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ABSTRACT
The e-commerce platforms, such as Shopee, have accumulated a
huge volume of time-series relational data, which contains use-
ful information on differentiating fraud users from benign users.
Existing fraud behavior detection approaches typically model the
time-series data with a vanilla Recurrent Neural Network (RNN) or
combine the whole sequence as a single intention without consid-
ering the temporal behavioral patterns, row-level interactions, and
different view intentions. In this paper, we present MINT, aMulti-
view row-INteractive Time-aware framework to detect fraudulent
behaviors from time-series structured data. The key idea of MINT
is to build a time-aware behavior graph for each user’s time-series
relational data with each row represented as an action node. We
utilize the user’s temporal information to construct three different
graph convolutional matrices for hierarchically learning the user’s
intentions from different views, that is, short-term, medium-term,
and long-term intentions. To capture more meaningful row-level
interactions and alleviate the over-smoothing issue in a vanilla
time-aware behavior graph, we propose a novel gated neighbor
interaction mechanism to calibrate the aggregated information by
each action node. Since the receptive fields of the three graph convo-
lutional layers are designed to grow nearly exponentially, our MINT
requires many fewer layers than traditional deep graph neural net-
works (GNNs) to capture multi-hop neighboring information, and
avoids recurrent feedforward propagation, thus leading to higher
training efficiency and scalability. Our extensive experiments on
the large-scale e-commerce datasets from Shopee with up to 4.6
billion records and a public dataset from Amazon show that MINT
achieves superior performance over 10 state-of-the-art models and
provides better interpretability and scalability.
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1 INTRODUCTION
With the flourishing development of online shopping, various forms
of e-commerce fraud, such as account takeover, promotion abuse,
fake review, and malicious transaction have become threats to
e-commerce platforms and customers [7, 24, 28, 31, 44, 45]. A re-
cent research report estimated that the cumulative merchant losses
caused by online payment fraud globally will exceed $343 billion
between 2023 and 20271. Clearly, the detection of fraudulent activi-
ties is crucial to the healthy development of e-commerce platforms
and the digital economy.

Users’ fraudulent behaviors are reflected in their daily activities
[5, 25, 26, 52]. Figure 1 shows an example of two users’ daily ac-
tions2 in chronological order. User_00001 compares different items
and their reviews to decide on the best product to purchase, which
is a common habit exhibited by most genuine shoppers. By contrast,
User_00002 has some unusual actions, that is, searching and pur-
chasing the targeted product without comparing it to other items,
exhibiting a suspicious behavioral pattern. To combat fraudulent ac-
tivities, various deep learning-based frameworks [2, 5, 25, 26, 49, 52]
have been proposed to exploit a user’s behavioral sequence as they
can capture the user’s intention for fraud detection. For instance,
[25, 26] adopt a tree structure to reorganize the sequential actions
and use Long Short-Term Memory (LSTM) networks to learn the
intentions of different branches. The fraud prediction is made based
on the user’s final intention, which is a fusion of the branch inten-
tions. However, these solutions have two limitations. First, direct
application of LSTM and one-sided view learning method cannot
effectively exploit implicit user representations in complex scenar-
ios [15, 36]. For example, fraudsters can imitate the behaviors of
benign users by performing similar actions in the same chronologi-
cal order, and therefore bypass the anti-fraud systems. Second, they
depend on experts’ domain knowledge to construct the tree struc-
ture, which requires extensive effort and is inflexible. For example,
they assume that all of the intentions start from "visit-homepage".
This may mistakenly divide a branch containing "visit-homepage"
into many sub-branches, leading to inaccurate branch intentions.

To address these limitations, we propose a novelMulti-view row-
INteractiveTime-aware (MINT) fraud detection framework. The key
idea is to incorporate the temporal information between behavioral

1https://www.juniperresearch.com/pressreleases/online-payment-fraud-losses-to-
exceed-343bn
2In the following sections, "action" represents users’ behaviors and it includes "sign-in",
"change-delivery-address", "add-credit-card", "online-payment" and so on.
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User Traffic Data

UserID Time Actions

00001 t1,1 search_product

00001 t1,2 view_product_list

00001 t1,3 view_product_page

00001 t1,4 check_reviews

00001 t1,5 visit_homepage

00001 t1,6 view_product_list

00001 t1,7 view_product_page

00001 t1,8 check_reviews

00001 t1,9 add_to_cart

00001 t1,10 online_payment

User Traffic Data

UserID Time Actions

00002 t2,1 chat_windows

00002 t2,2 add_credit_card

00002 t2,3 search_product

00002 t2,4 view_product_list

00002 t2,5 view_product_page

00002 t2,6 add_to_cart

00002 t2,7 change_delivery_address

00002 t2,8 online_payment

00002 t2,9 write_reviews

00002 t2,10 upload_picture

00002 t2,11 chat_windows

Figure 1: An example of two users’ time-series relational data
from the real-world dataset.

actions into fraud detection, so as to capture each user’s intentions
more accurately. Intuitively, two actions with smaller time intervals
should have a greater impact on each other. To better illustrate the
temporal patterns, we analyze users’ actions in a public real-world
dataset from Taobao [50] and show the time interval distribution for
consecutive actions in Figure 2(a). We observe that the time interval
varies from a few seconds to minutes, which is a significant feature
for detecting fraudulent activities. Take the account takeover fraud
as an example, cybercriminals may try to conceal their activity by
performing multiple other actions in between "change-passwords"
and "online-payment". This would cause the anti-fraud systems
in [25, 26] to mistakenly identify the sequence as normal activity.
However, cybercriminals typically need to change passwords and
make a purchase in a short time, making the temporal behavioral
pattern critical for fraud detection.

Specifically, MINT has four novel features. First, we model each
user’s behavioral sequence as a time-aware behavior graph, in which
each row is represented by an action node, and the edge weights
are determined by the time intervals and corresponding hyper-
parameters. To the best of our knowledge, MINT is the first work
that utilizes users’ time-series behaviors with graph topology for
fraud detection. Second, we design a multi-view scheme to capture
users’ intentions from short-term, medium-term, and long-term
perspectives. This is motivated by the observation in Figure 2(b)
that users may take several days to search for and purchase a prod-
uct, highlighting the need to model intentions from different time
periods to identify fraud users. For example, to detect Brushing
fraud3, we need to learn the user’s long-term intentions since the
smart Brushing process involves multiple actions in days [24, 26].
Third, we devise a gated neighbor interaction mechanism to cal-
ibrate the aggregated information from neighboring nodes. For
instance, there are two "view-product-list" actions in User_00001’s
behavioral data. When we learn the local intention of the first
"view-product-list" node, we can aggregate more information from
the node "search-product" as this sub-sequence indicates the user’s
potential purpose of product purchase. However, the aggregation
of "visit-homepage" to the second "view-product-list" node should
be calibrated to reduce the impact of "visit-homepage" since it is
a very common action. Fourth, the proposed framework does not
3https://en.wikipedia.org/wiki/Brushing_(e-commerce)
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Figure 2: (a) Time interval distribution for consecutive ac-
tions (clipped to 600 seconds). (b) Distribution of time in-
terval between the first-time click and the payment for one
product (clipped to 9 days).

involve extensive feature engineering and domain knowledge to
build the behavior graph, and thus can be easily generalized to
various relational data analytics.

We present an overview of Shopee’s MINT fraud detection frame-
work in Figure 3. The pre-processing module consists of a graph
convolutional matrix constructor and a node embeddings construc-
tor, which builds a time-aware behavior graph for each user and
represents one time-stamped record with a node. The behavior
graph has three different views, and in each view, the node features
are the same but the edges are different. In the multi-view graph
convolution module, we exploit the information of the three differ-
ent views to learn the user’s various intentions. In the prediction
module, we fuse the user’s intentions and calculate the probability
that the user is classified as a fraudster. Moreover, we develop a
fraudulent behaviors extractor to find the suspicious actions and
the sub-sequences that contribute to their classification as fraud.

As Shopee’s business and data rapidly grow in Southeast Asia and
Latin America, it needs an anti-fraud system to efficiently identify
fraudulent user behavior. We duly develop a system based on MINT
to collect user traffic data through Kafka4 and efficiently generate
a risk score for each user. In summary, we make the following
contributions:
• We develop a novel fraud detection framework, which utilizes

the temporal information between actions in the behavioral se-
quence to build a time-aware behavior graph with three different
views for better detecting users’ fraudulent behaviors.

• We propose a multi-view graph convolutional network, which
can effectively capture the user’s short-term and long-term in-
tentions, and achieve higher training efficiency and scalability
than conventional graph neural networks.

• We design a gated neighbor interaction mechanism to calibrate
the aggregation information from neighboring nodes and learn
sophisticated cross-action representation.

• We conduct extensive experiments on real-world data from Shopee5
and Amazon6. The results confirm that MINT can learn both
the global and local intentions of users, and it consistently out-
performs 10 state-of-the-art baselines and provides good inter-
pretability, demonstrating MINT’s superior performance.

4https://kafka.apache.org/
5https://en.wikipedia.org/wiki/Shopee
6https://en.wikipedia.org/wiki/Amazon_(company)
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Multi-view Graph Convolutional Network

Multi-view Graph 
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Relational Database

User_xxxxx Traffic Data

Time Attr_1 Attr_2 Attr_3

t1 x1,1 x1,2 x1,3
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User_00001 Traffic Data
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Figure 3: Overview of the MINT fraud detection framework.

This paper is organized as follows. Section 2 introduces the
preliminaries and formulates our fraud detection problem. Section
3 presents MINT with its modules and optimization schemes. The
experimental evaluation of MINT is described in Section 4. Section
5 reviews related works. We conclude in Section 6.

2 PROBLEM DEFINITION
In this section, we first introduce the preliminaries of time-series
relational data and formulate the problem statement of fraud de-
tection on it. Then, we present two relevant techniques that are
central to our proposed framework MINT: the time-aware behavior
graph and graph convolutional matrix. The notations used in the
remaining of this paper are summarized in Table 1.

Time Series Relational Data. Time series relational data is typ-
ically stored as tables in a relational database (RDBMS). Various
classification and prediction analytics have been conducted over
the relational data [6, 8, 23, 27, 29, 30, 33, 34], in which each record
is a time-stamped action. We consider the behavioral structured
data as a set of tables T of rows (records) and columns (attributes)
with the corresponding timestamp. More specifically, each record
is denoted as x = (𝑣, 𝑡, 𝑥1, 𝑥2, ..., 𝑥𝑚−2), in which 𝑣 represents the
time-stamped action, 𝑡 is the timestamp and 𝑥𝑖 represents other
attributes, such as deviceID and session duration.

Fraud Detection over Time Series Relational Data. In a histori-
cal behavioral database that contains fraud labels, each row consists
of a user’s time-stamped actions and other numerical and categor-
ical features. Given a user 𝑢 ∈ U, its behavioral data contains a
behavioral sequence 𝑉 = {𝑣0, 𝑣1, · · · , 𝑣𝑛−1} and the corresponding
attributes, where 𝑣𝑖 ∈ V represents user’s action, and 𝑛 is the

Table 1: Summary of notations.

Notation Description

𝑡 The timestamp of one record
𝑥𝑖 Numerical or categorical features
x The data in each record
V , 𝑣 Set of actions and an action
U, 𝑢 Set of users and a user
𝑛 Length of behavioral sequence, same as |𝑉 |
𝑚 Number of attributes in the table
𝜖 Edge weight threshold in behavior graph
𝜌 A hyper-parameter to tune values of A
T Logical tables
𝑉 A behavior sequence or the vertices for a graph
𝐺 Time-aware behavioral graph
𝐸 All edges for a behavioral graph
N(𝑣𝑖 ) Neighboring nodes of 𝑣𝑖
h(𝑙 )𝑣𝑖 Embeddings of action node 𝑣𝑖 in 𝑙-th layer
H(𝑙 ) Embeddings of behavioral sequence in 𝑙-th layer
A(𝑙 ) Normalized graph convolutional matrix
z User representation
𝑦 A fraud label

length of the sequence. The fraud detection task over the database
is to identify whether the user conducts fraudulent activities.

A user’s behavioral sequence is generally presented in chrono-
logical order, and the sequence pattern of a fraudulent user usually
demonstrates abnormal characteristics compared to the vast major-
ity of benign users. The aim is to determine whether the users have
suspicious behaviors given the users’ historical sequential behavior
data and the task can be formulated as a binary classification task.

Time-aware BehaviorGraph. Given a user with its time-stamped
behavioral sequence 𝑉 = {𝑣0, 𝑣1, · · · , 𝑣𝑛−1} and the corresponding
attributes, its time-aware behavior graph is 𝐺 = {𝑉 , 𝐸,A}, where
𝑉 represents the action nodes, 𝐸 is the edges, A ∈ R𝑛×𝑛 (0 ≤
A𝑖, 𝑗 ≤ 1) is the graph convolutional matrix. Each node 𝑣𝑖 in the
graph represents one record and each edge < 𝑣𝑖 , 𝑣 𝑗 > has a weight
inversely proportional to the time difference between 𝑣𝑖 and 𝑣 𝑗 .

Graph Convolutional Matrix. The primary concept behind the
traditional graph convolutional networks (GCN) [20] is to capture
the relationships between nodes in a graph by leveraging the infor-
mation from their neighboring nodes. Specifically, GCN computes
the weighted average of node features for all neighboring nodes,
including the node itself. The weight matrix is coined as a graph
convolutional matrix, and in the context of GCN, it specifically
refers to the symmetric normalized adjacency matrix.

In a time-aware behavior graph, we build a time-aware graph
convolutional matrix to model the inter-dependency of the actions.
More specifically, the normalized edge weight between 𝑖-th node
and 𝑗-th node is:

˜︁A𝑖, 𝑗 =
𝜌 |𝑡𝑖−𝑡 𝑗 |∑︁𝑛−1

𝑘=0 𝜌
|𝑡𝑖−𝑡𝑘 |

(1)
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Algorithm 1: Construct Graph Convolutional Matrix in
MINT
Input: Time-series structured data T for sets of usersU;

receptive field hyper-parameter 𝜌 ; edge weight
threshold 𝜖

Output: Graph convolutional matrices A
1 for each user 𝑢 ∈ U do
2 Extract the time-stamped records 𝑉 for 𝑢 from T ;
3 Get the pairwise time differences Δ𝑇 for the records;
4 for each record 𝑣𝑖 ∈ 𝑉 do
5 Calculate 𝜌Δ𝑇𝑖 and normalise it as ˜︁A𝑖 ;
6 for each record 𝑣 𝑗 ∈ 𝑉 do
7 if ˜︁A𝑖, 𝑗 < 𝜖 then
8 ˜︁A𝑖, 𝑗 ← 0
9 Normalise ˜︁A𝑖 and obtain Ai;

10 return A;

where 0 < 𝜌 < 1 is the hyper-parameter that controls the range
of the receptive field for each target node. 𝑡𝑖 and 𝑡 𝑗 denote the
timestamps of the target node and neighboring node, respectively.
We assign zero weights to edges below a predefined threshold 𝜖 =

0.0001. We summarize the graph convolutional matrix construction
in Algorithm 1. As 𝜌 → 0, the range of the receptive field will
be small and we can obtain the user’s short-term intentions. As
𝜌 → 1, it will result in a larger receptive field, which is equivalent to
applying a deep graph convolutional model. We can employ a graph
convolutional layer with large 𝜌 to capture the user’s long-term
intentions. On top of that, since the time interval is highly variable,
a single graph convolutional matrix cannot effectively capture all
valuable neighboring information for the target node.

3 THE MINT FRAMEWORK
In this section, we present ourMulti-view row-INteractive Time-
aware (MINT) fraud detection framework, which is designed to iden-
tify fraudulent behaviors from time-series structured data and pro-
vide explanations for the prediction. As illustrated in Figure 3, we
first extract the user’s temporal information to build a time-aware
behavior graph with three different views and generate action
node embeddings from the attributes (Section 3.1). For each user’s
behavior graph, we feed the corresponding graph convolutional
matrices and node features into the graph convolution module to
learn multi-view intentions (Section 3.2). Finally, we provide end-
to-end training (Section 3.3) and interpretation for fraud behavior
detection (Section 3.4).

3.1 Data Preprocessing
As shown in Figure 3, the data preprocessing module of MINT is
composed of a graph convolutional matrix constructor and a node
embeddings constructor.

We reorganize the user’s time-stamped behavioral sequence
using graph topology, representing each action as a node with
corresponding attributes as node features. This allows us to build
a comprehensive model that captures the connections between
different actions and their underlying structures. To achieve this,

Hi
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(a) Graph convolution view
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Figure 4: (a). The 𝑙-th graph convolutional layer takes H(𝑙−1)

as input to generate H(𝑙 ) and the receptive field of three
layers expands progressively. (b). The average degree of the
action nodes in different graph convolutional layers for
three real-world datasets.

the graph convolutional matrix constructor follows Algorithm 1 to
build three graph convolutional matrices with different receptive
fields. As shown in Figure 4(a), the deeper graph convolutional
layer will aggregate more neighborhood (light blue nodes in H(𝑙 ) )
information to the target node. Accordingly, Figure 4(b) shows the
average degree of nodes in different layers, where the deeper the
layer, the higher the degree. The expanded receptive fields enable
us to capture a wider range of actions and interactions between
different row data, leading to more accurate predictions and better
insights.

We process action node features by projecting numerical features
to a latent space and transforming categorical attributes into a one-
hot representation. Then, we employ a multilayer perceptron (MLP)
to model the dependencies and correlations between attributes.
While there are other feature interaction methods that have been
proposed [6, 11, 42], such as factorization machines or deep neural
networks, we find that the MLP performs well for our task and
is efficient in terms of training time and memory usage. For each
user, its initial behavioral sequence embeddings are denoted as
H(0) ∈ R𝑛×𝑑 , in which 𝑛 is the number of nodes and 𝑑 represents
the dimension of input embeddings.

3.2 Multi-view Graph Convolutional Network
Existing RNN-based fraud detection methods [26, 32, 52] on users’
behavioral data typically focus on a short sequence of user actions,
which disregards the temporal information and long-term intention.
Similarly, conventional graph neural networks [20, 39] will also fail
to capture users’ global interests from the behavioral graph due to
their limited effective receptive fields, which only expand linearly
instead of exponentially. This limitation arises because the receptive
field in a behavioral graph can only expand along the corresponding
sequence. To learn about long-term intentions, traditional graph
neural networks must utilize more graph convolutional layers [9],
which require additional memory and training time. To resolve this
issue, the receptive fields of the three graph convolutional matrices
in MINT are designed to grow nearly exponentially, as shown in
Figure 4 (b). As a consequence, we can use much fewer layers to
guarantee sufficient feature aggregation from neighbors, making it
suitable for large-scale fraud detection tasks.

3613



GNIUGNIU GNIU

Multilayer Perceptron

Prediction Task

Multi-view
Graph

Convolution
Module

Prediction
Module

User Embeddings z

Max Pooling Readout Attention-Based Readout

Readout Layer

Time-aware Graph Convolutional Matrices

H(3)

A(3)

H(2)H(1)H(0)

A(2)A(1)

Figure 5: Multi-view graph convolutional network consists
of a multi-view graph convolution module and a prediction
module.

3.2.1 Multi-view Graph Convolution. In each graph convolutional
layer, the feature aggregation is performed as follows:

h(𝑙 )N(𝑣𝑖 ) =
∑︂

𝑣𝑗 ∈N(𝑣𝑖 )
A(𝑙 )𝑣𝑖 ,𝑣𝑗 ∗ h

(𝑙−1)
𝑣𝑗 (2)

where h(𝑙 )N(𝑣𝑖 ) represents the aggregated neighbor representations

for action node 𝑣𝑖 in 𝑙-th layer, and A(𝑙 )𝑣𝑖 ,𝑣𝑗 denotes the normalized
aggregation coefficient for action node 𝑣 𝑗 to node 𝑣𝑖 in the 𝑙-th
layer. Then, we perform feature transformation for the aggregated
neighbor representations as follows:

h(𝑙 )𝑣𝑖 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W(𝑙 )h(𝑙 )N(𝑣𝑖 ) ) (3)

where W(𝑙 ) ∈ R𝑑×𝑑 is the trainable parameter matrix for trans-
formation function in the 𝑙-th layer. For each behavior graph, it
has one input embedding matrix H(0) and three different-view
node embedding matrices: H(1) ,H(2) , and H(3) , where H(𝑙 ) =

[h(𝑙 )𝑣0 , h
(𝑙 )
𝑣1 , · · · , h

(𝑙 )
𝑣𝑛−1 ]. Subsequently, we can use them to obtain

the corresponding intention representations. There are two main
advantages of the multi-view graph convolution.
• Capturing multi-view intentions. Conventional GNN models that

use a single graph convolutional matrix are limited to learning a
single-fold intention, similar to RNN-based approaches [25, 26].
However, behavioral sequences exhibit diverse temporal char-
acteristics, leading to an enormous variation in the graph con-
volutional matrix. The proposed multi-view graph convolution
technique can alleviate the problem by employing different graph
convolutional matrices to complement each other. Furthermore,
the multi-view graph convolutional model enables hierarchical
aggregation of multi-hop neighboring features across deeper
layers, capturing both local and global intentions.

• Low space and time complexity. Recent works [14, 21] have shown
that the feature propagation and transformation in GNN can be
separated without sacrificing the model efficiency. In our model,
the hyper-parameter 𝜌 for the last graph convolutional layer is
set to be 0.9999 for Shopee datasets, leading to a larger receptive
field. This allows the last layer to propagate node information to

tanh

sigma

Gated Neighbor Interaction Unit (GNIU)

W(l)
hN(vi)

(l)

hvi
(0)

hvi
(l)

Figure 6: Gated neighbor interaction unit calibrates the ag-
gregated information from neighboring nodes.

multi-hop neighbors like deep GCN [9, 14, 21], but with fewer
layers, reducing memory requirements and training time. Ad-
ditionally, since the first two graph convolutional matrices are
still sparse, we can perform efficient graph training, in which
computational complexity is linear to the number of nodes and
edges [20, 40]. As a consequence, the proposed multi-view graph
convolution can deal with long user behavioral sequences.

3.2.2 Gated Neighbor Interaction. Typically, in a behavior graph,
an information aggregation method that relies only on the time in-
terval information will result in a serious over-smoothing problem.
That is, some common actions, such as "visit-homepage", appear
far more often than others in the user’s behavior data. As a conse-
quence, the user’s representations will be dominated by information
about common actions, degrading the fraud detection performance.

To resolve the over-smoothing issue and aggregate more use-
ful information from neighboring nodes to the target node, we
design a gated neighbor interaction mechanism to calibrate the
information that flows from neighboring nodes and learn feature
interactions in node level. As illustrated in Figure 6, the aggregated
neighbor representation will be fed into the neighbor interaction
layer to do mutual relation modeling rather than a direct feature
transformation as in Equation (3):ˆ︁h(𝑙 )N(𝑣𝑖 ) = LayerNorm(𝜎 (h(0)𝑣𝑖 ) ⊙ 𝑡𝑎𝑛ℎ(h

(𝑙 )
N(𝑣𝑖 ) )) (4)

h(𝑙 )𝑣𝑖 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W(𝑙 )ˆ︁h(𝑙 )N(𝑣𝑖 ) ) (5)
where ⊙ denotes the Hadamard product and LayerNorm represents
the layer normalization [1]. The function of the gated neighbor
interaction is similar to but more efficient than the LSTM cell, where
three gates are required to regulate the flow of information into or
out of the cell. In the proposed gated aggregation unit, the initial
representation of each node controls the local intention information
from the short-term view to the long-term view. Specifically, each
node will filter out the extraneous neighboring information which
may perturb the intention of the current action and propagate
valuable information to the next layer. For instance, one user has
two records "change-delivery-address" and "visit-homepage" stored
in the table. The action node "change-delivery-address" will block
the information from the neighboring node "visit-homepage" even
though their time difference is very small. That is because the record
"visit-homepage" is a pretty common action for users and it does
not contain relevant semantics to "change-delivery-address".

Note that the neighbor interaction will give rise to a feature value
shift for the action node and the negative effect will accumulate if
more layers are stacked. Layer normalization is adopted to normal-
ize the features for each layer, thus stabilizing the training process
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and saving training time. The superiorities of the proposed gated
neighbor interaction techniques over conventional GNN-based and
LSTM-based models are detailed as follows:
• Over-smoothing mitigation. The nodes interaction cell is designed

to filter out redundant information from neighboring nodes and
to mitigate the over-smoothing issue. Without the proposed
gated neighbor interaction, both the global and local intentions
will be dominated by the action nodes with high frequency, re-
sulting in indistinguishable user representations.

• Sophisticated node interaction. When neighboring features are
aggregated to one target node, the user’s local intention cen-
tered on this action node will be learned. The explicit interaction
between the target node and its neighboring nodes can help
to capture the cross-row patterns for the user, leading to more
sophisticated representation learning than a straightforward fea-
ture aggregation.

Readout Layer. To generate the intention embedding vectors from
the action embedding matrices (H(0) ,H(1) ,H(2) , and H(3) ), we de-
sign a max pooling and attention-based readout layer, as shown
in Figure 5. Specifically, we employ max pooling in the behav-
ioral sequence dimension to keep the most conspicuous features.
Then we can get four embedding-related intention representations:
h(0)𝑒 , h(1)𝑒 , h(2)𝑒 , and h(3)𝑒 . This will extract the relevant attribute
information (i.e., column data in a table) that are closely related to
fraudulent behavior detection. We also apply an attention-based
fusion in the embedding dimension to keep the most conspicuous
actions. Since the action embeddings are aggregated from neigh-
boring nodes in the previous layer, it represents a sub-sequence
representation. For each view, the action-related intention represen-
tation is obtained as follows:

𝜶 (𝑙 ) = 𝜙𝑎𝑡𝑡 (h(𝑙 )𝑒 , H(𝑙 ) ) = h(𝑙 )
⊺

𝑒 W𝑎𝑡𝑡H(𝑙 ) (6)

h(𝑙 )𝑎 =

𝑛−1∑︂
𝑖=0

𝛼
(𝑙 )
𝑖
· h(𝑙 )

𝑖
, 𝛼
(𝑙 )
𝑖
∈ 𝜶 (𝑙 ) , h(𝑙 )

𝑖
∈ H(𝑙 ) (7)

where W𝑎𝑡𝑡 ∈ R𝑑×𝑑 is the bilinear attention weight matrix and
shared by all the intention learning. For each view, the representa-
tion is h(𝑙 ) = h(𝑙 )𝑒 + h

(𝑙 )
𝑎 .

3.2.3 Prediction Module. After learning the final intention repre-
sentation with the readout layer, we feed the learned embeddings
into an MLP classifier to generate the risk score of the user.

z = 𝐶𝑂𝑁𝐶𝐴𝑇𝐸 ( [h(0) , h(1) , h(2) , h(3) ]) (8)

𝑝 = 𝜙𝑀𝐿𝑃 (𝑧), 𝜙𝑀𝐿𝑃 : R4∗𝑑 ↦→ R (9)
In the fraud detection task, 𝑝 represents prediction value, and

𝜎 (𝑝) is the probability that one user is classified as a fraudster.

3.3 Model Training
The task of fraud detection involves binary classification, and for
this purpose, we choose binary cross-entropy (BCE) as the objective
function. BCE is specifically designed to quantify the difference
between the predicted probability distribution and the true binary
labels of a dataset. It is defined as follows:

L(𝜃 ) = − 1
𝑁

∑︂
D

𝑦𝑙𝑜𝑔(𝜎 (𝑝)) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝜎 (𝑝)) + 𝜆 ∥𝜃 ∥2 (10)

where 𝑦 is the ground truth, 𝜃 is the set of training parameters, 𝜆 is
the regularizer parameter, D is the training sample and 𝑁 is the
size of training data. The gradient descent method is adopted to
compute the parameters of the model for optimization.

In summary, MINT introduces multi-view graph convolutional
matrices to hierarchically aggregate neighboring nodes’ features
and mitigates over-smoothing with a novel gated neighbor interac-
tion technique.

3.4 Fraudulent Behaviors Extraction
In contrast to other classification tasks, identifying fraudulent trans-
actions requires great caution to avoid negative impacts on the
customer experience and platform credibility. To address this, we
design a fraudulent behaviors extractor in MINT that offers global
and local interpretation for model predictions. Based on these expla-
nations, we can make more informed decisions by understanding
how MINT identifies a fraud user.

Global Interpretation. There are hundreds of action types in
the Shopee dataset, all of which have very different importance to
fraud detection, and their proportion 𝑃𝑎𝑐𝑡𝑖𝑜𝑛 in user behavior varies
greatly. Among them, "visit-homepage" is the most common type
of behavior, but it is not important for fraud detection. To align
with human experts’ insights and provide global interpretation,
we design a new metric, called Normalized Reciprocal Rank@𝑘

(NRR@𝑘) to evaluate the importance of each action type to fraud
behavior detection. For each user that is labeled as a fraud, we
extract its top-𝑘 important actions based on the attention weights
𝛼 = 𝛼 (0) + 𝛼 (1) + 𝛼 (2) + 𝛼 (3) in the readout layer and compute the
NRR@𝑘 as follows:

𝑁𝑅𝑅 =
1

𝑁 ∗ 𝑃𝑎𝑐𝑡𝑖𝑜𝑛

𝑁∑︂
𝑖=1
( 1
𝑟𝑎𝑛𝑘𝑎𝑐𝑡𝑖𝑜𝑛

) (11)

where 𝑁 is the number of users, 𝑃𝑎𝑐𝑡𝑖𝑜𝑛 is the proportion of the
action in the whole data, and 𝑟𝑎𝑛𝑘𝑎𝑐𝑡𝑖𝑜𝑛 is the rank of action in
the extracted suspicious behaviors. Note that an action may appear
more than one time in one user’s extracted fraudulent behaviors,
and we will sum the reciprocal of its two ranks.

Local Interpretation. Additionally, to provide local interpreta-
tion, we extract the sub-sequences that have the highest importance
when we derive the short-term action-related representation for the
user. To this end, we use the attention weight 𝜶 (1) to quantitatively
evaluate the importance of each sub-sequence that was learned from
the short view. For instance, when the short-view graph convolu-
tional layer aggregates the neighborhood information for the target
action node "login-with-password", the neighboring actions can
be regarded as a behavioral sub-sequence centered on "login-with-
password". Then we can use the corresponding attention weight in
𝜶 (1) to represent the importance of each sub-sequence. Therefore,
we can generate local interpretability for the identification of each
fraud entity.
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Table 2: Statistics of datasets used in the experiments. The
Pos. rate is the ratio of fraud samples.

Dataset #Users #Action Type #Actions #Fields Pos. rate

Shopee-C1 4.65M 727 1.40B 11 1.62%
Shopee-C2 0.63M 683 19M 11 1.11%
Amazon 18k 719820 13.27M 3 6.86%

4 EXPERIMENTS
In this section, we present the experimental setup and the eval-
uation of different models for the fraud detection task. We also
conduct ablation studies on each technique of MINT, and learn the
sensitivity of hyper-parameters over our model.

4.1 Experimental Setup
4.1.1 Datasets. We conduct experiments on real-world datasets
collected from Shopee, the largest online e-commerce platform in
Southeast Asia. The fraud labels are provided by Shopee’s oper-
ation teams. We generate the risk score for each user based on
its behavioral sequence and output the suspicious sub-sequence
that results in a fraud prediction. As the Shopee users’ traffic data
(i.e., Shopee-C1 and Shopee-C2) are private, we further conduct
experiments on a public fake reviewer detection data, Amazon
dataset [3, 4, 19] to demonstrate the effectiveness of our work. Fake
reviewer detection is similar to Brushing fraud and is a special case
of fraudulent behavior detection, where purchasing one product
corresponds to one action.

Shopee. We collect large-scale industrial datasets from Shopee
and the experiments utilize historical activity records from two
different geographical regions (denoted as Shopee-C1, Shopee-
C2) spanning a specific period. The statistics of data are summarized
in Table 2. For each user, we collect 300 records and 11 attributes
for fraud behavior detection. Each record stores one action, the
corresponding timestamp, and other behavior-related attributes.
The number of action types is different for the two regions, but
the majority of actions are similar, i.e., "visit-homepage", "search-
product", and "add-to-cart".

Amazon. The Amazon dataset includes product reviews under the
categories of electronics, books, CDs, and movies7. The use case
analysis in [3, 4, 19] shows that fraudulent groups usually exhibit
over-consistent suspicious behaviors, purchasing the same group
of products and writing reviews within a short period. To get the
labels for each user, we follow the filtering algorithm in [13, 46] to
label users with less than 20% helpful votes as fake users and users
with more than 80% helpful votes as normal users. The remaining
users are excluded from model training. It is important to note
that the "helpfulness votes" attributes are not utilized in the model;
instead, they serve solely to determine the labels of the users.

4.1.2 Baseline Methods. We compare MINT against 10 sequence-
based and graph-based models. Sequence-based models treat each
user’s time-stamped activities as a sequence and utilize the be-
havioral sequence information to predict the fraud label of each
7https://jmcauley.ucsd.edu/data/amazon/.

user. For graph-based methods GCN, GAT, and GCNII, we build
a behavior graph for each user with 𝜌 set to 0.6 (same as the first
layer in MINT) and we reset all the edge weights to 1. For TextGCN
and IHGAT, we follow the original paper to construct a large-scale
graph for all users and actions. Moreover, we construct ablation ex-
periments over MINT𝑤𝑜_𝑚𝑣 and MINT𝑤𝑜_𝑟𝑖 to learn the multi-view
and row-interactive functions, respectively. MINT𝑤𝑜_𝑚𝑣 is the vari-
ant of MINT with 𝜌 set to 0.99 for all graph convolutional layers.
MINT𝑤𝑜_𝑟𝑖 is the variant of MINTwithout gated neighbor interaction
mechanism. The baselines are briefly introduced as follows:
(1) Sequence-based Methods:

• BiLSTM [35] is a variant of LSTM and applies bidirectional LSTM
to capture the dependency information among sequential data.

• Time-BiLSTM [51] equips BiLSTMwith time gates to model time
intervals.

• Transformer [38] is the first sequence-based model which only
utilizes self-attention to model the dependencies between input
and output.

• LIC Tree-LSTM [26] takes tree-structure data as input and utilizes
LSTM and self-attention mechanism to model user behaviors.

• HEN [52] uses a field-level extractor and action-level extractor
to hierarchically learn users’ representations and apply transfer
learning to enhance the prediction performance.

(2) Graph-based Methods:

• GCN [20] is a widely used transductive graph neural network
which aggregates the neighboring nodes’ information based on
the predefined normalized Laplacian matrix.

• GAT [39] introduces masked self-attention layers to learn speci-
fying different weights to different nodes in a neighborhood.

• TextGCN [43] builds a heterogeneous graph for the items and
the sequences, whose weights are determined by TF-IDF and
PMI.

• GCNII [9] builds a deep graph convolutional network by intro-
ducing residual connection and identity mapping.

• IHGAT [25] introduces a hierarchical graph neural network to
utilize LSTM and attention scheme to generate the node embed-
dings for user nodes.

4.1.3 Implementation Details. We implement the proposed model
with PyTorch and tune hyper-parameters using the validation set.
For the datasets, the split ratio of the training/validation/testing
set is 80%/10%/10%. We select Adam as the optimizer and randomly
initialize the model parameters with the Xavier initializer. We em-
ploy three graph convolutional layers in our proposed model, in
which the values of hyper-parameter 𝜌 are searched in respective
ranges and set to 0.6, 0.99, and 0.9999 for Shopee datasets. For the
Amazon dataset, it only provides the review date information and
we set a different set of 𝜌 , which are 0.7, 0.9, and 0.999, respectively.
For other critical hyper-parameters in our model, the node repre-
sentation dimension is set to 64, batch size to 512, and the learning
rate to 0.0001. We also use L2 regularization with 𝜆 = 0.00001
to prevent over-fitting. For other compared methods, the hyper-
parameters may be different from the proposed model to guarantee
their performance. We adopt early stopping and terminate training
if the validation performance does not improve for 10 epochs. All
experiments are conducted with a single Tesla V100 GPU.
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Table 3: Fraud detection performance. The best-performing method in each column is boldfaced, and the best baseline in each
column is underlined.

Model Class Model
C1 (Large) C2 (Medium) Amazon (Small)

AUC R@P0.9 F1 AUC R@P0.9 F1 AUC R@P0.9 F1

Sequence-based
Baselines

BiLSTM 0.8991 0.3334 0.5911 0.9163 0.4552 0.5772 0.9045 0.3109 0.5198
Time-BilSTM 0.9015 0.3379 0.6165 0.9213 0.4568 0.5914 0.9153 0.3281 0.5219
Transformer 0.8914 0.3078 0.5874 0.9132 0.4419 0.5467 0.8803 0.2328 0.4967
LIC Tree-LSTM 0.8819 0.3058 0.5744 0.8891 0.4213 0.5413 0.8831 0.2173 0.4355
HEN 0.9011 0.3436 0.6023 0.9236 0.4718 0.5765 0.8966 0.2575 0.4754

Graph-based
Baselines

GCN 0.8974 0.3251 0.6012 0.9137 0.4372 0.5687 0.9044 0.3149 0.5117
GAT 0.8926 0.3179 0.5965 0.9133 0.4364 0.5654 0.8956 0.2895 0.5009
TextGCN 0.8191 0.1981 0.4798 0.8301 0.3989 0.4533 0.8645 0.2074 0.3867
GCNII 0.9003 0.3295 0.5988 0.9226 0.4722 0.5962 0.9174 0.3211 0.5216
IHGAT 0.8976 0.3142 0.5921 0.9118 0.4441 0.5645 0.8987 0.2813 0.4988

MINT’s

MINT𝑤𝑜_𝑚𝑣 0.9208 0.4025 0.6453 0.9393 0.5419 0.6215 0.9287 0.3446 0.5485
MINT𝑤𝑜_𝑟𝑖 0.9206 0.3916 0.6398 0.9403 0.5453 0.6278 0.9243 0.3305 0.5561
MINT 0.9321 0.4512 0.6781 0.9515 0.5781 0.6485 0.9361 0.3671 0.5722

Performance Gain
over Baselines

Sequence-based 3.39% 31.32% 9.99% 3.02% 22.53% 9.66% 2.27% 11.87% 9.64%
Graph-based 3.53% 36.93% 12.79% 3.13% 22.43% 8.77% 2.04% 14.33% 9.70%

4.1.4 Evaluation Metrics. In our experiments, we evaluate all meth-
ods with three widely used metrics: AUC (Area Under ROC curve),
R@P𝑘 , and F1-score. AUC represents the probability that the pre-
diction of the positive cases is ranked before negative cases. R@P𝑘
is defined as the recall rate when the precision rate equals 𝑘 . F1-
score measures the balance between precision and recall in binary
classification tasks. In our fraud detection scenario, our goal is to
detect as many fraudulent users as possible without negatively
impacting the regular operations of legitimate entities. 𝑘 is set to
be 0.9 for all experiments. Therefore, an efficient method should be
able to achieve higher AUC, R@P0.9 and F1-score than others. We
also introduce two new metrics based on Equation 11 to measure
the importance of the users’ actions in fraud behavior detection:
NRR@1 and NRR@5, which measure the degree to which an action
is associated with the fraud.

4.2 Fraud Detection Comparison
Table 3 shows the performance comparison of the proposed models
with state-of-the-art baselines. The AUC, R@P0.9 and F1-score of
MINT have displayed superior performance to baselines, consistently
demonstrating its effectiveness in fraud detection.

In more detail, the reported AUC value for Shopee datasets is
at least 3.02% higher than the sequence-based methods, R@P0.9
gets a 31.32% improvement, and F1 gets a 9.66% improvement at
the same time. The usage of the time-aware graph convolution
enables us to capture the behavior-related temporal patterns and
relationships between different action nodes. Meanwhile, the gated
neighbor interaction scheme can calibrate the different-view in-
tentions and avoid over-smoothing, enhancing the discrimination
ability of the system. The improvement of the AUC for the Amazon
dataset is a little smaller than that of the Shopee dataset because
the Amazon dataset only has date information for actions, which

is not as precise as the timestamp information used in Shopee-
C1 and Shopee-C2. Among these sequence-based models, since
Time-BiLSTM utilizes the time interval information to tune the
three gates during training, it achieves more precise feed-forward
propagation in two directions than other sequence-based models.
The attention-based model (Transformer) ignores the time interval
information and introduces the noisy position information, which
degrades the effectiveness of the models.

Furthermore, compared to the best baselines of graph-based
methods, MINT has gained at least 2.04% improvement in AUC,
14.33% in R@P0.9, and 8.77% in F1 for all datasets. It indicates the
capability of our model to distinguish suspicious sequential behav-
iors from normal ones. Compared to other graph-based approaches,
MINT can capture both the short-term and long-term representations
of the behavioral sequence and achieve multi-view extraction of the
sequence information. At the same juncture, the proposed gated
neighbor interactionmechanism can learn the cross-action relations
and efficiently alleviate the over-smoothing issue. In comparison,
conventional GCN and its variants which employ the same graph
convolutional matrix in all layers are not capable of effectively cap-
turing global information. Also, Text-GCNmisses the valuable local
intention representation by formulating the co-occurring actions
as connected nodes in the graph because the employed point-wise
mutual information (PMI) results in severe over-smoothing for the
high-frequency action nodes, thus causing the fraudsters and be-
nign users to be indistinguishable. Although IHGAT leverages a
behavior tree to obtain local intention and obtain better user rep-
resentations than Text-GCN, the importance of each intention is
not learned effectively, resulting in its inferior performance. GCNII
performs superior to other graph-based models since it can partially
learn the global intention representation with more stacked layers
and avoid severe over-smoothing with the residual connection.
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Figure 7: Comparison of MINT and its variants without multi-
view graph convolution modules on different datasets. Each
variant employs three graph convolutional layers but with
the same graph convolutional matrix.

4.3 Ablation Studies and Effectiveness Analysis
We perform ablation studies on MINT to show howmulti-view graph
convolution and gated neighbor interaction affect its performance.
To investigate the effect of reducing over-smoothing as stated in
Section 3.2.2, we compare the action nodes representation of MINT
with its variant.

4.3.1 Multi-view Graph Convolution. To evaluate whether multi-
view graph convolution can effectively learn target entities’ inten-
tions from different perspectives, we build three new graph models,
which apply the same graph convolutional matrix in all the feature
propagation layers with the other components similar to MINT. The
comparison results shown in Figure 7 indicate that the integration
of different convolutions can consistently enhance the representa-
tion capabilities of graph modeling and improve performance by a
great margin. The improvements of AUC and R@P0.9 are at least
1.25% and 11.06%, respectively.

It’s worth noting that the performance of the new graph model
with 𝜌 = 0.99 performs slightly superior to the other two models.
It is because a small 𝜌 will lead to an insufficient receptive field,
thus losing the capability of capturing important global intention
representation. While graph convolutional layers with a large 𝜌

will learn more neighboring information but stacked layers may
cause trivial over-smoothing. Although there may exist an optimal
𝜌 value for each sequence data, it will require more parameters
and the model is difficult to converge. By contrast, we use multiple
graph convolutional matrices to compensate for each other, without
degrading the model training efficiency.

4.3.2 Gated Neighbor Interaction. To further assess the effective-
ness of the proposed gated neighbor interaction method, we con-
duct ablation tests by removing this method (i.e., MINT𝑤𝑜_𝑟𝑖 ) or
replacing it with attention-based row interaction (i.e., MINT𝑤𝑖_𝑎𝑖 ).
Specifically, for MINT𝑤𝑖_𝑎𝑖 , we modify the graph attention scheme
in [39] and integrate it with the multi-view GCN models. Different
from [39], where feature aggregation is only determined by the
attention weights of neighboring nodes, MINT𝑤𝑖_𝑎𝑖 aggregates the
neighboring features based on both the temporal information and
attention weights, so that it can capture users’ temporal patterns.
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Figure 8: Impact of neighboring nodes interaction. The exper-
imental settings of MINT and its variant are the same except
for the nodes interaction layer.
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Figure 9: Visualizations of normalized action nodes represen-
tation. For each feature, we divide its value by the maximum
one in that dimension. The node representations in MINT𝑤𝑜_𝑟𝑖
show serious oversmoothing.

The comparison results are shown in Figure 8. We can observe
that MINT𝑤𝑜_𝑟𝑖 is clearly inferior to MINT with gated neighbor in-
teraction in all datasets, which indicates that the cross-neighbor
features captured by MINT are complementary to the multi-view
representation and the integration leads to better intention model-
ing. Moreover, MINT𝑤𝑖_𝑎𝑖 outperforms MINT𝑤𝑜_𝑟𝑖 , which reinforces
the necessity of learning cross-nodes interaction. However, the
calibration for the aggregated feature in MINT𝑤𝑖_𝑎𝑖 is performed on
a single neighboring action, rather than the whole view representa-
tions. On the contrary, MINT calibrates the representations of each
view, capturing more meaningful semantics than MINT𝑤𝑖_𝑎𝑖 . As a
result, it achieves better intention modeling.

To better analyze the effectiveness of the gated neighbor inter-
action method in over-smoothing mitigation, we provide a visu-
alization of the node representation for the training sequence in
Figure 9. The figures illustrate the normalized node representation
in each dimension for the 3rd-layer output of MINT and MINT𝑤𝑜_𝑟𝑖 ,
respectively. We remove the layer normalization since it will change
the feature distribution within a sequence and affect the visualiza-
tion results. In Figure 9, the x-axis represents the position of the
action node in the sequence, and the y-axis denotes the normalized
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Figure 10: Sensitivity analysis of MINT on critical hyper-
parameters 𝝆1, 𝝆2 and 𝝆3.

features in each dimension. In fraud behavior detection, the more
action feature information retained in the behavior graph learning,
the better the performance. We observe that two neighboring nodes
in MINT may have similar feature values in some dimensions but
their action embeddings still have quite a few unique characteris-
tics. On the contrary, a lot of connected action nodes in MINT𝑤𝑜_𝑟𝑖
have the same feature values in all dimensions. This is because the
target node in MINT can calibrate the aggregated neighboring node
representation in the feature propagation stage, allowing each node
to retain more unique features and avoid the domination of some
common actions. However, MINT𝑤𝑜_𝑟𝑖 propagates node features to
multi-hop neighbors without considering the sophisticated feature
selection, leading to feature concentration within a few dimensions.
Consequently, it cannot obtain efficient node representation and
differentiate between various node intentions.

4.4 Hyper-parameters Analysis
Receptive Field Hyper-parameter. The hyper-parameter 𝜌 is
denoted as 𝜌1, 𝜌2, and 𝜌3, which determine the receptive fields of
the three graph convolutional layers, respectively. We vary their
values and evaluate the impacts they have on the model perfor-
mance. When one of them varies, the other two maintain their
original values as specified in the settings outlined in 4.1.3. The
results on the datasets Shopee-C2 and Amazon are shown in Figure
10. We observe that the performance in terms of AUC and R@P0.9
is relatively stable when the three hyper-parameters vary. Note
that the Amazon dataset is more sensitive to the value of 𝜌1 than
the Shopee dataset. It is because the temporal information of the
Amazon dataset is not as precise as Shopee-C2, and thus the edge
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Figure 11: The performance of MINT with different numbers
of graph convolutional layers on dataset Shopee-C2.

weights for the behavioral graphs are not very accurate. For the
Amazon dataset, when 𝜌1 is very small, the effective receptive field
of the first graph convolution layer will be too sharp to sufficiently
capture the neighborhood information. On the other hand, a large
𝜌1 for the Amazon dataset will lead to over-smoothing of locality
features and degrade the final user representations learning. By
contrast, both Amazon and Shopee-C2 datasets are relatively stable
with the variation of 𝜌2 and 𝜌3. The reason is that their effective
receptive fields are smoother so they are insensitive to the inaccu-
racy caused by a few neighboring nodes. By analyzing the impact
of the three hyper-parameters on the model performance, we can
find the necessity of multi-view graph convolution. The model per-
formance will be sensitive to the variation of 𝜌 value if the graph
convolution layers can only learn the one-fold intention. It is worth
noting that all of the MINT variants with different 𝜌 settings achieve
better results than all the baselines for Shopee-C2.

Number of Graph Convolutional Layers. We further conduct
experiments over the Shopee-C2 dataset using MINT with different
numbers of graph convolutional layers. For each variant, we select
the best hyper-parameter settings. For instance, the value of 𝜌 is set
to (0.9999) for MINT1𝐿 (i.e., MINTwith one graph convolutional layer)
and (0.5, 0.8, 0.9, 0.99, 0.9999, 0.99999) for MINT6𝐿 . Figure 11 shows
that the AUC and R@P0.9 of MINT increases with the number of
graph convolutional layers before the layer depth is less than four.
However, when the number of layers is larger than three, the AUC
improvement of MINT variants over MINT is insignificant. That is
because a hierarchical graph convolutional model with three layers
can sufficiently learn users’ behavioral patterns from a sequence
length of 300.

4.5 Efficiency and Scalability
Next, we investigate the training efficiency and scalability of the
proposed model compared to baselines.

Efficiency. We measure the training time for one epoch and the
overall time required for each model to converge. For a fair compar-
ison, LSTM layers are all coded in Python rather than the modules
provided by PyTorch. The training efficiency results on Shopee-C2
are shown in Figure 12 (the performance of the other two datasets
are similar). We only select four representative baselines which
achieve comparable performance in Table 3. It can be observed
that the GNN-based models (i.e., MINT and GCNII) achieve much
higher training speed (time for one epoch) than others. Since the
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Figure 12: Training efficiency on dataset Shopee-C2. MINT not
only converges faster than baselines but also takes much less
time for each epoch.
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Figure 13: Training speed and performance of MINT and two
baselines over Shopee-C1 with a different number of action
nodes for each sequence.

proposed model requires much fewer layers than GCNII to capture
multi-hop neighboring information, we can achieve more efficient
forward propagation. By contrast, the application of the attention
mechanism in Transformer takes more time than in a fast graph
neural network. In addition, we can observe that MINT achieves an
AUC of higher than 0.91 after one epoch, showing the effectiveness
of gated neighbor interaction and multi-view learning. On the other
hand, Time-BiLSTM and IHGAT need to do recurrent feedforward
propagation for the purpose of capturing long-term information,
thus lowering the training speed. Additionally, IHGAT also requires
information propagation along the user graph after learning the
behavioral sequence pattern via RNN, leading to worse training
efficiency than Time-BiLSTM.

Scalability. To evaluate the effect of the behavioral sequence length
on the performance and training speed of MINT, we collect more
behavior actions for each user in Shopee-C1. Due to significantly
poorer training efficiency observed in Time-BiLSTM and IHGAT,
our comparison in Figure 13 focuses mainly on MINT with GCNII
and Transformer models, considering various sequence lengths. We
can see that the three models have better performance with a larger
behavioral graph, and MINT still outperforms the two baselines. Also,
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Figure 14: The NRR@1 and NRR@5 of the five most impor-
tant actions for fraud behavior identification.

the training speed of MINT presents greater advantages when the
sequence length is large and its training time increases almost lin-
early with the sequence length. This is because the short-term view
and mid-term view of the behavior graph in MINT are very sparse,
whose average degrees are about 8 and 35 for Shopee data as shown
in Figure 4. The training time of a sparse graph neural network is
mainly determined by its number of edges [20, 40], which linearly
increases with the sequence length in MINT. As a consequence, the
training time of MINT increases linearly with sequence length when
the length is very large. We also implement GCNII with a sparse
graph convolutional matrix, resulting in much better performance
than the Transformer in terms of training speed. Hence, our model
can easily scale to sequences of up to more than 1000 actions, which
is suitable for typical traffic data in the e-commerce platform.

4.6 Fraudulent Behaviors Verification
Global Interpretability. We validate the extracted fraudulent
behaviors with the human expert in the business unit to verify
the interpretability of the developed MINT. Figure 14 illustrates the
NRR@1 and NRR@5 of five action types that have the highest NRR
values across the whole dataset for Shopee-C2. We ignore those
action types whose frequency in Shopee-C2 is less than 10. By
checking with the risk control experts in Shopee, the actions in
Figure 14 appear far more frequently in the behaviors of fraudulent
users than in normal users. For example, the action types "refund-
detail" and "refund-request" are closely related to refund fraud and
chargeback fraud, in which fraudsters request a refund and claim
that they have paid an excessive amount or cancel the order. The
actions "login-with-password", "login-with-otp", and "password-
reset-request" often appear in account takeover fraud scenarios. On
the contrary, the NRR@1 of "visit-homepage" and "search-product"
are 0.25 and 0.36, respectively.

Local Interpretability. The complexity of human behavior makes
it impossible for our risk control experts to create a comprehensive
list of all the suspicious behavior sequences. Instead, our system
detects and extracts suspicious behavior sequences, providing the
most accurate and appropriate verification method. In the following,
we present two examples to illustrate how our system identifies
and examines these sequences, and how our risk control experts
interpret the findings. The first suspicious sub-sequence output
by the fraudulent behaviors extractor is: "delink-phone→ verify-
phone→ check-new-phone→ set-new-phone→ edit-my-profile
→ change-delivery-address→ checkout-product". This is flagged
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as an account takeover fraud by the human expert. The cyber-
criminal gains unauthorized access to a benign user’s account,
changes the victim’s phone number to their own, and uses the
account to make a purchase. The second suspicious example is:
"update-creditcard→ online-payment→ check-my-order→ chat
→ check-payment-option→ refund-request→ refund-detail→
check-payment-option". This is flagged as refund fraud, in which
users claim an issue with the transaction, requesting a refund
and keeping the purchased item without canceling the order. The
interpretability that MINT offers can provide the fraudulent sub-
sequences that are closely related to the final identification.

5 RELATEDWORK
In this section, we review existing literature related to fraud detec-
tion systems on structured data and graph neural networks.

Fraud Detection Systems on Structured Data. Traditional fraud
detection systems typically rely on expert knowledge or supervised
models for statistical feature training [17, 28, 31]. However, they
are limited in their applicability and scalability due to the need for
careful feature engineering. In line with technological development,
several deep learning-based fraud detection models have been pro-
posed, learning users’ transaction history and behavioral data from
structured data [7, 10, 32, 41, 48]. According to the information
source utilized, existing fraud detection systems on structured data
can be categorized as transaction-based methods [7, 10, 32, 48] or
behavior-based methods [5, 25, 26, 41, 52].

Transaction-based anti-fraud systems extract transaction-related
records and attributes from the database to determine the risk score
of each transaction record [7, 10, 18, 32, 48]. For instance, [7, 32]
transform tabular data into graph-structure data and adopt graph
neural networks to learn user and transaction representations for
fraud probability prediction. To learn the logical relationships be-
tween attributes in historical transaction records, [48] proposes
a logical graph of behavior profiles (LGBP) model, which uses a
path-based transition probability to characterize users’ transaction
behaviors and calculate the acceptance probability of the incoming
transactions based on the latest 𝑘 transaction records. [10] proposes
a 3D-convolutional neural network for fraud transaction detection,
modeling the temporal and spatial aggregation of fraudsters in
transaction records. However, these transaction-based fraud de-
tection methods cannot perform well at an early stage when the
available transaction data are fairly limited [37, 47].

Behavior-based fraud detection methods involve extracting the
daily activities of each user as a behavioral sequence from structured
data, which can be modeled using various techniques. For instance,
recurrent neural networks (RNN) or attention-based mechanisms
have been used for this purpose [2, 5, 25, 26, 49, 52]. In [47], re-
searchers employ gated recurrent unit (GRU) to learn the mapping
function between time-varying covariates and survival probabilities
to predict fraud probability [49]. Of particular note is the utilization
of a behavior tree to extract users’ intentions from sequence data in
[26], in which the branch representation is captured by long short-
term memory (LSTM) neural network with an attention scheme.
The Tree-LSTM approach is further improved in [25] by building
connections between different users and updating the user embed-
dings by aggregating the representations of neighboring users and

intention nodes. In addition, a neural factorization machine (NFM)
is deployed in a risk management system to capture high-order
feature interaction between different events [41]. However, all of
the existing behavior-based fraud detection methods disregard the
temporal information of the user’s behaviors, making them vulner-
able to well-camouflaged fraudsters. Additionally, the one-sided
view learning methods typically fail to capture the user’s long-term
intentions in complex scenarios.

Graph Neural Network. Graph convolutional network [20] ex-
tends traditional graph-based signal processing work [12] to scal-
able semi-supervised learning, which is widely used in node classi-
fication and graph classification. The GraphSAGE model proposed
in [16] introduces inductive learning to graph convolutional net-
work (GCN), which allows batch learning and can be easily applied
on a large graph. Masked self-attention is leveraged in [39] to re-
fine GCN and assign different importance to neighbor nodes for
feature propagation. Various deep graph convolutional networks
have been proposed to enlarge the receptive field and minimize
over-smoothing [9, 22]. To enable GCN to express higher-order
polynomial filters, [9] adds initial residual connection and identity
mapping into vanilla GCN and achieves state-of-the-art perfor-
mance in several small open graph datasets. But most existing GNN
models have only one graph convolutional matrix, which limits
them to a very one-sided picture of graph representation. In this
work, a multi-view graph learning approach is proposed, which
allows us to capture hidden representations from different perspec-
tives.

6 CONCLUSIONS
In this paper, we propose a novel multi-view row-interactive time-
aware fraud behavior detection framework MINT targeting time-
series structured data. MINT reorganizes each user’s behaviors as
a time-aware behavior graph and constructs three different views
for each user, which allows the model to capture user intentions
from multiple perspectives. Also, we devise a novel gated neighbor
interaction mechanism to learn the row-interactive information
and mitigate the over-smoothing issue. Furthermore, we generate
an explainable fraudulent behavior sub-sequence so that human
experts can interpret the detection findings. To the best of our
knowledge, MINT is the first to utilize the temporal information in
users’ time-series behaviors with graph topology for fraud detec-
tion. Extensive experiments on the Shopee and Amazon datasets
validate that MINT achieves superior effectiveness, efficiency, and
scalability compared to 10 state-of-the-art baselines, demonstrating
its usefulness on production platforms.
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