi, Yilu Liu, Leon M. Tolbert, and Qing Cao.
2015. E�cient Histogram Estimation for Smart Grid Data Processing With the
Loglog-Bloom-Filter. IEEE Transactions on Smart Grid 6 (2015), 199–208.

[49] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). 15–28.

[50] Yong Zhao and Rong Chen. 2021. Spark SQL Query Optimization Based on
Runtime Statistics Collection. 2021 IEEE 6th International Conference on Cloud
Computing and Big Data Analytics (ICCCBDA) (2021), 250–255.

3648

https://hive.apache.org/
https://kafka.apache.org/
https://www.alibabacloud.com/product/ecs
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://impala.apache.org/docs/build/html/topics/impala_runtime_filtering.html
https://impala.apache.org/docs/build/html/topics/impala_runtime_filtering.html
https://www.alibabacloud.com/product/object-storage-service?spm=a3c0i.23458820.2359477120.2.26a77d3fagA3sE
https://www.alibabacloud.com/product/object-storage-service?spm=a3c0i.23458820.2359477120.2.26a77d3fagA3sE
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitivity-plan-optimization?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitivity-plan-optimization?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitivity-plan-optimization?view=sql-server-ver16

	Abstract
	1 Introduction
	2 Background
	2.1 Architecture of AnalyticDB
	2.2 Query execution of AnalyticDB
	2.3 An end-to-end example

	3 Adaptive information sharing framework
	3.1 Definition of adaptive information
	3.2 The architecture of Anser
	3.3 Implementation
	3.4 Cost analysis
	3.5 Applications

	4 Anser-based Scheduler
	4.1 Stage group
	4.2 The priority of a stage group
	4.3 The execution of Anser-based scheduler
	4.4 Implementation details and discussion

	5 Experimental study
	5.1 Experiments on benchmark
	5.2 Performance evaluation in production environment

	6 Related works
	7 Conclusion
	References

