
Microsoft Purview: A System for Central Governance of Data

Shafi Ahmad, Dillidorai Arumugam, Srdan Bozovic, Elnata Degefa, Sailesh Duvvuri, Steven Gott,
Nitish Gupta, Joachim Hammer, Nivedita Kaluskar, Raghav Kaushik, Rakesh Khanduja, Prasad
Mujumdar, Gaurav Malhotra, Pankaj Naik, Nikolas Ogg, Krishna Kumar Parthasarthy, Raghu

Ramakrishnan, Vlad Rodriguez, Rahul Sharma, Jakub Szymaszek, Andreas Wolter
Microsoft Corporation

[shahmad,diminnal,srbozovi,elnatad,saduvvuri,stevengo,nitgup,johammer,nikal,skaushi,rakesh.khanduja,prmujumd,
gamal,pankajn,niogg,krishkp,raghu,vlrodrig,sharmarahul,jaszymas,anwolter]@microsoft.com

ABSTRACT

Modern data estates are spread across data located on premises, on

the edge and in one or more public clouds, spread across various

sources like multiple relational databases, file and storage systems,

and no-SQL systems, both operational and analytic; this phenome-

non is referred to as data sprawl. Data administrators who wish to

enforce compliance across the entire organization have to inventory

their data, identify what parts of it are sensitive, and govern the

sensitive data appropriately Ð across the entirety of their sprawling

data estate. Today, governance of data is completely siloed; each

of the data subsystems has its own (and varied) governance fea-

tures. Policies applied to sensitive data are applied piece-meal by

iterating over all the data sources in a custom language specific to

each source. This makes data governance cumbersome, error-prone

(because a given policy must be manually enforced across different

subsystems, inconsistencies can easily arise), and expensive.

This paper presents Microsoft Purview, a service for unified gov-

ernance of the entire data estate of an organization from a single

central pane of glass. The Purview service consists of three parts:

(1) a Data Map or metadata catalog that is populated by automated

scanning of data sources in the organization, (2) a system to store

and manage sensitivity classification of data, and (3) a policy sys-

tem that enables data security officers to author and implement

policies that span the entire organization, e.g., a policy that says,

"Non-full-time employees should be denied access to data classified

as PII (Personally Identifiable Information.")

Purview transforms data governance across a complex data es-

tate by offering the ability to govern centrally and automating

data discovery, classification and policy enforcement. While other

commercial catalog systems also build a global catalog, Purview is

unique in its support for policies. It is also distinguished by cov-

ering both structured and unstructured data, thanks to its deep

integration with Office 365 and its governance framework; indeed,

"Microsoft Purview" represents a new unified offering that com-

bines Office 365 governance and what was formerly a service for

governing structured data called "Azure Purview".

By integrating with Office 365’s Rights Management Service,

Purview offers central governance over structured data stored in

databases and stores, reports in systems such as Power BI, as well

as document data stored in Office 365. The Purview vision is to

make the metadata in the Data Map increasingly richer through

further automation and curation support and to use this 360 de-

gree view of the data estate to support a wide range of governance

policies, ranging from access control to lifecycle management (e.g.,

retention, deletion, restricting data movement). This paper covers

the design and implementation challenges in building the Purview

service for Attribute-Based Access Control (ABAC) policies, focus-

ing specifically on a detailed description of its integration with

Azure SQL Database. We illustrate the power of unifying Office

365 governance with structured data governance through Purview

policies that enforce consistent access control even as data flows

betweenOffice 365 and structured data engines like Azure SQLData-

base. We also describe the results of our empirical evaluation of the

performance overheads imposed by Purview.

PVLDB Reference Format:

Shafi Ahmad, Dillidorai Arumugam, Srdan Bozovic, Elnata Degefa, Sailesh

Duvvuri, Steven Gott, Nitish Gupta, Joachim Hammer, Nivedita Kaluskar,

Raghav Kaushik, Rakesh Khanduja, Prasad Mujumdar, Gaurav Malhotra,

Pankaj Naik, Nikolas Ogg, Krishna Kumar Parthasarthy, Raghu

Ramakrishnan, Vlad Rodriguez, Rahul Sharma, Jakub Szymaszek, Andreas

Wolter. Microsoft Purview: A System for Central Governance of Data.

PVLDB, 16(12): 3624 - 3635, 2023.

doi:10.14778/3611540.3611552

1 INTRODUCTION

Organizations have complex data estates, spread across many data

subsystems. First, data is split between on-prem, edge and cloud.

Second is the division between operational stores and analytic

stores. Third, there are various kinds of each, e.g., operational stores

can be relational systems or no-SQL systems, and analytic stores can

be data lakes or relational warehouses. Big organizations typically

use some combination of all of the above.

Let us consider the role of a data security officer who is entrusted

with enforcing compliance across the entire organization. The of-

ficer would first need to conduct an inventory of the data across

the entire organization, which is expensive given the complexity

of the data estate. She would then need to identify which portions

of the data are sensitive, i.e., need to be protected in some way.

This is also a challenging task since not all data is sensitive and

identifying the subset that is requires iterating over the entire in-

ventory, one subsystem at a time. Third, if the officer wishes to

enforce any policy across the organization, then she would be faced

with a further challenge in that the data is scattered across not only

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611552

3624



a large number of sources, but also a heterogeneous set of sources,

each with its own language for expressing security policies. Hence,

the officer would need to iterate over all data subsystems, and trans-

late her policy into a specific łlocalž policy for each subsystem in

the data estate. The policy language for relational databases uses

grant-revoke based on ANSI SQL, but the one for data lakes is

based on file-system access control lists. In short, data governance

is completely siloed across a large set of heterogeneous sources,

and hence laborious, cumbersome and error-prone. To address this

situation, we introduce the approach of unified data governance.

While other global catalog systems exist, we are the first to support

fine-grained policy enforcement out of the box.

1.1 Microsoft Purview: Central Governance

This paper presents Microsoft Purview [8], a service for unified

governance of the entire data estate from a single pane of glass.

While there are related offerings from Amazon Web Services [2],

Databricks [10] and Google [12], none of these systems support

governance at a fine-grained level within the contents of a database.

Another distinguishing factor of Purview is its unique integration

with Office 365, a topic we discuss later in this section.

The Purview service consists of three parts. First, there is a

metadata catalog that is maintained by automated scanning of all

resources in the data estate to extract their schema and lineage; we

call this the Data Map. The Data Map provides data administrators a

central inventory of all of the organization’s data. Second is a system

to store and manage data classification. In order to classify data,

Purview supplies an extensible taxonomy of sensitivity labels that a

data security officer can customize for her organization. Purview

also provides the ability to attach sensitivity labels to metadata

elements such as columns. It does this by letting the data security

officer supply a set of classification rules that are applied to the

catalog in order to derive the classification. Purview also provides a

class of in-built classifiers that the data security officer could apply.

The classifiers tag at the metadata level, based on sampled subsets

of the data as input. The results of classification are reflected in the

Data Map.

Third, Purview provides a way for data security officers to state

and enforce policies across the entire estate. Purview aims to sup-

port many kinds of policies ranging from access control to lifecycle

management (e.g., data retention, deletion, sovereignty restrictions

on data movement). In this paper, we focus on access control poli-

cies that can be applied across a data estate with heterogeneous

subsystems. Some example policies include:

• P1: Only full-time employees can be granted access to data

that is classified as PII (Personally Identifiable Information.)

• P2:Only full-time employees that are also part of the devops

organization can be granted access to data that is classified

as customer support.

• P3: Data scientist Alice can read any data that is classified

as appropriate for reporting.

Access control policies, as in the examples above, use classification

attributes to span across all subsystems in the data estate. The

classification is a attribute of the data. The example policies also

specify attributes of the requestor, and could additionally specify

attributes about the environment (although we will not discuss

these). Thus, Purview supports Attribute Based Access Control, or

ABAC for short.

There are a few points worth calling out about Purview’s ABAC

policies. First, in contrast with the siloed approach in today’s world,

Purview policies offer a consistent and scalable way to govern the

entire data estate. For instance, policy P1 above would be simulta-

neously interpreted in a relational database to apply to columns

classified as PII, and in a storage system to apply to files classified

as PII. Second, the succinctness of the policy matches the policy

author’s intent. The policy author does not need to express poli-

cies in source-specific languages, e.g., grant-revoke syntax for rela-

tional databases, or access control lists for file/cloud storage. Third,

Purview policies co-exist with local policies in individual sources

and are not intended to wholly replace them. Purview policies are

interpreted asmandatory. For instance, policy P1 compels the entire

data estate to deny access to data classified as PII to non-full-time

employees. An individual administrator of a particular source can

further restrict access to only a small subset of full-time employees,

but cannot override the policy to grant access to a non-full-time

employee. Fourth, our main focus with Purview is to enable gover-

nance to be carried out consistently and at scale. However, in terms

of expressive power, it does not increase the scope of what can be

done today. Increasing the expressive power of ABAC policies is a

non-goal for our first step.

In this paper, we address various challenges in the design and im-

plementation of Purview’s ABAC system. By design, our system is

distributed. Policies are authored and stored in the Purview service,

but they are enforced by individual data sources like a relational

database. Further, Purview needs to scan a source’s metadata. A

crucial question that arises in this setting is what is the source of

truth for policies. One could imagine a system with dual sources

of truth, where the local and Purview state is kept in sync using

2-phase commit. However, in our current release, we choose a sim-

pler approach based on customers’ requirements. We treat Purview

as the single source of truth for policies and the local store as the

source of truth for metadata. The relevant state, both locally and

in Purview is updated asynchronously. Purview fetches metadata

to update its catalog, and distributes policies to individual sources,

which cache them locally and apply them in conjunction with their

local policy.

The integration of Purview policies locally falls into two cate-

gories. For some engines like SQL Server and Azure Storage, we

pursue native integration of Purview. In this approach, the per-

mission logic of the engine is modified to also enforce Purview

policies. Since the evaluation of Purview policies is identical across

the various engines with native support, it is abstracted into a com-

mon component. For other engines, such as servers not owned by

Microsoft (e.g., Oracle), we use a proxy based approach. Here, we

develop a proxy that rewrites queries to enforce the Purview policy.

While we briefly outline the proxy-based approach in this paper,

our main focus is on describing native support. We use SQL Server

as a detailed illustration of native Purview integration.

In the native integration approach, a data source locally caches

policies fetched from Purview. The cache is used to enforce policies

without a service call to Purview, and also to support the case where

Purview is temporarily unreachable. Since permission checking is

invoked during the execution of every query or request, caching

3625



policies in the local engine greatly improves performance. A com-

mon access pattern with SQL is for a single user to connect to SQL

and then issue queries in a loop, with queries often accessing the

same tables and columns each time. As such, we cache the result

of calls to the Purview component in order to evaluate repeated

evaluation of the same policy, in the expectation that policy updates

are not frequent. We empirically evaluate the impact of the above

optimizations by running a benchmark based on TPC-C.

1.2 Integration with Office 365 Rights
Management Service (RMS)

The Rights Management Service (henceforth, RMS) offered by Of-

fice 365 [17] classifies documents and offers central policy enforce-

ment for unstructured data in Office 365, such as Excel spreadsheets

and Word docs. RMS supports acess control policies through en-

cryption. Briefly, an RMS protected document is encrypted with

keys held by the RMS service. Access control is enforced through a

key-release policy that determines the users who are authorized

to receive keys that can decrypt the document. RMS policies are

centrally enforced. At the time the document is accessed, a call is

made to the RMS service, which checks whether the decryption

keys can be released to the user attempting to access the document.

The document may be stored in various file systems and storage

accounts, and it may flow through various applications, e.g., as

an email attachment or Office 365 Sharepoint. Throughout this

lifecycle, the RMS policy is enforced.

Purview extends the notion of Rights Management to structured

data. However, unlike Office 365’s RMS, it extends across diverse

and distributed data estates, and enforces access control over struc-

tured data through traditional access control mechanisms supported

by the local data sources. Purview is integrated with Office 365 RMS

through a hub-and-spoke model. A subset of the ABAC policies

including some of the above examples are hosted in a policy hub

shared by Purview and Office 365 RMS. The policies span structured

data and documents. They are applied as RMS policies over docu-

ments and through traditional access control mechanisms backed by

Purview over structured data engines. Furthermore, the policies are

applied as the data flows. As a brief motivating scenario, consider

a document authored in Microsoft Excel [15] that is classified as

Confidential, protected through RMS and hence encrypted. A user

who has access to the document could open it and load the data into

a SQL database. When the data flows into SQL, it is re-classified by

Purview and the same policies that were applied to Excel in the form

of RMS are applied to the data in SQL in the form of ABAC policies,

restricting access to columns classified Confidential. Now consider

a business user authoring a report in Microsoft PowerBI [16] over

the data in SQL. As noted, when queries are run over SQL, ABAC

policies are applied. Furthermore, SQL propagates the labels on

the base data into the columns returned as part of the query result

and these labels flow into the PowerBI client. When the PowerBI

report is exported in the form of an Excel document, the corre-

sponding RMS policies are automatically applied and the document

is encrypted if the policy requires it. We will illustrate the above

scenario in greater detail later in this paper.

1.3 Organization

While the integration with Office 365 discussed above is a crucial

part of Purview, for ease of exposition, most of this paper focuses on

structured data. The remainder of this paper is organized as follows.

Section 2 gives an overview of all the Purview functionality and

user experience, including a discussion of the hub-and-spoke model

integrating Purview with Office 365. Section 3 discusses example

scenarios illustrating the power of Purview, including data flows

between Office 365 and structured data engines. Section 4 describes

the overall architecture. Section 5 provides implementation details.

Section 6 contains the results of performance experiments. Sec-

tion 7 discusses related work. Section 8 summarizes the paper with

avenues for future work.

2 OVERVIEW

In this section, we discuss how Purview is configured and the

functionality it provides.

2.1 Initializing Purview

The first step in using Purview is to initialize it. A Purview ac-

count is initialized with all the classification taxonomy used in

Office 365 [17]. As part of initialization, users can setup additional

classification labels and classification rules, which will be defined

precisely later in Section 2.2. Data sources are included in Purview

governance through a process of registration.

2.2 Catalog and Classification

After registration, Purview scans the metadata in a given source

and classifies it. As noted in Section 1, Purview governance can

be applied to a variety of sources. Most of the discussion in this

section will focus on SQL Server and Azure Storage.

A classification label is a free-form string. As noted above, there

is a pre-defined taxonomy of labels that is drawn from Office 365.

A Purview administrator can extend the taxonomy with additional

labels.

In the case of Azure Storage, the unit of classification is a file. In

the case of SQL Server, the unit of classification is a column. In future

work, we will continue to extend the classification framework to

include other object types. Every classified object can be associated

with zero or more classification labels.

In Purview, there is also the concept of a sensitivity label which

is also a free-form string drawn from a taxonomy separate from

the one for classification labels. Unlike classification labels, every

classified object is associated with at most a single sensitivity la-

bel. The sensitivity label associated with an object is supposed to

aggregate its classification labels.

Example 2.1. Consider a customer of Purview namedContoso. As

noted above, Purview provides pre-defined classification labels; e.g.,

MICROSOFT.GOVERNMENT.US.SOCIAL_SECURITY_NUMBER.

Contoso could extend the taxonomy to include additional labels; e.g.,

CONTOSO.HR.EMPLOYEE_ID. Suppose Contoso uses employee

social security numbers as a way to identify employees in a SQL

database with a column SSN. Then, the column SSN could be associ-

ated with two classification labels: CONTOSO.HR.EMPLOYEE_ID,

MICROSOFT.GOVERNMENT.US.SOCIAL_SECURITY_NUMBER.

3626



However, it can only be associated with at most a single sensitivity

label, e.g., Highly Confidential.

2.3 Classification Rules

Data is classified using an extensible framework of classification

rules. For classification, both the metadata and a small subset of

data is examined. Hence, the classification rules reference both.

Purview supports a rich rule language that encompasses regular

expressions and dictionaries. While Purview has an extensive set

of in-built rules, users can extend them to include custom rules.

Example 2.2. An example of an in-built classification rule is a

rule to identify US Social Security Numbers. A user could extend

these rules with custom rules.

• If Contoso from Example 2.1 represents all employee iden-

tifiers with the prefix Employee followed by a five-digit

numeral, then it could add a custom classification rule

such as Employee[0-9][0-9][0-9][0-9][0-9] corresponding

to the classification label CONTOSO.HR.EMPLOYEE_ID.

The above rule would match actual data values.

• Rules can also reference dictionaries. For instance, Contoso

could supply a dictionary of product categories correspond-

ing to the label ProductCategory.

• In general, rules can also match metadata. For instance, if

Contoso stores all customer names in columns that contain

the string Name, then it could include a rule %Name% to

match column names.

As noted above, classification rules are aggregated into sensitiv-

ity labels. The aggregation takes place using a set of aggregation

rules that list the classification labels that derive a given sensitivity

label. As with classification, while Purview has built-in rules, they

can be extended by users.

Example 2.3. A Purview admin from Contoso could author a

rule that stipulates that any object that is classified as

MICROSOFT.GOVERNMENT.US.SOCIAL_SECURITY_NUMBER

or CONTOSO.HR.EMPLOYEE_ID must be associated with the

sensitivity label Highly Confidential.

Purview also uses rules based on the classifiers run by Office 365

to classify documents. These classifiers use sophisticated machine

learning techniques that have evolved over time.

2.4 Attribute Based Access Control (ABAC)

We now describe the framework used to define Purview policies.

As noted in Section 1, while our long-term goal is to support a rich

class of data governance policies through Purview, in this paper,

the focus is on access control.

2.4.1 Policy Language. An access control policy consists of four

fundamental components listed below.

• A principal that refers to an identity, or a group of identities.

For this paper, we assume a single identity provider such as

Azure Active Directory [5]. For instance, an individual user,

e.g., Alice is a principal, as is a group such as FTE denoting

all full-time employees of an organization.

• A resource that refers to an object in a data source un-

der Purview’s governance. We associate every resource

with a unique name drawn from a hierarchical names-

pace. The namespace is an extension of Azure’s existing

namespace for resources visible in Azure, e.g., a SQL

database or an Azure Storage container. Azure resources

are organized in a hierarchy where the subscription is at

the root, followed by a resource group used to identify

groups of resources, followed by an Azure resource. The

name of a resource reflects the above hierarchy. For

instance, the name /Subscriptions/D9E312A3-1672-44F6-

AF82-72535AC74879/ResourceGroups/MyResourceGroup/

Microsoft.SQLServers/MyServer/Databases/MyDb refers

to the database MyDb contained within server MyServer,

contained within the resource group MyResourceGroup,

contained within subscription D9E312A3-1672-44F6-

AF82-72535AC74879. We extend it to both address

resources contained within, e.g., tables and columns

for SQL and files for Azure Storage. For instance,

the name /Subscriptions/D9E312A3-1672-44F6-AF82-

72535AC74879/ResourceGroups/MyResourceGroup/ Mi-

crosoft.SQLServers/MyServer/Databases/MyDb/Schemas/

MySchema/Tables/MyTable/Columns/MyColumn refers

to the column MySchema.MyTable.MyColumn contained

within the database MyDb. We also extend the namespace

to address resources outside Azure.

• An action that refers to an action that a principal can per-

form on a resource. Example actions include read, insert,

update, delete. While many actions such as the above are

applicable to multiple data sources, some actions such as

connect are specific to a data source such as a relational

database.

• A decision that can take three values: grant, deny, inappli-

cable.

In order to succinctly describe policies, we introduce the concept

of a role which is a set of actions. For instance, we could define a

role reader consisting of actions connect, read. We also introduce

the notion of a scope that defines a set of resources using a limited

regular expression, as we illustrate below.

• The scope /Subscriptions/D9E312A3-1672-44F6-AF82-

72535AC74879/ResourceGroups/MyResourceGroup/

Microsoft.SQLServers/MyServer/Databases/∗ refers to the

set of all databases in the server MyServer.

• The scope /Subscriptions/D9E312A3-1672-44F6-AF82-

72535AC74879/ResourceGroups/MyResourceGroup/

Microsoft.SQLServers/∗∗ refers to all servers, databases

and objects within, contained in the resource group

MyResourceGroup.

Our limited regular expression language only allows the wild-cards

∗, ∗∗ to be used instead of a literal. The wild-card ∗ matches any

single literal, whereas ∗∗ matches any path.

An access policy consists of a set of rules. We use the term policy

rule to distinguish it from classification and sensitivity rules. A

policy rule maps the combination of a principal, a role and a scope

to a decision.

3627



Example 2.4. An example policy rule maps principal Alice,

a role reader and a scope /Subscriptions/D9E312A3-1672-

44F6-AF82-72535AC74879/ResourceGroups/MyResourceGroup/

Microsoft.SQLServers/MyServer/Databases/∗∗ to decision Grant.

Each policy rule is associated with an optional predicate on the

sensitivity label.

Example 2.5. The policy rule in the above example could be

associated with a predicate Sensitivity_Label = Public.

For ease of exposition, we focus on predicates in the class where

the sensitivity label is constrained to be equal to a constant. It is

straightforward to extend everything we describe in this paper to

include (1) predicates on classification labels and (2) boolean combi-

nations of predicates. An important property of the above class of

predicates is that they are deterministic. When evaluated on a given

catalog, classification and policy, the output of the predicate is fixed.

We will discuss extensions to non-deterministic predicates later in

the paper, e.g., a predicate TimeOfDay >= 9am and TimeOfDay <

5pm.

2.4.2 Policy Semantics. The semantics of the policy language de-

scribed above is intended to produce a decision given the following

triplet as input: an individual user, a fully specified resource, and

an action.

A policy rule is said to match the above input if (1) the individ-

ual user in the input equals the principal or is a member of the

user-group referred to in the rule, (2) the input resource is con-

tained within the scope in the rule, (3) the input action equals the

action in the rule. The overall decision is defined by aggregating

the decision obtained from the matching rules as follows: (1) Grant

if at least one matching rule results in a Grant and no rule results

in a Deny, (2) Deny if at least one matching rule results in a Deny,

(3) Inapplicable otherwise.

Example 2.6. Suppose that we have two policy rules.

• The first rule maps principal Alice, a role reader and

a scope /Subscriptions/D9E312A3-1672-44F6-AF82-

72535AC74879/ResourceGroups/MyResourceGroup/

Microsoft.SQLServers/MyServer/Databases/∗∗ to decision

Grant, hence allowing Alice to read any data in any database

within the MyServer SQL Server.

• The second maps principal NonFTE, a user group de-

noting non-full-time employees, a role reader and

a scope /Subscriptions/D9E312A3-1672-44F6-AF82-

72535AC74879/∗∗ to decision Deny with the condition

Sensitivity_Label = Confidential, hence denying access to

data labeled as Confidential to non-full-time employees,

anywhere within the entire subscription.

Suppose that principal Alice belongs to the group NonFTE, and

that the server MyServer contains database MyDb that has a table

MySchema.MyTable with two columns Column1, Column2 of which

Column1 is labeled Confidential.

• For Alice to connect to the database MyDb, she requires

a connect permission to the database. The above input

matches the first rule above since the reader role contains

the connect action. It fails to match the second rule since

the database is not labeled Confidential. Therefore, under

Purview governance, the connect permission is granted.

• Suppose Alice wishes to run the query select Column2 from

MyTable. She requires a Read permission on the objects

MyTable and Column2. The above input matches the first

rule, but not the second because Column2 is not labeled

Confidential. Hence, the output of the permission check is

a grant.

• Suppose Alice wishes to run the query select Column1 from

MyTable. She requires a Read permission on the objects

MyTable and Column1. The above input matches both rules

since Column1 is labeled Confidential. The first rule results

in a grant but the second results in a deny. This is aggre-

gated to return a deny.

2.4.3 Aggregation with local permissions. The final permission

check during execution does not rely solely on Purview. It combines

Purview checks with local checks. The combination semantics is

identical to the single grant-no deny semantics described above.

Any deny, whether local or Purview-backed, overrides a grant. In

the absence of a deny, we require at least a single grant for the

permission to be granted, whether local or Purview-backed. We

illustrate with our running example.

Example 2.7. Suppose Alice wishes to run the query select Col-

umn2 from MyTable. The Purview check results in a grant but if

the local SQL check results in a deny, then it overrides the grant

and the query fails. Similarly, if Alice wishes to run the query select

Column1 from MyTable then the permission check always fails

regardless of the local decision because the Purview check results

in a deny.

While Purview policies are aggregated with local policies in

the manner described above, they cannot be over-ridden by local

administrators. In that sense, once a data source is under Purview

governance, Purview policies are mandatory and always applied.

2.4.4 Expressive Power. The goal of Purview policies is to express

policies consistently and at scale across a variety of data sources. It

is not a goal to increase the expressive power of policies that are

expressible in several of the local sources, e.g., SQL Server with

advanced security features. For instance, in examples 2.6 and 2.7, a

Purview policy that denies Alice access to data labeled Confidential

is equivalent to denying access to Column1 and other columns

labeled Confidential in SQL Server’s grant-revoke-deny permission

model.

2.5 Integration with Office 365 Rights
Management Service: Hub and Spoke Model

As discussed in Section 1, Microsoft Purview is integrated with the

Rights Management Service (RMS) offered by Office 365 [17]. Simi-

lar to Purview, RMS classifies documents and offers central policy

enforcement. RMS supports acess control policies realized through

encryption. Briefly, an RMS protected document is encrypted with

keys held by the RMS service. Access control is enforced through a

key-release policy that determines the users that can decrypt the

document. RMS policies are centrally enforced. At the time the

document is accessed, a call is made to the RMS service, which

3628



Figure 1: Hub and SpokeModel of Integration with Office 365

RMS

checks whether the decryption keys can be released to the user

attempting to access the document.

Purview is integrated with the RMS system in the form of a hub-

and-spoke model illustrated in Figure 1. At the level of the hub is a

subset of the Purview policy language that can be applied across

Office 365 and structured data engines. The subset only includes

actions that are meaningful across documents and data, and a scope

that is broad, e.g., at the level of a subscription or a tenant. We

illustrate a policy stated in the hub through an example.

Example 2.8. An example policy rule stated in the hub maps prin-

cipal group NonFTE, an action read and a scope /Subscriptions/∗∗

to decision Deny with a predicate Sensitivity_Label = Confidential.

Stated in natural language, the policy denies access to all confi-

dential data to principals that are not full-time employees of the

organization.

The policy is interpreted in Office 365 as an RMS policy en-

forced through encryption. Accordingly, all documents labeled

Confidential would be encrypted and the encryption keys would

be denied to principals that are not full-time employees. The same

policy is interpreted in the structured data engines as an ABAC

policy as described previously in this section.

In order to support the full range of policies defined above,

Purview also supports spokes. Figure 1 shows one spoke each for

policies specific to storage and structured data engines. In general,

there could be multiple spokes and multiple levels of spokes. For

instance, we could have a spoke specific to SQL underneath the one

for structured data overall. For any given engine, policies defined

at all scopes relevant to it are applied.

3 EXAMPLE SCENARIOS

Purview combines the data catalog together with classification and

policies to offer a rich data discovery and governance experience.

Users can browse and search for data sources both based on the

nature of the source as well as classification. We illustrate with

examples.

3.1 Self-service

Suppose that a data scientist wishes to analyze customer and sales

data in her organization. With the data catalog, Purview allows her

to browse various data sources to find relevant sources. She could

also use the output of classification to search for data that is classi-

fied as customer or sales data. This would provide her an inventory

of data that is relevant to her analysis, not just in terms of listing

sources, but also the nature of the sources, e.g. SQL vs storage, that

would inform her of the nature of the analysis. Purview allows

her to then easily request access to these resources; it also allows

an administrator to review the request and approve (or deny) it.

Without Purview policies, she would need to consult with every rel-

evant data owner to grant her access to their source. With Purview

policies, the Purview administrator could single-handedly grant

her the minimum set of required permissions, namely to connect

to relevant sources and read data classified as customer or sales. In

this way, the data scientist could use Purview to greatly improve

the efficiency of discovery and governance, thereby enabling her

to increase her focus on the main task, namely data analysis.

3.2 Governance through data flows

As discussed in Section 2.5, Purview is integrated with Office 365

RMS via a hub and spoke model. This not only enables governance

across documents and data, but it also enables governance as data

flows from one engine to another. We illustrate with an example.

Suppose that the policy hub has two policy rules.

(1) A rule that maps principal Alice, an action read and a

scope /Subscriptions/∗∗ to decision Grant with a predicate

Sensitivity_Label = Confidential. Stated in natural language,

the policy grants access to all confidential data to principal

Alice.

(2) A rule that maps principal group NonFTE, an action read

and a scope /Subscriptions/∗∗ to decision Deny with a pred-

icate Sensitivity_Label = Confidential. Stated in natural

language, the policy denies access to all confidential data

to principals that are not full-time employees of the organi-

zation. (Alice is a full-time employee.)

Suppose that Alice authors a document in Microsoft Excel [15]

that is classified as Confidential. It would be protected through

RMS per the above policy and hence would be encrypted. Alice

has access to the encryption keys, opens the document in Excel

and loads the data in the document into a SQL database. Once

the data lands in SQL, it is re-classified by Purview. Suppose that

Purview labels column Name in table Customer to be Confidential.

When the data is in SQL, the policies stated above are applied as

ABAC policies. Now, suppose Alice authors a report in Microsoft

PowerBI [16] and fetches the data in SQL by issuing a query select

* from Customer. As per the policy above, Alice has access to all

columns in the Customer table and hence would be able to run the

query successfully. Furthermore, SQL propagates the labels on the

base data into the columns returned as part of the query result and

the column Name returned in the query result would be labeled

Confidential as it flows into PowerBI. When the PowerBI report is

exported in the form of an Excel document, PowerBI applies the

label Confidential to the entire document; the corresponding RMS

policies are automatically applied and the document is encrypted.

4 ARCHITECTURE

In this section, we describe the overall system architecture shown

in Figure 2. The rest of the paper focuses exclusively on Purview

while keeping the details of the Office 365 RMS integration out of

scope for ease of exposition.

3629



Purview policy store

Purview PDS (Policy 
Distribution Service)

SQL instance Storage instance Other resources

Policy UI Purview catalog

Metadata

Policy Policy
Policy

Policy + Classification

Classification

CDO

Figure 2: Purview system architecture.

4.1 Catalog and Classification

The catalog is populated by scanning every data source that is

registered with Purview. Purview scans the source by connecting to

it as a client. During registration of a given data source, a credential

for the source is configured that lets Purview perform its scan. The

scan involves examining metadata, but also (subsets of) data for the

purposes of classification. Classification rules in general are applied

on both metadata and data. In order to improve the efficiency of

the scan, two optimizations are performed. First, the scan is scaled

out by being performed close to a given source. In Azure, the scan

is performed in the same region as the source. Second, the scan

only examines a prefix of the data. Currently, it is a fixed prefix

of 128 rows. In future, we plan to extend it to perform various kinds

of random sampling. It is not required for all the scanned rows to

match a given classification rule. The matching threshold is also

input as part of configuring a rule.

We note that in our approach, only the final result of the scan,

namely the metadata and the classification, is sent to the Purview

service, thus minimizing the data transferred over the network

and facilitating compliance with laws and organizational policies

governing data movement. As with other data flows in Figure 2, the

catalog is populated asynchronously. The default time period for

scans is once every 8 hours, but this can be customized by users.

4.2 Policy Enforcement: Asynchrony

As shown in Figure 2, Purview policies are authored via a policy

user interface and stored in a policy store. The figure hides the

distinction between hub and spoke interfaces, which can be ab-

stracted away into a single interface for the purposes of discussing

the system architecture. Purview uses Azure CosmosDB [6] to store

them centrally. Policies are enforced locally in the data source in-

volved. We treat Purview as the source of truth for policies and

the local store as the source of truth for metadata. Policies are en-

forced asynchronously. As noted above, the Purview catalog is also

updated asynchronously. Purview policies are cached locally for

enforcement. This asynchronous design gives us two crucial advan-

tages. By serving permission checks off a local cache, we avoid a

call to Purview in the inner loop, enabling (a) better performance,

and (b) better fault tolerance when Purview is unavailable, since

permission checks can then be served off an older policy.

4.3 Policy Distribution Service (PDS)

For the propagation of policies, Purview runs a Policy Distribution

Service (PDS). Local stores fetch policies from PDS either by re-

ceiving notifications on updates, or by polling for updates. While

policy updates are not immediately reflected in permission checks

by design, our goal is to have them reflected without a significant

delay. Hence, sources that poll do so frequently. SQL Server uses

polling because we support Purview policies in both the on-prem

and Azure products, and the on-prem products do not support any

notification infrastructure. SQL Server polls PDS every five minutes.

A basic interface supported by PDS is a full pull where PDS

returns the entire policy directly from the policy store. In addi-

tion, PDS supports an interface for incremental updates, both via

polling i.e., delta pull, and notifications. PDS uses an off-the-shelf

publish/subscribe system, namely Azure Event Hub [7] (henceforth

referred to simply as Event Hub), in order to support deltas. This

solution satisfies our scale and availability requirements. In terms

of semantics, from the point of view of a source that is receiving

events, Event Hub guarantees that every event is received exactly

once but events could arrive out of order. For instance, if a policy is

updated first by inserting a rule and then subsequently deleting it,

the delete event could be received at a source before the insertion.

4.4 Policy Decision Point (PDP)

Policies are applied at local sources. We abstract the application

of a policy into a component called the Policy Decision Point (PDP).

The PDP assembles the policy fetched from PDS and evaluates a

permission check against the policy. There are local sources owned

by Microsoft, such as SQL Server and Azure Storage. Since Purview

3630



supports governance of all sources, there are other sources, e.g., an

Oracle database, that are not owned by Microsoft. Accordingly, the

way in which PDP is integrated into a given data source falls into

two categories.

For sources not owned by Microsoft:We enforce policies by run-

ning a proxy with PDP. We briefly describe the proxy using the

example of a relational database such as Oracle. The proxy inter-

cepts every query, parses it in order to identify the set of permissions

required to run the query, and checks the permission against the

policy using the PDP.

Example 4.1. We continue Example 2.6. Suppose Alice wishes

to run the query select Column2 from MyTable. The proxy would

parse the query to determine that she requires a Read permission on

the objects MyTable and Column2. It would check the permissions

against the policy using the PDP. As per the policy described in

Example 2.6, the result is a grant. Hence, the query is forwarded to

the underlying server for execution. If the result of the call to PDP

is a deny then the query is rejected from the proxy itself.

For sources owned by Microsoft: PDP is integrated natively into

the source code of the underlying engine, and the PDP checks are

integrated into the core permission checking logic of the engine.

The rest of the paper describes native enforcement in detail by using

the example of SQL Server. Briefly, policies are fetched from PDS

directly by individual SQL Server instances, and persisted in the

local user database. The SQL Server process is modified to integrate

the PDP. The PDP is prepared by giving as input the policy and

attributes read from the user database. During query execution, at

permission checking time, the PDP is invoked to obtain a decision

from the Purview sub-system. The decision is aggregated with local

permission checks to evaluate the permissions needed for the query.

The performance advantages of native integration over the proxy

based approach are discussed in Section 6.

5 IMPLEMENTATION IN SQL SERVER

We illustrate the native integration of Purview policy enforce-

ment through the case study of SQL Server. Other systems such

as Azure Storage and Cosmos Db also enforce policies through

native integration. While some of the design details differ from

SQL Server, the main points described below also apply to them.

Also, for ease of exposition, most of this section focuses on policies

without predicates, and hence without attributes. The extensions to

include attributes are straightforward and discussed in Section 5.4.

5.1 PDP Algorithm

We begin by describing how the PDP component is implemented.

Recall from Section 2.4 that a policy consists of a set of policy rules,

each consisting of a principal, a scope, a role being mapped to a

decision along with an optional predicate on sensitivity labels. The

policy rules are provided to the PDP as a part of pre-processing

and stored in an in-memory cache. In addition to the rules, the PDP

also stores metadata per rule, specifically a rule identifier and a

version number. The rule identifier and version number are both

generated by the Purview policy store and distributed through PDS.

The version number is a monotonically increasing counter that is

incremented with every update.

5.1.1 Updating rules after receiving a delta. When the system per-

forms a full pull, the PDP resets the policy state to reflect the new

policy. When the system receives a delta (either through polling

or notification), the policy state is incrementally maintained using

the rule metadata. Specifically, every delta event contains a rule,

including its metadata, and an indicator of the nature of update

performed, i.e. whether it was an insert, delete or (in-place)update.

We use the rule metadata to update the policy appropriately, also

accounting for out of order delivery during delta pull, as follows:

• If the policy set has a rule with the same identifier as the

incoming event, but with a higher version number, then we

ignore the event.

• If the policy set has a rule with the same identifier as the

incoming event, but a lower version number, then we up-

date the rule in the policy set appropriately. If the incoming

event is a delete, then the rule is marked with a boolean

deleted flag in the policy set. We do not delete the rule (to

account for subsequent events that might arrive for the

same rule, but with a lower version number.)

• If the policy set does not have a rule with an identifier

matching the incoming event, then we add a corresponding

rule to the policy set. If the incoming event is a delete, then

the rule is marked with a boolean deleted flag in the policy

set.

We illustrate with examples. Suppose that a new rule is inserted

into the policy set. The new rule would have a unique identifier.

Since the delta API guarantees that all updates are delivered, the

new rule is guaranteed to get inserted into the set stored locally

by the PDP eventually, according to the method above. Similarly,

if a rule gets updated, the update is guaranteed to eventually be

applied in the local policy set.

We now illustrate the rationale for soft deletes. Suppose that a

new rule is inserted in Purview but is immediately followed by a

delete, which can happen if the policy author wishes to undo the

insertion. It is possible that SQL receives the delete event before

the insert event. When we receive the delete event and there is no

existing rule with the same identifier, then according to the method

above, we add the rule to the policy set but with a boolean indicating

that it is deleted. When we receive the insert subsequently, the

method would observe that there is already a rule with a matching

identifier and a higher version number and hence ignore the insert.

In contrast, if we do not add the rule during the processing of the

delete event, then when we receive the insert out of order, we would

be unable to determine if the rule being added was subsequently

deleted.

Note that in the above method, the policy set keeps growing. We

never actually delete a rule even if the incoming event is a delete.

For garbage collection, we issue full pulls periodically. Since policy

updates are rare, the frequency of full pulls can be low, e.g., once

weekly.

5.1.2 Permission check. The input to a permission check is (1) a

principal who is a user (as opposed to a group), (2) a resource that

is specified through a path, and (3) an action. Given a set of pol-

icy rules, the goal of the permission check is to return an access

decision, as defined by the semantics in Section 2.4. The current

algorithm we implement in the PDP performs a linear scan of all

3631



rules, identifies matching rules (as defined in Section 2.4) and aggre-

gates their individual decisions into an overall decision. Checking

whether an individual rule matches the input involves checking if

(1) the input principal matches the corresponding principal in the

rule, either directly or through a group membership, (2) the input

action is contained in the role referred to in the rule, (3) the input

resource matches the scope of the rule, and (4) the optional predi-

cate on classification is satisfied. The details of the above checks are

straightforward. In the case where the PDP is natively integrated,

the host system provides the necessary inputs to the PDP to make

its decision, e.g., the group memberships of a user principal.

Our algorithm based on a linear scan is optimized for the case

of a concise policy. If policy sizes grow large, we could extend the

algorithm to not have to scan all rules by building index structures,

such as a trie on all scopes and a hash table on the principals that

would help narrow down matches to rules with matching scopes

and principals respectively. These extensions are part of future

work.

5.2 Integration with SQL Query Processing and
Security Caches

TDS
Query Compilation

PDP dll
(In-
memory 
cache)

Query 
execution

Execution
Engine
(Permission
Checks)

Storage Engine

Persistent
Policy Cache

Figure 3: Purview integration with SQL query processing.

Figure 3 illustrates the integration of PDP into SQL query pro-

cessing. Before we describe the integration, we first discuss how

SQL permission checking works. Queries are compiled and the

resulting execution plans are stored in a plan cache without any

permission checking. When the query is to be executed, during a

pre-execution step, permission checks are applied. If they succeed,

then execution proceeds. But if the permission checks fail, then

the query fails. Since permission checking is expensive, SQL has

an array of in-memory security caches that reduce its cost. We

describe two categories of caches that are relevant to this paper.

SQL maintains an object level cache that stores for a given user,

the result of a permission check for a table (and other objects like

views), including all its columns. It also maintains a query-level

cache that stores for a given user, the result of permission checks for

all objects referenced in the query. If the user runs the same query

but with different parameters, a common access pattern for SQL,

all permission checks can be served off the query level cache. If the

user changes the query but references the same underlying objects,

then permission checks can be served off the object level cache.

SQL’s cache eviction policy is coarse-grained. If there is any change

in the security metadata, then the cache for the entire database is

cleared and re-populated on demand.

In order to fetch Purview policies from PDS, SQL Server runs a

background task that polls PDS asynchronously. The task persists

the fetched policy in the user database, so that queries can be

served off the local cache even after a SQL restart, in the event that

Purview is unavailable. SQL Server runs the PDP as a dll loaded

into the SQL process. The PDP maintains an in-memory cache

of the policy, which is input to it by the background task as the

policy changes. SQL Server invokes PDP as part of its permission

checking, and the result of the calls to PDP are aggregated with

local checks before populating the security caches. In this way, we

retain the use of security caches with Purview policies. In particular,

for a given Purview policy, after the initial phase of populating

security caches, in the łhotž path of iterative query execution for a

given user, SQL Server returns all permission checks from its cache

without invoking the PDP. We extend the cache eviction logic of

SQL Server to clear the cache for the entire database when the

Purview policy changes. In general, not all policy rules may apply

to a given database. Before clearing the cache, we check if the scope

of the updated rule includes the current database.

5.3 Discussion

We now expand on a few more implementation details.

First, in Azure, different clients do not share the same SQL Server

process (i.e., we achieve multi-tenancy through process-level isola-

tion.) Multiple databases in the same SQL process are guaranteed

to belong to the same client. As clear from the example policies

described in this paper, we expect a large degree of overlap between

policies applicable to different databases. Therefore, running one

PDP instance per database would be wasteful. Accordingly, we

run a single PDP instance per SQL process. The single instance

stores policies applicable to all databases contained in the SQL in-

stance. Similarly, there is only one background task per SQL process

fetching policies from PDS.

Second, since every SQL instance fetches policies directly from

PDS, in order to minimize network traffic, we perform delta pulls

through server restarts. As part of a delta pull, PDS returns a sync

token that increments over time and needs to be presented to PDS

as input to the subsequent delta pull. PDS guarantees that a sync

token is unique within the context of a given resource path. As

part of the persistent cache, we also store the sync token of the

previous delta pull. When SQL restarts, we resume delta pulls with

the persisted sync token. Notice that since a single SQL process can

contain multiple databases, each with its own persisted sync token

(and policy), we face the question of which sync token to use. While

one could assume that in the common case, the persisted sync token

and policy would be the same for all databases, in practice this is

not in general true. For instance, if a new database is created, it may

not yet have a persisted policy and sync token. A similar situation

could arise if a database moves between different Azure resources,

or if it is restored from an older backup. In order to address the

above question, we also store a time-stamp indicating the local wall

clock of the SQL process at the time we issue a delta pull in the

persistent cache. When SQL restarts, we use the sync token of the

database that has the most recent time-stamp. We also populate the

3632



PDP with the corresponding policy that is used to answer queries

in the duration before the first pull is initiated.

Example 5.1. Suppose a SQL process contains two databases, one

of which is current and the other restored from an older backup. If

the current database has a policy with a recent time-stamp, and the

restored database has a policy with an older time-stamp, then when

SQL restarts, it would use the policy and sync token associated

with the current database.

We note that due to clock synchronization problems, it is possible

that in the above example, the restored database has a more recent

time-stamp than the current database. In such an event, there is

no loss of correctness in the system. We would use the sync token

associated with the restored database, which is also correct, because

PDS guarantees that sync tokens are unique for a given resource.

(When we pass a sync token that is outdated to PDS, it could result

in an error if the relevant deltas have been deleted from Event Hub;

in such an event PDS returns an appropriate error that triggers a

full pull.)

With new and restored databases, there is a question of how

their persisted policy is updated. For policies that are empty or

completely out of sync, we cannot use deltas fetched by delta pulls

since the deltas would be respective to a more recent policy state.

Accordingly, we use the policy stored in the in-memory cache of the

PDP to update the persistent cache for such databases. In general,

if the sync token for a database is different from the sync token

returned by the latest delta pull, then we over-write its persistent

cache with the policy stored in the in-memory cache of the PDP.

Example 5.2. Suppose a SQL process has a single database with

a PDP initialized by fetching a policy from PDS. Now suppose a

new database is created within the same process. When the next

delta pull is invoked, SQL checks that it has a database with no

sync token, and updates the persistent cache in the database with

the policy stored in the PDP. (We could optimize this further by

only storing the subset of the policy applicable to a given database,

but in our current implementation, we store a single server-wide

policy that spans all databases, in all databases.)

Third, for read replicas, we use the policy state cached in the

database obtained through log shipping and avoid a network call

to PDS. Geo-replicas also receive policies through log shipping, but

unlike local replicas, could belong to a different resource in Azure.

The policies obtained through log shipping may not be applicable

to geo-replicas. Hence, geo-replicas fetch relevant policies from

PDS. However, they use log shipping as the source of information

for classification.

5.3.1 Write Ahead Principle During Policy Persistence. Finally, we

discuss an important principle we follow during policy pulls from

PDS: we always persist the policy before we update the in-memory

cache in the PDP that is used for query answering. The motivation

for this order is that we want newer queries to use newer policies.

In the event that SQL restarts, persisting first ensures that queries

issued after restart before the first pull use the updated policy.

Otherwise, if the in-memory cache in the PDP is updated first and

SQL restarts before persistence, then we could have a scenario

where queries before restart use the new policy, but queries after

restart use an older policy.

5.4 Handling Rule Predicates

Thus far, the discussion focused on policies without predicates,

for ease of exposition. We now discuss the extensions to include

predicates, and hence attributes. Attributes are also distributed

through PDS, just like policies. Attributes are also cached in a local

persistent cache, like policies. Unlike policies, however, the ultimate

source of truth for metadata is the local store. For instance, it is

possible due to the asynchronous behavior of the system that PDS

distributes the classification information for a table that no longer

exists. In such a case, the classification information for the above

table is ignored.

Attributes can take up more space than policies and are not pre-

loaded into the PDP, hence reducing its in-memory footprint. The

PDP fetches attributes on demand when the access check call is

invoked using a callback mechanism. Also, since the classification

for a database are a function of only its schema and data, repli-

cation including geo-replication would not change the attribute

set. Hence, unlike policies which are fetched by geo-replicas from

PDS, attributes are read from the transaction log that is shipped to

maintain the replica.

5.5 Non-Deterministic Predicates

Many of the optimizations described above, in particular the inte-

gration with SQL Server’s security caches, are dependent on the

Purview access checks being deterministic, i.e., fixed for a given

policy and classification. This assumption holds for the class of

policies studied thus far. However, one particular source of non-

determinism that is worth bringing up is predicates that are time-

based. For instance, consider a policy that grants access to data

classified a particular way, but only within a given time-period, say

daily between the hours of 9am and 5pm. We could extend the class

of predicates we support to also include such time-based predicates.

In order to accommodate time-based predicates, we would need to

clear the security cache at all łboundariesž, i.e., times when the re-

sult of the predicate changes. In the above example, it would be 9am

and 5pm. Extending our system to account for such predicates is

future work.

6 PERFORMANCE EVALUATION

This section contains results of performance experiments with

Purview and SQL. We report the results of an end-to-end evaluation

of the impact of Purview based governance on the performance of

SQL Server using a TPC-C [19] like benchmark.

6.1 Hardware configuration

Our experiments were run on a bare-metal machine running

a 3.2GHz, 64-core Intel Family 6 processor, with 64GB of main

memory. The machine was equipped with two separate drives to

separate storage of data and log. We use a solid state drive for the

log.

In order to run the TPC-C benchmark, we could not use standard

benchmark drivers. This is because the standard benchmark driver

inside Microsoft, Benchcraft, uses SQL authentication, whereas we

needed support for a central identity service, namely Azure Active

Directory (AAD) [5]. Accordingly, we used a modified driver for

the benchmark that was integrated with AAD. Further, our goal

3633



was to have all permissions be Purview-backed. Since we do not

yet support all SQL permissions with Purview, specifically stored

procedure execution, we further modified the benchmark driver to

use prepared statements instead of stored procedures. Our bench-

mark driver was run on a machine with 4 cores and 14 GB of main

memory.

6.2 Systems Compared

We compared the performance of three SQL Server configurations

described below.

1. SQLWithoutPurview: This configuration runs SQL Server on TPC-

C data with Azure Active Directory based authentication, but no

Purview governance. This configuration serves as the baseline.

2. SQLWithPurview: This configuration runs SQL Server with

Purview-backed governance. By comparing the performance of

this configuration with the baseline above, we analyze the Purview

related overheads. In order to study the effects of caching the re-

sults of permission checks in SQL Server, we also compare the

results of two sub-configurations of the SQLWithPurview config-

uration, namely one with caching enabled and one with caching

disabled. For the comparison with the baseline SQLWithoutPurview,

we enable caching.

6.3 Benchmark and Purview Policy

We use the TPC-C benchmark [19] with the changes noted above to

use AAD based authentication and prepared statements instead of

stored procedures for our performance evaluation. The benchmark

consists of nine tables and five types of transactions over these

tables that simulate the business activities of a wholesale supplier.

In the absence of stored procedures, the permissions needed to

execute these statements include read, insert, delete and update

permissions on the tables, as well as a connect permission on the

database. Our Purview policy permits all of the above permissions

on the AAD principals running the benchmark. Our policy remains

fixed through the benchmark run. This is realistic in practice since

permissions, once configured, do not change often.

One noteworthy aspect of our policy scenario is that there is no

local policy. Every single permission needed to run the benchmark

is derived solely from Purview. This configuration is intended to

model the worst-case in terms of the performance challenges in-

volved in running the benchmark, since every permission check

would logically need a call to the PDP.

The benchmark includes a scaling factor W representing the num-

ber of warehouses. For our experiments, we used W= 200; consistent

with the benchmark specification, this is the smallest scaling fac-

tor that maximized CPU usage for SQL-NoPurview, our baseline

configuration.

6.4 Results

Due to SQL Server restrictions against publishing absolute through-

put values in transactions per second (tps), we report normalized

throughput values obtained by dividing all throughput values by

the maximum observed value.

Figure 4 shows the relative (normalized) performance of the two

configurations. We vary the number of TPC-C client driver threads

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

50 100 150 200 250 300

No
rm

al
ize

d 
Th

ro
ug

hp
ut

No. of client threads

SQLWithoutPurview SQLWithPurview

Figure 4: Normalized TPCC-like benchmark transaction pro-

cessing rates for the systems compared for different number

of TPCC client driver threads. The benchmark scaling factor

was W = 200.

shown on the X-axis, and for each setting show the normalized

throughput for the two configurations on the Y-axis. The maximum

throughput occurs for 150 client driver threads. Under this load,

the throughput of SQLWithPurview is 98.38% that of SQLWithout-

Purview. In other words, the overhead of Purview governance is

less than 2%. The overhead is higher when the workload is lighter

but never exceeds 5%.

We also study the effect of caching the result of access checks.

When caching is enabled, Purview is not in the łhotž path of data

access. We find that without caching, the performance of the system

drops by up to 31%. This shows the importance of our optimizations.

While we have not empirically evaluated the performance of

a proxy based approach, it is worth noting that at least for sys-

tems where native integration is possible, e.g., SQL Server, a proxy

based approach would be less efficient than native integration. First,

a proxy adds an extra hop and hence an extra delay in the sys-

tem. Further, native integration enables us to closely integrate the

Purview PDP’s decisions with SQL Server’s security caches, which

would not be possible with a proxy based approach; the impact, as

discussed above, is significant.

7 RELATED WORK

There are several industry offerings that support a central data

catalog, e.g., Alation [1], Collibra [9], Google Data Catalog [11] and

Informatica [14]. They provide different levels of scanning, clas-

sification and lineage tracing, much like Purview [8]. (While this

paper focused only on the catalog and classification, Purview also

supports lineage tracing.) Purview is notable in several respects.

First, it scales to multi-petabyte data sources and exabyte scale data

estates, as can be seen from the fact that it has been operational

over Microsoft’s own large internal data estate (with hundreds of in-

stances each of several database systems including SQL Server and

Kusto, as well as an internal Hadoop-like big data system called Cos-

mos with over 10 exabytes). Purview also supports a very large and

3634



diverse set of sources through its scanning algorithm. In particular,

it is unique in its native integration with the Microsoft ecosystem,

including data sources in Azure such as the various Data services

and Azure Storage, as well as the Office ecosystem. For instance,

its classification taxonomy fully integrates with the Office 365 [17]

taxonomy, it understands sensitivity labels and Office’scalability

Information Protection and Data Lifecycle Protection frameworks,

and it supports a single sign-on experience integrated with Azure

Active Directory [5].

The main open-source system in the catalog space is Apache At-

las [3]. Purview is fully integrated with Atlas and the entire catalog

can be accessed using Atlas APIs. In this sense, we can think of

Purview as a significant extension to Atlas. Further, this integra-

tion with Atlas differentiates Purview from industry competitors

including those listed above.

The most important Purview differentiator, however, is its sup-

port for central policy management. Among the major industrial

systems, the closest alternatives are offerings from Amazon Web

Services [2], Databricks [10] and Google [12]. However, all of them

only support coarse-grained policies that are limited to the level

of a database. None of them supports fine-grained policies on the

contents of the database. In the open-source world, we have Apache

Ranger [4] and Open Policy Agent (OPA) [18]. Ranger also supports

tag based policies similar to the classification based policies this

paper focuses on. However, Ranger’s policies focus exclusively on

the Hadoop ecosystem, which is then integrated by systems like

IBM DB2 as a part of their Hadoop extension [13]. OPA provides a

policy language with similar expressive power to Purview’s access

control policies. It provides a toolkit that engines can use to inte-

grate OPA. Thus, in principle OPA is extensible and not restricted

in any way. But it doesn’t come integrated with data sources by

default. In contrast, Purview is an integrated governance offering

out-of-the-box, allowing the instantiated catalog, aka the Data Map,

to be used to specify policies uniformly over all data sources. Pol-

icy enrollment covers a diverse set of sources, many with native

integration and others through a proxy framework. The diversity

of sources Purview supports imposes unique scalability challenges,

e.g., in the design of the Policy Distribution Service (PDS) as dis-

cussed in this paper. The above scalability problems are addressed

neither by Ranger nor OPA. Further, the native integration with

SQL Server described in this paper is the first of its kind, to our

knowledge, of any commercial relational database system.

8 CONCLUSIONS AND FUTURE DIRECTIONS

This paper described Microsoft Purview, a service for central gover-

nance of data, including fine-grained mandatory ABAC. It is deeply

integrated with Rights Management in Office 365, and essentially

extends that across all structured sources of data as well. Purview

enables users to govern their entire data estate, split across het-

erogeneous sources, structured and unstructured, relational and

non-relational, on-prem and cloud, OLTP and analytics. It does so

by a combination of three components: (1) a Data Map that catalogs

the meta-data from various sources, (2) a classification framework

that enables identification of sensitive data, and (3) a framework to

express and enforce policies across the entire data estate. Purview

is the first system that can offer the above combination of features,
and is further distinguished by the scale and diversity of sources

that it supports.

We described the challenges associated with designing and im-

plementing the Purview system, focusing in depth on the policy

evaluation component. We focused on attribute based access con-

trol policies in this paper. We described both native and proxy based

policy evaluation. For data sources owned by Microsoft, for which

we support native integration with Purview, we described how we

combine asynchronous semantics and an aggressive use of caching

to achieve Purview based governance with minimal performance

overhead. Our experiments based on the TPC-C benchmark indi-

cated a drop in throughput of less than 2% due to Purview backed

governance.

Centralized governance of distributed and diverse data estates is

a central problem inmodern enterprises. Purview is the first in what

will likely become a growing number of systems that seek to address

this problem. What we’ve accomplished is a good beginning, but

the scope of policies that can be centrally governed is vast. We have

only taken a first step with access control based policies. Even with

access control, while we support the main permissions of engines

like SQL Server, we hope to be comprehensive in our coverage of

the permission set in future work. The central Data Map opens the

door to expressing a rich set of policies, data masking, retention,

deletion, data movement, and more. We aim to expand our support

for additional classes of policies in future.

REFERENCES
[1] Alation Data Catalog and Data Governance 2021. https://www.alation.com/.
[2] Amazon Web Services Identity and Access Management 2023.

https://aws.amazon.com/iam/.
[3] Apache Atlas: Data Governance and Metadata Framework 2021.

https://atlas.apache.org/.
[4] Apache Ranger 2023. https://ranger.apache.org/.
[5] Azure Active Directory 2023. https://azure.microsoft.com/en-us/services/active-

directory/.
[6] Azure Cosmos DB: NoSQL Database 2021. https://azure.microsoft.com/en-

us/services/cosmos-db/.
[7] Azure Event Hub 2021. https://azure.microsoft.com/en-us/services/event-hubs/.
[8] Azure Purview: A unified data governance solution that maximizes the business

value of your data 2021. https://azure.microsoft.com/en-us/services/purview/.
[9] Collibra: The Data Intelligence Cloud 2021. https://www.collibra.com/us/en.
[10] Databricks Unity 2023. https://www.databricks.com/product/unity-catalog.
[11] Google Data Catalog 2021. https://cloud.google.com/data-catalog.
[12] Google Identity and Access Management 2023. https://cloud.google.com/iam.
[13] IBM Db2 Big SQL 2021. https://www.ibm.com/docs/en/db2-big-

sql/7.1?topic=authorization-ranger.
[14] Informatica Enterprise Data Catalog 2021.

https://www.informatica.com/products/data-catalog/enterprise-data-
catalog.html.

[15] Microsoft Excel 2023. https://www.microsoft.com/en-us/microsoft-365/excel.
[16] Microsoft PowerBI 2023. https://powerbi.microsoft.com/.
[17] Office 365 2023. https://www.office.com.
[18] Open Policy Agent 2021. https://www.openpolicyagent.org/.
[19] TPC-C Benchmark 2019. http://www.tpc.org/tpcc/.

3635


	Abstract
	1 Introduction
	1.1 Microsoft Purview: Central Governance
	1.2 Integration with Office 365 Rights Management Service (RMS)
	1.3 Organization

	2 Overview
	2.1 Initializing Purview
	2.2 Catalog and Classification
	2.3 Classification Rules
	2.4 Attribute Based Access Control (ABAC)
	2.5 Integration with Office 365 Rights Management Service: Hub and Spoke Model

	3 Example Scenarios
	3.1 Self-service
	3.2 Governance through data flows

	4 Architecture
	4.1 Catalog and Classification
	4.2 Policy Enforcement: Asynchrony
	4.3 Policy Distribution Service (PDS)
	4.4 Policy Decision Point (PDP)

	5 Implementation in SQL Server
	5.1 PDP Algorithm
	5.2 Integration with SQL Query Processing and Security Caches
	5.3 Discussion
	5.4 Handling Rule Predicates
	5.5 Non-Deterministic Predicates

	6 Performance Evaluation
	6.1 Hardware configuration
	6.2 Systems Compared
	6.3 Benchmark and Purview Policy
	6.4 Results

	7 Related Work
	8 Conclusions and Future Directions
	References

