
FEBench: A Benchmark for Real-Time Relational Data Feature

Extraction

Xuanhe Zhou
Tsinghua University

zhouxuan19@thu.edu.cn

Cheng Chen
4Paradigm Inc.

chencheng@4paradigm.com

Kunyi Li
Tsinghua University
lkg19@thu.edu.cn

Bingsheng He
National Univ. of Singapore
hebs@comp.nus.edu.sg

Mian Lu
4Paradigm Inc.

lumian@4paradigm.com

Qiaosheng Liu
4Paradigm Inc.

liuqs@4paradigm.com

Wei Huang
4Paradigm Inc.

huangwei@4paradigm.com

Guoliang Li
Tsinghua University,

Zhongguancun Laboratory
liguoliang@tsinghua.edu.cn

Zhao Zheng
4Paradigm Inc.

zhengzhao@4paradigm.com

Yuqiang Chen
4Paradigm Inc.

chenyuqiang@4paradigm.com

ABSTRACT

As the use of online AI inference services rapidly expands in various

applications (e.g., fraud detection in banking, product recommen-

dation in e-commerce), real-time feature extraction (RTFE) systems

have been developed to compute the requested features from incom-

ing data tuples in ultra-low latency. Similar to relational databases,

these RTFE procedures can be expressed using SQL-like languages.

However, there is a lack of research on the workload characteristics

and specialized benchmarks for RTFE, especially in comparison

with existing database workloads and benchmarks (e.g., concurrent

transactions in TPC-C). In this paper, we study the RTFE work-

load characteristics using over one hundred real datasets from

open repositories (e.g. Kaggle, Tianchi, UCI ML, KiltHub) and those

from 4Paradigm. The study highlights the significant differences

between RTFE workloads and existing database benchmarks in

terms of application scenarios, operator distributions, and query

structures. Based on these findings, we propose to develop a real-

time feature extraction benchmark named FEBench based on the

four important criteria for a domain-specific benchmark proposed

by Jim Gray. FEBench consists of selected representative datasets,

query templates, and an online request simulator. We use FEBench

to evaluate the effectiveness of feature extraction systems including

OpenMLDB and Flink and find that each system exhibits distinct

advantages and limitations in terms of overall latency, tail latency,

and concurrency performance.

PVLDB Reference Format:

Xuanhe Zhou, Cheng Chen, Kunyi Li, Bingsheng He, Mian Lu, Qiaosheng

Liu, Wei Huang, Guoliang Li, Zhao Zheng, and Yuqiang Chen. FEBench: A

Benchmark for Real-Time Relational Data Feature Extraction. PVLDB,

16(12): 3597 - 3609, 2023.

doi:10.14778/3611540.3611550

Xuanhe Zhou and Cheng Chen contributed equally to the paper.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611550

1000012159 2022/01/12 08:00:00

TimeStampAmountCard No.

New Transaction

1000012159 2022/01/12 08:00:00

2022/01/12 07:59:572000012159

2022/01/12 07:59:56012159 1000

012159 2022/01/12 06:30:0015

223012112 2022/01/12 06:10:00

TimeStampAmountCard No.

Historical Transactions

Time

Windows

Max/Min/Avg/Top2 of Transactions
over the last 3 hours

2000 | 15 | 1003 | [2000, 1000]

Max/Min/Avg/Top2 of Transactions
over the last 10 seconds

2000 | 1000 | 1333 | [2000, 1000]1000

Amount

012159

Card No.

Basic
Features

Real-Time

Feature Extraction
Feature Vector

10s

3h

Figure 1: An example of real-time feature extraction.

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/decis-bench/febench.

1 INTRODUCTION

Online AI applications are rapidly gaining popularity and are ex-

pected to dominate the AI market in the near future (e.g., account-

ing for 44% of the AI market share by 2030 [15, 47, 51, 56]). As

a crucial component of AI applications, real-time feature extrac-

tion (RTFE) aims to timely compute features over the incoming

new data tuples. These features play an important role in produc-

ing high-quality prediction, often referred to as the łfuel for AI

systemsž [21, 31, 32, 50, 60]. However, with the rise of advanced

machine learning techniques (e.g., deep learning) and the increas-

ing complexity of AI-driven businesses, the number of features

that must be computed in real-time has significantly increased (e.g.,

over 600 features for fraud detection [20, 52], over 100 features

for online recommendation [17, 19, 28], over 400 features for sales

prediction [36, 37, 40, 54]). RTFE often accounts for a huge propor-

tion of execution time of the online machine learning pipeline (e.g.,

taking 70% time in the sales prediction service of an online car pur-

chase platform according to the practical experience in 4Paradigm1).

To provide a better understanding, we present a few examples of

typical RTFE applications.

1github.com/decis-bench/febench/tree/main/report (last checked on 2023-2)

3597

https://doi.org/10.14778/3611540.3611550
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611550
https://github.com/decis-bench/febench
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Example 1 (Fraud Detection). For the banking industry, it is

crucial to identify fraudulent activities (such as multi-location with-

drawals) in real time, so as to avoid serious financial loss (e.g., the

IRS reported a loss of $2.2 billion in a single year [9]). As shown in

Figure 1, for a new transaction, if the average transaction amount

within 10 seconds (one real-time feature) is much larger than that

within the last 3 hours, it may indicate a potential fraud event. In

addition to average values, 8 aggregation features (including a cus-

tomized operator łTop 2ž) are computed over the two time windows

to provide a more informative feature vector. This real-time feature

extraction process helps to quickly identify suspicious transactions

and minimize the potential financial loss.

Example 2 (Online Advertising). In companies like Criteo, it

is essential to dynamically optimize the placement of advertisers’

contents for each internet user (e.g., conducting 950 billion daily op-

timizations, each of which taking place within 50ms). To reach this

goal, it is challenging to rapidly update the features (for tasks like

clicking probability forecasting of each advertisement) based on a

large number of data sources (e.g., historical browsing records, users

with similar browsing records) and current user actions (e.g., most

recent browsing records). The real-time feature update process helps

to deliver fast responses to assist advertisers reach more users.

Example 3 (Sales Prediction). In retail companies like Wal-

mart, accurate prediction of product sales and recommendations to

customers are crucial. In this scenario, real-time feature extraction is

needed to compute both short-term (e.g., last one hour) and long-term

(e.g., last three months) features of user activities, to better under-

stand their purchasing habits and help retailers prepare their products

accordingly. Additionally, online sales (e-commerce) require the anal-

ysis of different users’ preferences based on search (not available in

offline sales) and purchase records (e.g., most clicked products in the

past 5 minutes, products with the most coupons right now). This is a

challenging task, especially when dealing with high-concurrency user

requests with ultra-low latency.

From above examples, we find that real-time feature extraction

is a complex and challenging task that requires (𝑖) the storage of a

large volume of incoming data (e.g., for aggregation features) and

(𝑖𝑖) the execution of complex operations over multiple varying-

length windows and (𝑖𝑖𝑖) the ability to handle high-concurrency

query requests. Our research finds that similar applications exist in

both the commercial customers and open-source community part-

ners of 4Paradigm (e.g., Intel, 37GAMES, Akulaku, and JD.com)2.

These challenges and applications have prompted the develop-

ment of real-time feature extraction systems or components in

various projects (e.g., Flink [22], Feathr [5], FeatHub [4], and Open-

MLDB [2]). These efforts can be broadly categorized into two types

of system designs. (1) General-purpose stream processing systems

(e.g., Flink): Many companies have attempted to construct their

feature extraction systems on top of general-purpose systems like

Flink. These systems possess both batch and stream processing

capabilities, making them suitable for RTFE. (2) Specialized sys-

tems for feature extraction (e.g., OpenMLDB and Tecton): There are

two types of industrial-strength systems designed specifically for

2github.com/4paradigm/OpenMLDB/discussions/707 (last checked on 2023-2)

feature extraction [33, 43, 46]. The first type focuses on serving on-

line features that have been pre-computed during the offline stage.

However, it may not be able to produce real-time features with low

latency. The second type aims to update real-time features in online

stage, ensuring the accuracy of the AI systems. For instance, in a

fraud detection scenario, features like łwhether the user’s credit

card is lockedž must be updated in real-time and cannot rely on

offline batch processing that has long latency.

Similar to relational databases, a common characteristic of these

system designs is that the RTFE procedures can be expressed using

SQL like languages, allowing data scientists to focus on describing

their feature requirements. A natural question is: are RTFE work-

loads different to existing database workloads? On the other hand,

although RTFE is increasingly viewed as essential for deploying AI

models in production, there is currently no research on the work-

load characteristics and benchmarks for RTFE, and especially the

comparison with existing database workloads and benchmarks.

In order to answer the above question, this presents three main

challenges. ❶ A benchmark should be rooted from real RTFE work-

loads. Due to the massive number of valuable real datasets available

online, it is laborious to obtain the required datasets (e.g., tabular

data with timestamps) and generate the RTFE queries based on

the data and task characteristics (C1). ❷ It is a non-trivial task to

design the benchmark to satisfy the four criteria proposed by Jim

Gray [29], which can be contradictory (e.g., adopting more queries

may enhance the effectiveness, but negatively affect the benchmark

simplicity) (C2). ❸ It is crucial to deploy the benchmark in both

general-purpose and specialized systems and gain insights into the

system designs with the benchmark (C3).

In this paper, we propose a real-time feature extraction (RTFE)

benchmark, called FEBench, based on our experience in provid-

ing AI solutions for customers from various sectors (including 75

companies in the Fortune Global 500).

What are the key distinctions between RTFE workloads and

existing database benchmarks? We analyze the key differences

between collected RTFE workloads (i.e., over 100 suitable datasets

extracted from over 1000 public machine learning tasks) and ex-

isting database benchmarks (e.g., transactional [3, 12], analyti-

cal [14, 38], and hybrid [13, 25] benchmarks) in consideration of the

data distribution, task types, and query operators and structures

(ğSection 4, 5).

How can we design an effective and efficient benchmark for

real-time feature extraction? We collaborate with industry part-

ners to build a real-time feature extraction benchmark (FEBench).

This benchmark consists of selected datasets, query templates, and

an online request simulator. We ensured that FEBench meets the

four important criteria for a domain-specific benchmark proposed

by Jim Gray (ğSection 3 6).

How do we utilize FEBench to compare different existing so-

lutions?We offer a testbed with reusable components (e.g., data

loader, workload simulator, performance monitor) to facilitate re-

searchers to develop RTFE systems with lower overhead on eval-

uation and implementation. We use FEBench to investigate the

effectiveness of feature extraction systems and the preliminary

results show all the tested systems have their own problems in

3598

different aspects, e.g., (𝑖) performance differences can arise due to

different implementation techniques: OpenMLDB (a specialized sys-

tem) runs in assembler code and is significantly faster than Flink (a

general-purpose system) that runs in JVM; (𝑖𝑖) the long tail problem

is more severe in OpenMLDB, which performs poorly in extreme

cases (such as the 99th percentile) due to inefficient log writing; and

(𝑖𝑖𝑖) the number of parallel threads has a more significant impact

on OpenMLDB than Flink. Our findings reveal that more work is

required to improve future feature extraction systems (ğSection 7).

2 BACKGROUND AND RELATED WORK

In this section, we first introduce the feature extraction operators

in SQL expressions, and then discuss why existing database bench-

marks cannot be used to evaluate feature extraction systems.

2.1 Feature Extraction Operators

As mentioned in Introduction, the RTFE procedures can be ex-

pressed using SQL like languages. As shown in Figure 2, a simpli-

fied RTFE query for Example 1 (fraud detection) consists of three

subqueries. The first subquery employs a single-table window op-

erator to extract the basic profiling information, such as the user’s

credit and highest monthly balances. The second subquery per-

forms a customized join operator to efficiently extract information

from one or multiple tables ordered by timestamps, like the trans-

action amounts from the transaction table. The third subquery uses

multi-table window operators to calculate temporal features from

two time windows (10s and 100s) of the POS_CASH_balance table.

Note the example queries in this paper follow the SQL standards of

OpenMLDB. Other systems like Flink have similar SQL grammars.

To achieve the aforementioned procedures, various RTFE opera-

tors corresponding to distinct real-time features are available. Here

we showcase five main categories of operator patterns.

(1) Table Joins (basic information). Join operators are used to link

tuples of multiple data streams that share common columns. Differ-

ent from database joins, to reduce the need for a large intermediate

joined table and the costly tuple sorting associated with it (which

can slow down online execution), operators like last join match the

tuples in the left stream with the latest matched tuple in the right

stream (pre-ordered by the timestamp column).

Example. In Figure 2, the łinformationž table is joined with the

łtransactionž table to obtain features like the historical transaction

amount of a user who just completed the latest transaction, where

a sudden increase in the amount may indicate fraudulent activity.

SELECT ‘information’.‘reqId’ as reqId_3,

‘transaction’.‘amount’ as transactionValue

FROM ‘information’ LAST JOIN

‘transaction’ ORDER BY ‘transaction’.‘eventTime’

on ‘information’.‘reqId’ = ‘transaction’.‘reqId’

(2) Single-Table Windows (recent activities from single source). Dur-

ing feature extraction, the time window is a common operator that

splits a data stream into buckets of finite sizes (which can be split

by different columns), ranks the tuples within each bucket, and per-

forms various aggregations over these buckets. Unlike traditional

stream operators, RTFE often concatenates computed features from

SELECT * FROM

(SELECT ‘reqId’,

 ‘AMT_CREDIT’,

 top_n_frequency(‘MONTHS_BALANCE’, 3),

 avg(‘amount’) OVER information_0s_3h_100,

 avg(‘amount’) OVER information_0s_10s_100, …

 FROM ‘information’

 WINDOW information_0s_3h_100 AS (

 PARTITION BY ‘NAME’

 ORDER BY ‘eventTime’ between 3h

 preceding and 0s preceding MAXSIZE 100),

 information_0s_10s_100 AS (

 PARTITION BY ‘NAME’

 ORDER BY ‘eventTime’ between 10s

 preceding and 0s preceding MAXSIZE 100)) AS out0

LAST JOIN

(SELECT ‘information’.’reqId’,

 ‘transaction’.’amount’, …

 FROM

 ‘information’

 LAST JOIN ‘transaction’ ORDER BY ‘transaction’.’eventTime’

 ON ‘information’.’reqId’ = ‘transaction’.’reqId’) AS out1

ON out0.reqId_1 = out1.reqId_3

LAST JOIN

(SELECT ‘SK_ID_CURR’,

 distinct_count(‘MONTHS_BALANCE’) OVER balance_0_10, …

 FROM (SELECT ‘reqId’ AS ‘SK_ID_CURR’ FROM ‘information’)

 WINDOW balance_0_100 AS (

 UNION ‘POS_CASH_balance’

 PARTITION BY ‘ID_CURR’

 ORDER BY ‘ingestionTime’ between 100s

 preceding and 0s),

 balance_0_10 AS (

 UNION ‘POS_CASH_balance’

 PARTITION BY ‘ID_CURR’

 ORDER BY ‘ingestionTime’ between 10s

 preceding and 0s)) AS out2

ON out0.reqId_1 = out2.reqId_4;

Figure 2: Feature Extraction Query (for Fraud Detection)

multiple parts of the same table with different window sizes in order

to offer features in different time spans.

Example. In Figure 2, the average amount features are derived from

two windows of the łtransactionž table (split by the user name), i.e.,

łthe average amount within 10 secondsž and łthe average amount

within 3 hoursž of the user. This can be expressed as:

SELECT AVERAGE(amount_transaction_10s),

AVERAGE(amount_transaction_3h), . . .

FROM ‘transaction’

WINDOW transaction_3h as (PARTITION BY ‘NAME’ . . .

3h and 0s preceding MAXSIZE 200),

transaction_10s as (PARTITION BY ‘NAME’ . . .

10s and 0s preceding MAXSIZE 200)

3599

(3) Multi-Table Windows (recent activities from multiple sources).

Similar to traditional joins, multi-table windows enable time win-

dows from different data tables that share common columns (e.g., 8

common columns in the łinformationž and łPOS_CASH_balancež

tables). By matching an incoming data tuple with these tables, we

can compute the time windows in each table, and concatenate the

output window features so as to enrich the feature vector.

Example. In Figure 2, the łinformationž and łPOS_CASH_balancež

tables both contain the łreqIdž column, while the

łPOS_CASH_balancež table contains more profiling infor-

mation (e.g., credit-card balance, instalment amount). When a new

tuple is inserted into the łinformationž table, we can match the two

tables in time windows (i.e., within last 100 tuples) with the new

tuple and leverage the output features (on the matched tuples) to

enrich online inference information. Note the multi-table window

operator is not limited to OpenMLDB, as similar capabilities can be

realized in other systems like point-in-time joins in Tecton.

SELECT ‘reqId’,

avg(‘CNT_INSTALMENT’) over POS_CASH_balance_0_100,

FROM (SELECT ‘reqId’ FROM ‘information’)

WINDOW POS_CASH_balance_0_100 as (UNION

‘POS_CASH_balance’ PARTITION BY ‘ID_CURR’ ORDER BY

‘ingestionTime’ rows between 100 preceding and 0)

(4) Table Aggregations. Table aggregations are important in gen-

erating non-linear features from columns within a table window.

Basic aggregation functions (such as min, max, average) are com-

monly used, but customized functions for feature extraction such as

top_n_frequency and distinct_count are also useful. For feature ex-

traction, there are five major categories of aggregation functions3:

• Transformation Features are used to convert attribute columns

in data sources into the required formats. This can include opera-

tors like (𝑖) using the dayofweek function to obtain the day of the

week in a timestamp and (𝑖𝑖) using the degrees function to convert

radians to degrees. By using transformation features, it is possible

to manipulate the data to ensure that it is in the appropriate format

for further analysis.

• Accumulated Features are used to obtain accumulated statistics

over a period of time. One commonway to get accumulated features

is by using basic window+count operators, such as calculating the

total purchase frequencies of products over the last month. This

type of feature is useful for understanding trends and patterns over

time, such as changes in consumer behavior or product popularity.

• Preference Features are used to determine the existence and

occurrence frequencies of specific items during a period of time.

Operators like window+count_ratio can be used to achieve this,

providing insights into the most frequently occurring activities or

items in a given time period. For example, this technique can be

used to determine the most frequently purchased products over the

last month. By using preference features, it is possible to identify

patterns in the data that can be used to guide decision-making and

inform future actions.

• Recent Status Features are used to reveal changes or distinct

values within a recent time period. They can achieve this in two

ways: (𝑖) Compute the difference of features in recent tuples with

3Check detailed features in github.com/decis-bench/febench/tree/main/features

Table Relation

Calculator

Feature Set

Generation

Feature Set

Evaluation

Feature Enumerator

data
Sources

Selected
Features

{ Main Table :
Secondary Tables }

SQL

Converter

Relation
Graph

Figure 3: The workflow of RTFE query generation

Table 1: Relationships (with the main table) and the mapped

operators. Events indicate recent activities; Status denotes

long-term properties.

Secondary Table Relationship Operator Pattern

static/attribute table
one-to-one last join

one-to-many aggregation + left join

appendable table one-to-many aggregation (events)

snapshot table
one-to-one last join

one-to-many aggregation (status)

slightly earlier tuples (e.g., last time cycle); (𝑖𝑖) Compute the distinct

values within recent tuples (e.g., max/min/sum values of different

item families). By using recent status features, it is possible to

better understand the current state of the data and make informed

decisions based on these insights.

• Trend Features are used to reflect the trends in the near

future. This can be achieved by using operators like win-

dow+standard_deviation to compute the occurring distributions

of relevant items, such as the average sales in the last week. Trend

features reveal periodic changes in the data and generally involve

longer time spans than recent staus features. By using trend features,

we could better understand the long-term trends and changes in

the data, allowing for more accurate forecasting and prediction.

(5) Constraints. Efficient real-time feature extraction requires avoid-

ing an excessive number of tuples within the time windows, as this

may slow down the process. For example, the constraint łmaxsizež

can be used to limit the number of tuples included within the win-

dows. By appropriately setting constraints, it is possible to balance

(𝑖) the need for computing effective features and (𝑖𝑖) maintaining

the efficiency and responsiveness of the feature extraction process.

2.2 Existing Database Benchmarks

System benchmarking is a highly active area of both research and

industry communities [18, 48, 49]. Most standard benchmarks are

derived from real data and typical queries, including transactional

benchmarks [3, 12], analytical benchmarks [14, 38], and hybrid

transactional/analytical benchmarks [13, 25, 34].

2.2.1 Transactional Benchmarks. Online transaction processing

(OLTP) benchmarks evaluate the ability to maintain business data

and process high-concurrency transactions, which generally in-

volve a limited number of tuples.

Scenarios. The scenarios of OLTP benchmarks involve two critical

aspects. First, since the data stored in OLTP systems is generally

critical to the business, it is vital to ensure the atomicity, consistency,

isolation and durability (ACID) of the data. Second, OLTP systems

must efficiently handle high-concurrency transactions with short

response time (e.g., within milliseconds).

Example. TPC-C [12] simulates a real transactional scenario, where

a company (with multiple warehouses and sales districts) processes

3600

Dataset
Collection

Workload
Analysis

System
Deployment

Template
Generation

data
sources

100+ RTFE
Workloads

Operator
Patterns6 Query

Templates

new
requirementssystems

Flink
Tecton

OpenMLDB…

Figure 4: The workflow of FEBench generation.

client orders. TPC-C provides a write-heavy workload, which con-

tains 92% write operators over 9 tables under default settings [27].

TPC-C tables can be scaled to different sizes, indexed based on

the number of configured warehouses. The benchmark metric is

throughput (e.g., tpmC), which reflects the efficiency of processing

concurrent simple operators. Thus, in TPC-C, the operator patterns

are relatively simple (e.g., with single table access and no unions of

multiple tables).
2.2.2 Analytical Benchmarks. Online analytical (OLAP) bench-

marks evaluate the performance of complex data analysis tasks.

Scenarios. Different from OLTP systems, OLAP systems aim to

efficiently process large-scale table scans, aggregations, data joins

frommultiple tables, and performmulti-dimensional operators (e.g.,

with up to three level subqueries) [16, 39, 61, 62].

Example. TPC-H [14] simulates a real scenario, where a whole-

sale supplier delivers goods worldwide. The workload contains 22

business queries, each of which performs complex data operators

(e.g., joins, subqueries). TPC-H does not consider write operators,

and the dataset size remains constant during workload execution.

The benchmark metrics include both throughput (e.g., QphH) and

total execution latency. Besides, TPC-DS is a more complex OLAP

benchmark than TPC-H, with 99 queries that include operators like

table unions that do not exist in TPC-H queries. However, these

OLAP benchmarks only test batch processing capacity over global

data, and also do not consider online evaluation over data streams.

2.2.3 HTAP Benchmarks. Hybrid transactional/analytical process-

ing (HTAP) benchmarks aim to efficiently support both operational

workloads (e.g., small transactions with high update ratios) and

analytical workloads (e.g., with complex access patterns) within

the same system.

Scenarios. First, HTAP systems perform real-time data analytics

between online transactions. Second, they need to prevent the

interference of analytical queries over the dynamically-changing

data tables.

Example. CH-benCHmark [25] provides a mixed workload based

on TPC-C and TPC-H benchmarks. It enables separate serving

of transactional and analytical queries by two types of clients. It

merges the two table schemas into a single one to allow analytical

queries to access transaction tables. However, for feature extraction,

HTAP benchmarks face the similar challenges of OLAP benchmarks,

such as the lack of support for time-series data and the need of

executing analytical queries for relatively long time (in batch mode).

In summary, existing database benchmarks fail to (𝑖) simulate

RTFE scenarios (e.g., stream processing for feature extractions) or

(𝑖𝑖) support complex operator patterns over time windows or (𝑖𝑖𝑖)

conduct evaluations in online mode. RTFE systems require a new

benchmark to evaluate real-time complex analytics over data streams.

3 BENCHMARK OVERVIEW

3.1 Design Goals

We design the feature extraction benchmark by following the 4

benchmark design criteria proposed by Jim Gray [29].

Relevance. The benchmark covers a wide range of feature extrac-

tion behaviors, including different operator complexities. We have

collected over 100 real feature extraction workloads from various

sources, including 45 Kaggle datasets [10], 11 Tianchi datasets [8], 8

KiltHub datasets [6], 28 UCI ML datasets [1], and 26 applications in

4Paradigm. These datasets cover the major feature extraction opera-

tors (Section 2.1) and scenarios that heavily rely on real-time feature

extraction, such as ride prediction, healthcare, energy consumption,

sales prediction, and fraud detection.

Simplicity. The benchmark is designed to eliminate redundant

tests and be easily understandable. First, we apply clustering tech-

niques to the collected RTFE workloads and only use a small part as

query templates, which represent typical RTFE operator patterns

and reduce redundant tests on similar workloads. Besides, for each

query template, we separately describe the data distributions, query

semantics, and operator patterns for ease of understanding.

Portability. The benchmark is applicable to different feature extrac-

tion systems that support SQL-like language. The query templates

are written in SQL expressions. With minor modifications (e.g.,

replacing the customized functions with the combinations of basic

operators), these query templates can be easily migrated to a new

feature extraction system.

Scalability. The benchmark includes real datasets of different data

sizes and distributions, allowing it to simulate various incoming

data sizes and changing patterns (Figure 8).

3.2 Benchmark Methodology Overview

Based on the design goals, we build the benchmark in a workflow

of four steps (see Figure 4). Firstly, we extract suitable workloads

from a variety of public and industry-grade data sources. Secondly,

we compare the collected workloads with other benchmarks, high-

lighting the unique characteristics of the RTFE workloads. Thirdly,

based on the four benchmark criteria from Jim Gray, we cluster

origin queries and select six representative query templates. Finally,

we explain how to implement the benchmark on feature extraction

systems and evaluate their performance from different perspectives.

Dataset Collection. This module includes two parts. First, we

search for datasets in various public AI repositories to cover as

many AI applications as possible. We collect datasets that meet

the RTFE settings, such as (𝑖) being in tabular data format and (𝑖𝑖)

having at least one timestamp column and (𝑖𝑖𝑖) being large enough

to support minutes of tests. Besides, we obtain real datasets from

4Paradigm [24]. For each collected dataset, we synthesize the RTFE

query using our automatic query generation tool (Section 3.3).

Workload Analysis. We compare the collected datasets and

queries with existing database benchmarks. We analyze the data

distributions (e.g., table schema, incoming data patterns) and query

structural differences (e.g., the types/numbers/patterns of supported

operators). Using this analysis, we summarize the major data/query

characteristics in real-time feature extraction.

3601

Table 2: Histogram information of the 118 datasets.

Tables 1 2 3 4 5 6 7 8 10

#Dataset 29 10 13 21 13 22 3 5 2

DataSize 0-10GB 10-20GB 20-50GB 50-100GB >100GB

#Dataset 62 26 15 9 6

Template Generation. To ensure the simplicity and effective-

ness of the benchmark, we cluster the RTFE queries into templates

that combine queries with similar operator patterns and scenario

requirements. First, we utilize logistic regression to rank the impor-

tance of different query features (e.g., the nested level, the operator

number) based on their impact on execution latency, and assign

each feature a weight. Then, we apply DBSCAN [35] to divide

the origin queries into clusters based on these weighted features.

Note that, to balance between the benchmark simplicity and effec-

tiveness, we tune the DBSCAN parameters (e.g., 𝑒𝑝𝑠 controls the

minimal distance of queries within the same cluster,𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

controls the minimal queries in the same cluster) and try to pick

queries that come from different scenarios around the centroid of

each cluster to better cover diversified RTFE cases.

Deployment on Target Systems. After selecting the workloads

(i.e., query templates and real datasets), we implement them on ap-

propriate systems, such as general-purpose systems like Flink [22]

and specialized systems like OpenMLDB [2, 24]. More details can

be found in Section 3.4. Under the same benchmarking environ-

ment, we test the performance of these systems with the selected

workloads and obtain some interesting findings (e.g., the trade-off

between execution efficiency and system compatibility) by profiling

the execution results in finer granularity.

3.3 RTFE Query Generation

Next we introduce how to generate the RTFE queries. In practice, it

is laborious and time-consuming for data scientists to sample and

try out different feature combinations. To simplify the process, we

utilize the industry-grade automated machine learning (AutoML)

technique, which can express RTFE in SQLs for ease of building AI

models [30, 41]. This tool has been implemented in 4Paradigm’s

commercial product4 and served inmany real-world scenarios (such

as Industrial and Commercial Bank, UnionPay).

In this work, the data scientists at 4Paradigm have verified the

validity and effectiveness of generated queries for our collected

datasets. Given an AI task and source data, the selection of features

and generation of RTFE queries involve four steps (Figure 3):

Step 1 (initialization):We first identify the main table (storing the

stream data) and secondary tables (e.g., static/appendable/snapshot

tables) in the dataset. Next, we enumerate the one-to-one/one-

to-many relations (corresponding to different RTFE operators) of

columns within the main table and secondary tables, like columns

with similar names or key relations.

Step 2 (table relation calculator): Next we map the column rela-

tions to RTFE operators. As shown in Table 1, for a secondary table,

if it has the one-to-one relationship with the main table (e.g., user

profiling information), we directly join the secondary table with

incoming tuples in the main table and retrieve the whole or a partial

4https://en.4paradigm.com/product/hypercycle_ml.html (last checked on 2023-2)

Offline Data
Import

Offline
Storage

Offline Feature
Extraction

Online Data
Import

Data Streams
Online

Feature Extraction

Window
Data

(in-memory)

Online
Storage

request

features

Query
Deployment

query

Offline-Online Consistency

Figure 5: The general architecture of RTFE systems.

set of join results; and if they are of one-to-many relationship (e.g.,

historical transactions of a user), we first join the secondary and

main tables and then perform aggregations on the join results. The

adopted aggregation functions depend on the secondary table type

(e.g., 𝑐𝑜𝑢𝑛𝑡 operator for static tables, 𝑔𝑟𝑜𝑢𝑝𝑏𝑦_𝑐𝑜𝑢𝑛𝑡 operator for

appendable tables). Each mapped operator pattern corresponds to

a candidate feature (represented by an output column).

Step 3 (feature enumerator): After extracting all the candidate

features, we utilize beam search [45] to iteratively generate effective

feature sets. That is, we first initialize a root node (level 0) denoting

the basic features in origin tables. Next, in each iteration, we select

one most promising node N to expand nodes of next level (e.g.,

adding a candidate feature to the feature set of N) based on metrics

like AUC (measuring themodel inference accuracywith the updated

feature set [26]) and selection frequency (the occurrence numbers

of different columns). This iterative procedure is terminated once a

specified condition (e.g., the maximum iteration time) is met and

the feature set of the best leaf node is chosen.

Step 4 (SQL converter): Finally, the selected features are converted

into a semantically equivalent SQL query, which needs to integrate

into the feature extraction system before evaluation (e.g., the łDE-

PLOYž command in OpenMLDB). Note for a new feature extraction

system, the SQL converter can be easily adapted provided the SQL

grammar of this system is known.

3.4 Target Test Systems

Real-time feature extraction refers to on-demand RTFE query ex-

ecution and request response in online stage. Although there are

various products that support feature extraction (e.g., Michelangelo

in Uber [43], Zipline in Airbnb [23], Feathr in Microsoft [5], Tec-

ton [11], OpenMLDB in 4Paradigm [2]), some systems pre-compute

the feature values in offline and store in caching for online requests,

which is not in the scope of this paper. As shown in Figure 5, a

RTFE system typically has three main modules:

(1) Online feature extraction is essential for real-time processing

of incoming stream data into features that enable timely model

inferences. The online storage is mostly memory-based, containing

only the latest feature values to model the current state of the world.

Online stores support multiple copies of table data to ensure high

availability. With the RTFE query deployed in advance (Section 3.3),

the systems use an optimized query engine to process online re-

quests. Different from traditional stream systems, the query engine

enhances the procedure through various optimization designs, such

as supporting (𝑖) data structures like double-layered skiplist to op-

timize window operators by sorting tuples based on both the key

column and time ranges [24] and (𝑖𝑖) overlapped window reuse

3602

that helps to enhance data requests over multiple windows [21]

(see the example query plan in Figure 14).

(2) Offline feature extraction is commonly used to persist feature

data over extended periods (often months or years), and conduct

batch model training with these data. The feature data is usually

stored in data warehouses or data lakes. Offline feature extraction

shares the same feature extraction query as the online module.

(3) Offline-and-online consistency. Machine learning models require

a consistent view of features across development (offline batch

training) and production (online inference). Subtle differences in

the features can cause significant changes in the inference outcome.

For example, Varo, an online bank from the US, discovered that

inconsistent execution definitions of "account balance" between

offline and online stages cause significantmodel quality degradation

at production [7]. They use the account balance from yesterday

at offline and the current account balance at online, which caused

inconsistency. Therefore, maintaining a consistent view of feature

definitions across offline and online feature extraction is essential

for an industry-grade RTFE system.

4 DATASET COLLECTION

In this section, we explain how to collect and prepare the RTFE

datasets together with the feature extraction queries.

Finding 1. The selected 118 datasets cover 5 common feature

extraction scenarios, comprising relational data with various

timestamp distribution (e.g., cycles, sudden bursts). In these

datasets, the number of tables is within [1,10], and the data

sizes span from 2MB to 10TB (Table 2).

We spent over 2 person years to comprehensively analyze vari-

ousmachine learning tasks frommultiple popular open data sources

(e.g., Kaggle [10], Tianchi [8], UCI ML [1], KiltHub [6]). For example,

Kaggle is one of the largest online communities of data scientists and

ML practitioners, with 579 competitions that provide real decision-

making tasks and datasets (last checked on February 14, 2023). For

real-time feature extraction, any selected dataset must meet the

following requirements:

(1) Relational data:Most online decision-making tasks store data

in tabular format, where each tuple represents an instance and each

column corresponds to a basic feature;

(2) Timestamp column: Real-time feature extraction requires the

updating of computed features by the most recent data. Thus, any

selected dataset must contain a łtimestampž column that simulates

the various incoming data distributions in real online scenarios

(e.g., periodic cycles for the flu forecast task in Figure 8 (b), random

bursts for the loan payment task in Figure 8 (e));

(3) Data scales:Weneed the dataset that includes at least one table

with timestamps (usually the main table) and contains over 1 × 10
6

tuples. This allows us to simulate the real-world data incoming

scenarios and test the performance for minutes. Note, similar to

other benchmarks like TPC-C and Sysbench, we only insert tuples

by the order of their timestamps during evaluation.

Based on these requirements, we have collected a total of 118

datasets, including 26 internal datasets from 4Paradigm, 45 Kaggle

datasets, 11 Tianchi datasets, 8 KiltHub datasets, and 28 UCI ML

datasets. For example, from the over 500 Kaggle competitions, we

first exclude non-tabular datasets and examine each tabular dataset

to ensure it has a łtimestampž column and meet our data distri-

bution criteria (e.g., the average interval between two tuples is

no longer than 1 minute). This yields 45 potentially useful Kaggle

datasets for real-time feature extraction. For each collected dataset,

we generate the feature extraction query (see Section 3.3).

These RTFE datasets have three characteristics. First, the collected

datasets cover a wide range of data distributions. As shown in Table 2,

the number of tables ranges from 1 to 10, and the dataset sizes span

from 1MB to 10TB. Second, the operator patterns in RTFE queries

are affected by the datasets. For example, for datasets with a single

table (typically used for model training), their RTFE queries involve

multi-table windows (of different sizes) over the same tables; for

datasets with multiple tables (e.g., 2-6 tables), their queries may

contain tricky subqueries of dozens of levels (e.g., joining multiple

tables as the intermediate results). Third, the sizes of most datasets

are no larger than 50GB, because (𝑖) RTFE qeuries are generally

executed over most recent data (full data is stored in HDFS for

batch training) and (𝑖𝑖) only the data tuples within time windows

are required. Note we also have relatively large datasets (e.g., over

10TB), whose RTFE queries do not involve windows but join the

incoming tuple with full static tables.

5 WORKLOAD ANALYSIS

We demonstrate the analysis of the unique workload characteristics

of RTFE in comparison with typical database benchmarks.

5.1 Observations

Based on the discussion in Section 2.2, we further analyze the

detailed operator distributions of RTFE workloads (FEBench) with

transaction (TPC-C), analytic (TPC-DS, TPC-H, JOB), and hybrid

workloads. The results are shown in Figure 6.

Finding 2. Among the 118 queries, they support 15 typical op-

erators and various customized aggregations. Compared with

transactional/analytical queries, most of the RTFE queries in-

volve much more complex query structures over time windows.

RTFE Operators vs Transactional Operators. First, both RTFE

and OLTP workloads support high-concurrency queries. However,

OLTP supports data update (e.g., 28.0% update queries), while RTFE

only supports appending data to the end of data streams. Second,

OLTP only involves simple queries (e.g., single table scans), while

RTFE contains queries with complex operators, and needs to pro-

cess these operators in time windows. Third, OLTP systems stress

the ACID characteristics and are generally disk-based, while RTFE

systems focus on the high efficiency of processing complex opera-

tors and adopt in-memory architectures.

RTFE Operators vs Analytical Operators. As shown in Figure 6,

RTFE queries cover a much larger range of operator space than

OLAP queries. To quantify, the highest number of toal operators

and aggregations observed in a query is (477, 38) for TPC-H, (883,

73) for TPC-DS, (4969, 233) for RTFE. Besides, most RTFE queries

have distinct operator distributions from TPC-H/TPC-DS queries.

For example, RTFE queries own over six hundred of aggregations

while TPC-DS queries have 40 aggregations at most, and many

of the RTFE aggregations do not exist in TPC-DS queries (e.g.,

3603

Table 3: Operator Comparison. The operators with underlines do not exist in TPC-DS and TPC-H.

Top 10 most frequently used operators

FEBench last join; average; max; distinct count; top ratio; min; order by; (window) union; partition by; group by

TPC-DS sum; case ...; count; distinct; with ... as; order by; left join; limit; group by; or

TPC-H group by; order by; count; left join; average; case ...; having; with ... as; exists; min

(a) Join (b) Selection (c) Aggregation (d) Group/Order

Figure 6: Contrast of query operators (y-axis denotes the number of corresponding operators). Note FEBench denotes the selected

6 RTFE query templates, FE-all denotes the whole set of 118 RTFE queries, and TPC-DS/JOB/TPC-H are analytical queries.

topN, last join, count_where). These observations indicate RTFE

is richer in query operators and has much more complex operator

patterns than TPC-DS and TPC-H. Note analytical queries in HTAP

benchmarks [25] have similar characteristics as OLAP queries, and

so also cannot well handle the evaluation of RTFE systems.

Summary. Compared with existing database queries, feature ex-

traction queries bring new challenges. (𝑖) They involve some com-

plex operators (e.g., orderby/unions over long time windows), which

are uncommon cases in traditional database queries (Table 3). Note

traditional stream queries are generally of simple operator patterns

and do not involve orderby operators in online mode; (𝑖𝑖) The query

structures correspond to a large number of real-time features and

are very complex, e.g., hundreds of aggregations over multiple data

streams (Figure 6); (𝑖𝑖𝑖) They require to handle high-concurrency

requests and ensure strict real-time guarantees (e.g., the latency

of dozens of seconds are intolerable) for many online AI-driven

applications like millisecond-level fraud detection.

6 BENCHMARK GENERATION
In this section, we first explain how to generate the FEBench bench-

mark by selecting templates out of the over 100 generated queries,

some of whichmay contain similar query operators/structures, such

that affecting the benchmark simplicity. Next we provide scenario

analysis of these templates.

6.1 Query Template Selection

With the 118 collected datasets and feature extraction queries, we

select representative templates based on both the clustering results

and scenario characteristics (Figure 7).

Specifically, we utilize the clustering algorithm DBSCAN to di-

vide the 118 generated RTFE queries based on their feature vectors.

First, for each RTFE query, the feature vector is composed of five

parts: (𝑖) the number of output columns, which reflects the result

scales; (𝑖𝑖) the total number of query operators, which reflects over-

all query complexity; (𝑖𝑖𝑖) the occurrence frequencies of complex

operators (e.g., joins, windows, customized aggregations), which re-

flect the detailed operator-level complexity; (𝑖𝑣) the highest level of

nested subqueries (nested level), which reflects the query-structure

complexity; (𝑣) the constraints of maximal tuples in windows.

Since query features have different importance to the evaluation

effectiveness (e.g., time windows are often more crucial than simple

aggregations), before query clustering, we need to evaluate the

(a) High-level features (b) Highest-weighted features

Figure 7: Query Clustering Analysis. The 118 origin RTFE

queries are divided into 6 clusters (query templates).

relation of these features with the execution characteristics. That

is, we train a logistic regression model, with the above five kinds

of features as input and the execution time of a RTFE query as

output. Then we utilize the regression weights of each feature as

their clustering weights (e.g., 4.518 for nested level, 15.037 for last

joins, 16.132 for windows). Note different from traditional database

queries, RTFE queries generally involve time windows, and so the

query complexity is not directly affected by the batch data scale.

Next, with these weighted query features, we utilize a density-

based spatial clustering algorithm DBSCAN to divide these origin

queries. There are three main steps. (𝑖) Choose an epsilon distance

and a minimum number (e.g., 3 queries) to define a dense region.

(𝑖𝑖) Randomly select an unvisited query and check its neighborhood

within epsilon distance. If the number of queries in the neighbor-

hood is greater than or equal to the minimum number, create a

new cluster and add the queries and its neighbors to the cluster.

If the query is not in a dense region, mark it as noise (note we

iteratively adjust the epsilon distance and minimum number to

ensure there is no query marked as noise) and move to the next

query. (𝑖𝑖𝑖) Repeat the process until all queries have been visited.

The benefit of DBSCAN is that it does not need to manually set the

cluster number and can better reflect the query distribution.

Finally, the clustering results are shown in Figure 7. We find that

the 118 queries are divided into 6 clusters. In each cluster, we extract

queries around the centroid as the candidate templates. Besides,

since AI applications have various feature extraction requirements,

around the centroid of each cluster, we try to pick queries that come

from different scenarios to better cover the feature extraction cases.

3604

(a) Q0 (b) Q1 (c) Q2

(d) Q3 (e) Q4 (f) Q5

Figure 8: The real data distribution of selected six datasets in FEBench.

Table 4: The statistics of selected datasets.

Cluster Task Tables Columns Tuples

𝑄0 Ride Prediction 1 11 2.62 × 10
6

𝑄1 Flu Forecast 1 6 3.54 × 10
6

𝑄2 Energy Forecast 8 61 8.0 × 10
6

𝑄3 Sales Prediction 7 85 1.5 × 10
10

𝑄4 Loan Evaluation 9 245 1.0 × 10
9

𝑄5 Fraud Detection 10 773 1.3 × 10
11

As a result, we pick 6 query templates from the 118 RTFE queries,

where 1 for traffic, 1 for healthcare, 1 for energy, 1 for sales, and 2 for

financial transactions. Note the first three templates are from public

datasets, and the last three are real applications in the industry.

6.2 Query Template Analysis

Finding 3. The selected 6 query templates have similar operator

patterns as the 118 RTFE queries. These templates cover 6 main

RTFE tasks and have diversified operator patterns, which are

relevant to the datasets (e.g., table relations) and task types.

With the selected 6 workloads (denoted as Q0-Q5), we explain

why they follow the four benchmark criteria (Section 3.4) by ana-

lyzing the data (Table 4) and query characteristics (Table 5).

6.2.1 Ride Duration Prediction (Q0). The task aims to predict the

total ride duration of taxi trips in New York City. The task is highly

relevant to the real-time traffic monitoring, which involves massive

GPS data of taxis and buses.

Data (6 months). For the ride prediction task, we collect open

NYC transportation data ranging from 2016-01-01 to 2016-06-30. As

shown in Figure 8 (a), the arrival time of the incoming data tuples

is relatively random, with the number of inserted tuples within

intervals ranging from 12,000 to over 28,000. The data schema

consists of a single table with 11 columns, including two timestamp

columns, two string columns, and seven numeric columns.

Query (single-table window). The features (output columns) in

the query 𝑄0 include three parts: (𝑖) all the origin table columns

(basic features); (𝑖𝑖) aggregation features separately from two time

windows (e.g., distinct counts of łpickup_latitudež in last 1/2 hour);

(𝑖𝑖𝑖) aggregation features computed across different time windows

(e.g., the division of the 1h/2h window features). Since there is only

one base table, 𝑄0 is limited to fundamental RTFE operators (e.g.,

aggregations), and windows over the same table.

6.2.2 Flu Forecast (Q1). The task aims to predict the cumulative

number of confirmed COVID19 cases in various places, as well as

the number of resulting fatalities in the near future.

Data (2.5 months). For the flu forecast task, we have collected

covid19 data ranging from 2020-01-22 to 2020-04-07. As shown in

Figure 8 (b), the incoming data tuples follow a periodic distribution,

i.e., in each cycle, the number of inserted tuples increases to the

peak value (around 310). The data schema contains one base table

with only 6 columns, including one timestamp columns, two string

columns, three numeric columns. Note 𝑄1 is not strict real-time

(with day-level timestamps) and is taken as a special test case.

Query (variable-length windows). First, different from 𝑄0, the

query 𝑄1 involves more window operators, e.g., there are 25

window-aggregation operators in𝑄1, while𝑄0 only has 11. The rea-

son is that𝑄1 contains much fewer basic features (6 table columns)

and it is vital to derive effective new features to support accurate

forecast. Second, 𝑄1 involves 10 different sizes of time windows.

For example, the death cases in last one day or one month may

both be useful in different COVID phases. And so 𝑄1 can help to

test the capability of variable-length window processing [22].

6.2.3 Wind Energy Forecasting (Q2). The task aims to predict the

hourly power generation of the seven wind farms.

Data (3 years). For the power forecast task, we have collected

the open wind-power data ranging from 2009-07-01 to 2012-06-26.

Until Dec. 6th 2011, the number of incoming data stays steadily

(around 265). After that, the number of incoming data sharply drops

and periodically changes around 120. The data schema contains 10

tables with 61 columns, in which seven tables separately record the

power changes in each farm (farm tables) and the rest three tables

are used to train the prediction model (training tables).

Query (1:1 join across multiple tables). In the query 𝑄2, joint

features are computed from multiple tables (e.g., features of nearby

farms and recent hours) by conducting the last join operator (Sec-

tion 2.1) on 7 farm tables and 1 training table, providing a useful

test for online one-to-one joining performance. Interestingly, 𝑄2

mainly extracts temporal features (e.g., the last distinct values of

3605

Table 5: The statistics of selected query templates

output columns / features aggregations last joins time windows subqueries (window) unions max window size

Q0 28 17 0 2 2 0 200

Q1 24 18 0 10 10 0 200

Q2 44 6 8 1 2 0 no limit

Q3 132 61 7 9 9 7 100

Q4 261 200 9 1 18 12 100

Q5 666 662 10 1 3 0 no limit

timestamp features), which is different from other queries that in-

volve a large number of aggregations on numeric columns. Note

that 𝑄2 does not contain time windows, so all the historical tuples

could contribute to the feature computation with incoming tuples,

which is markedly different from traditional stream cases.

6.2.4 Sales Prediction (Q3). The task aims to predict the sales trend

and replenish goods intelligently for a casual wear retailer. The

sales can be significantly affected by various factors like locations,

seasons, product sources, and even weather.

Data (3.5 years). For the sales-prediction task, we have collected

real data in Uniqlo ranging from 2017-12-31 to 2021-05-30. Before

May 30th 2018, data is rarely inserted. After that, the incoming

data quickly increases and, from Feb 3rd 2019 to Aug 4th 2020, the

number of new incoming data is over 1200 per interval. And after

Aug 4th 2020, the incoming data slightly decreases (over 300 tuples

each day). The data schema owns 7 tables together with 85 columns,

in which there are both steam tables, such as storing (canceled)

orders, and attribute tables like product information.

Query (windowunions +multi-level subqueries). For the query

𝑄3, it involves 113 RTFE operators and 15GB batch data, most of

which are aggregations over joined window tables. Besides, differ-

ent from above templates (𝑄0−𝑄2), (𝑖)𝑄3 performs set conjunction

operators (e.g., unions) over two data streams, since multiple tables

in 𝑄3 have some of the same feature columns; (𝑖𝑖) 𝑄3 has up to

6-level subqueries that include both the whole tables (e.g., all tu-

ples in ’product_item’) and tables over time windows (e.g., sales

within a 10-hour period). These types of subqueries can be costly

to process due to the large amount of data involved and the com-

putational overhead required for aggregating data over different

time windows. Thus,𝑄3 is useful to test the performance of complex

subquery processing.

6.2.5 Loan Evaluation (Q4). The task aims to predict whether cus-

tomers will pay back their loans on time for a credit card company.

𝑄4 owns 9 tables together with 1GB data and 245 columns, most of

which occur in two days and cause sudden bursts. In the query 𝑄4,

it involves 110 features from the origin tables and 122 aggregations.

Since it needs to characterize the customer behaviors, there are

multiple window-count operators to reflect the recent activities of

the customers. Besides, it has 17 subqueries, which involve origin

tables, single-table windows, or multi-table windows. Thus, 𝑄4 is

a bit more complex than 𝑄3 in the operator patterns, and the rela-

tively large intermediate table sizes in 𝑄4 can significantly affect

the processing efficiency.

6.2.6 Fraud Detection (Q5). Fraud detection is a special type of the

outlier detection problems, which aims to estimate the likelihood

of fraudulent activities within milliseconds. Here we consider a

fraud detection case in banking scenario. The temporal data was

inserted periodically, with peak values around 8,000 in each cycle.

𝑄5 owns 10 tables with over 13GB origin data and 773 columns.

The query 𝑄5 contains the most query operators among the 6 query

templates, incorporating 659 RTFE operators, most of which are

multi_last_value directly derived from the results of multi-table

joins. Similar to 𝑄2, the query of 𝑄5 does not involve time win-

dows, which leverages the entire dataset (all past user behaviors)

to compute features for incoming tuples.

Summary. The benchmark satisfies the four criteria of a domain

specific benchmark outlined by Jim Gray (Section 3.4). First, the

query templates exhibit a diverse range of feature extraction pat-

terns, e.g., the number of operators varies from 46 to 681, and the

number of aggregations ranges from 11 to 652 (relevance). Second,

each template is expressed in SQL-like language (portability) and

incorporates unique operator patterns, i.e., (𝑖) Q0-Q2 own relatively

simple operators (on public datasets), but still surpass the complex-

ity of traditional analytic queries (e.g., Q1 and Q2 involve dozens of

aggregations and multi-table joins/windows) and (𝑖𝑖) Q3-Q5 own

more tricky operator patterns (on real applications in 4Paradigm),

which are difficult to optimize for ultra-low latency (simplicity).

Third, each dataset can be scaled to larger or smaller sizes by fol-

lowing their real distribution of incoming data (scalability). We will

highlight their respective strengths in evaluations.

7 EVALUATION OF DIFFERENT SYSTEMS

In this section, we introduce how to implement FEBench. As a

starting point, we utilize FEBench to compare a general-purpose

system (Flink [22]) and a specialized system (OpenMLDB [2, 24]).

7.1 Overview of FEBench Pipeline

As shown in Figure 9, FEBench consists of three components: data

loader, workload simulator and performance monitor. Taking prod-

uct forecast as an example, data loader is responsible for loading

static data such as the basic user/shop information into the sys-

tem; workload simulator preloads all of the historical transactions

(data tuples) into DRAM, and then sends the tuples one by one to

simulate the arrival of new transactions. With each incoming trans-

action, the system performs a predefined RTFE query and inserts the

new transaction. We record the response time of each transaction

and reports performance metrics like 50th/99th/999th percentile

latency [44] (denoted as TP-50/TP-99/TP-999). For simplicity, we

define tail latency as TP-99/TP-999. FEBench is implemented in

JMH (Java Microbenchmark Harness) [42], which communicates

with different systems through Java clients.

3606

Data

Loader

Workload

Simulator

Target

System

Performance

Monitor

(b)

(a)

(c) (d)

Load

Re
pl
ay

TP-50 Latency

TP-99 Latency

TP-999 Latency

. . .

Figure 9: The overview of FEBench pipeline.

1.81 1.62 1.21
2.34

3.31 3.80

250.35
386.40 315.88

890.24
1,370.49 1,312.82

1

10

100

1000

10000

C0 C1 C2 C3 C4 C5

OpenMLDB

Flink

La
te
n
cy

(m
s)

TP-50 Latency

Q0 Q1 Q3 Q5Q2 Q4

Figure 10: The TP-50 latency of all tasks (5 threads).

7.2 Experiment Setting

System SetupWe test two typical systems that support real-time

feature extraction in SQL-like languages. First, Flink is a popular

general-purpose stream platform. The version of Flink is 1.15.2, with

one jobmanager node and three taskmanager nodes deployed as the

Flink cluster. Flink caches part of the data in DRAM (the watermark

mechanism is fine-tuned to ensure all the online required data is

memory-cached) and persists data in RocksDB. Second, OpenMLDB

is a popular specialized platform for real-time feature extraction.

The version of OpenMLDB is 0.6.4, with three tablet servers and one

name server deployed as the OpenMLDB cluster. OpenMLDB stores

all the data in DRAM. To maintain data consistency, OpenMLDB

writes logs onHDD for newly added data tuples.We plan to evaluate

the benchmark for more systems such as Tecton in the future.

Hardware Setup We deploy both FEBench and the tested systems

on a server with 40 Cores 2.2 GHz Xeon(R) E5-2630 (2 sockets,

640KB/2.5MB/25MB for L1/L2/L3 caches of each socket), 500 GB

memory, and we use 7.3 TB hard disk as storage. The OS is CentOS-

7.9 with kernel 3.10.0.

7.3 Overall Performance Results

In the following, we present some preliminary results and observa-

tions. Our primary objective is not to compare the end-to-end perfor-

mance of these systems. Instead, we demonstrate the usage of FEBench

for illustrating the pipeline of our benchmark, and for showing the

impact of different system implementation and design.

Overall Performance. Different choices of implementation tech-

niques can result in large performance gaps. As shown in Figure 10,

the TP-50 latency of Q0/Q1/Q2 is shorter than that of Q3/Q4/Q5,

as the latter queries require more complex operators (e.g., over 2x

number of operators and more aggregations). Furthermore, Flink

is almost two orders of magnitude slower than OpenMLDB. These

Tail Latency

2.5 2.1 1.6
2.3 2.1 2.2

17.6

4.0

15.9

20.6
21.8

15.7

1.6 2.3 1.5 1.3 1.3 1.5
1.8 2.3

1.5 1.3 1.3 1.5

0

5

10

15

20

25

30

35

40

Q0 Q1 Q2 Q3 Q4 Q5

Tail Latency

TP-99 OpenMLDB TP-999 OpenMLDB

TP-99 Flink TP-999 Flink

N
o
rm

a
li
ze
d
La
te
n
cy

Figure 11: Normalized tail latency (all values are normalized

to that of the TP-50 latency for each system).

0.9
1.7

1 0.9 1
0.8

1.2

2.6
1.5 1.8

1.7
1

3.2

5.9

3.5 3.7

5.0

4.1

1 1 1 1 1 11 0.9 1 0.9 1 1.1
1 1 1 1 1.1 1.1

0

2

4

6

8

10

12

14

Q0 Q1 Q2 Q3 Q4 Q5

TP-50 Latency

10 Threads OpenMLDB 20 Threads OpenMLDB

50 Threads OpenMLDB 10 Threads Flink

20 Threads Flink 50 Threads Flink

N
o
rm

a
li
ze
d
La
te
n
cy

Figure 12: Normalized TP-50 latency (relative to 5 threads).

performance differences are mainly due to implementation choices.

Flink is implemented in Java to support various application sce-

narios and cross-platform deployment, and all RTFE queries are

executed in the JVM. In contrast, OpenMLDB was initially designed

for latency-sensitive applications like financial anti-fraud. Designed

as a high-performance in-memory system, OpenMLDB uses Low-

Level Virtual Machine (LLVM) [53] to transform RTFE queries into

assembler code, which is much faster than that in the JVM [57].

Long Tail Latency. OpenMLDB exhibits a noticeable long tail issue,

while the tail latency of Flink is more stable. To examine the growth

rate of tail latency, we normalize the TP-999 and TP-99 latency to

that of TP-50 latency for each system. As shown in Figure 11, the TP-

999 latency of Flink only increases up to 12.69% compared to TP-99,

whereas the TP-999 latency of OpenMLDB is up to 10.32 times that

of TP-99 latency and up to 21.8 times that of TP-50 latency in Q0-Q5.

Such long-tail issues have also been observed in other in-memory

databases [24], which is mainly caused by the back-end fsync

operations (for log writes) on the persistent storage. Instead, Flink

stores newly added transaction data in a third-party database (e.g.,

RocksDB), which executes RTFE and new data inserts in different

engines. Moreover, as discussed above, Flink takes longer time to

complete each RTFE query, which reduces the frequency of new

data insertions and hence mitigates the performance impact of

database log writes.

Concurrency Performance. In Figure 12, latency values are nor-

malized to that of five threads. We find OpenMLDB’s TP-50 latency

remains relatively stable when the thread number increases from

five to twenty. However, setting the number of working threads to

50 leads to a significant increase in TP-50 latency (up to 5.92× that

3607

Figure 13: Micro-Architectural Metric Analysis

of five threads). In contrast, Flink exhibits smaller changes in TP-50

latency. There are two reasons. First, OpenMLDB strives to fully

utilize system resources for each feature extraction request (such

as ensuring high-parallelism computation for operators like aggre-

gations), which may result in more frequent thread collisions in

high-concurrency scenarios. Second, OpenMLDB already achieves

millisecond-level latency, where even subtle performance degrada-

tion can be much more noticeable than in systems like Flink.

7.4 Profiling Analysis

Execution time breakdownWe conduct the profiling study for

detailed performance analysis and decompose the execution latency

into TMAM metrics [55], including retiring (the time of retiring

instructions), bad speculation (the timewasted due to branch predic-

tion errors), backend_bound (instructions that cannot be dispatched

due to resource shortage), frontend_bound (the time of fetching

instructions and decoding them into executable micro-instructions).

As depicted in Figure 13, for Q0-Q2, the frontend_bound metric

is most time-consuming (over 45%), where the operator patterns

are relatively simple and most time is spent in switching between

instructions of user request processing and feature extraction. This

finding is consistent with the previous study on data streaming

systems [58, 59]. For Q3-Q5, the most influential metrics are back-

end_bound (involving more secondary and intermediate tables that

increase cache misses) and retiring (performing more instructions

for complex operators like window unions). OpenMLDB reduces

cache misses by reusing time windows over the same tables and

performing customized operators (e.g., fetching the matched one

tuple with most recent timestamp), which lead to superior perfor-

mance in milliseconds. These query templates allow us to identify

different performance bottlenecks at a micro-structural level.

Execution Plan. Next we use 𝑄0 (ride duration prediction) as an

example to illusrate the difference in execution plans. The execu-

tion plan of other queries could be found in our project website.

The execution plan of𝑄0 includes three stages: (𝑖) extract two time

windows of taxi X, and execute aggregations, (𝑖𝑖) extract basic infor-

mation of taxi X and execute calculations on the selected columns,

(𝑖𝑖𝑖) join the results of the first two parts and execute calculations

to output results. As shown in Figure 14, a series of operators have

been adopted, including request (locate the required data), exchange

(pass the intermediate results to other nodes), agg:xh (aggregation

on x-hour window), limit (truncate data), join (concatenate the

intermediate results), and calc (calculate on the input data).

We have the following observations. First, in Flink, the calc

operator takes the most time and there are 28 features to compute in

Q0, whose computation complexity is much higher than traditional

1 1

3 3

2 2

1%

5%

10%

90%

(e
s

ti
m

a
te

d
)

ti
m

e
 r

a
ti

o

WinBuild

2h

Flink OpenMLDB

Request

Limit

Exchange

Agg:1h Agg:2h

Join

Calc

Exchange

Exchange Exchange

Exchange

Exchange Agg:1h

JoinJoin

Calc Calc

Calc

Limit

Request

Request

Request

Request

Limit

Agg:2h

Figure 14: Example Execution Plans (Q0)

stream queries. Instead, OpenMLDB spends most time on initial

window computation, whose results will be reused by the following

window operators. Second, to reduce the latency of each RTFE

query, OpenMLDB has made several optimizations at plan level.

On one hand, 𝑄0 requests to read two time windows (i.e., past 1/2

hours of taxi X). The default behavior of the plan is to read the

data of two time windows separately. Instead, OpenMLDB senses

the overlap of the time windows, reads only the data of the larger

2-hour time window, and performs the aggregation operator on

the 1-hour and 2-hour time windows respectively, which reduces

the duplicate data reading overhead and leads to lower retiring

(Figure 13). On the other, OpenMLDB adopts multiple optimized

operators to reduce the latency: (𝑖) the customized aggregation

functions (e.g., distinct_count, count_where) help to streamline

the required instructions (lower retirng); (𝑖𝑖) the lightweight join

operator (last join in Section 2.1) matches tuples on the index of the

data, avoids the duplication check (only one result tuple) and data

copy overhead, and can efficiently execute within limited memory

space (lower backend_bound).

8 CONCLUSION AND FUTUREWORK

Real-time feature extraction is an emerging trend and widely taken

as essential to enable AI applications in production. In this pa-

per, we first explained how to borrow the ideas in relational data

and SQL to conduct feature extraction for real-world applications.

Next, based on the over 100 collected real datasets, we proposed a

benchmarking architecture FEBench for real-time feature extrac-

tion, involving dataset collection, workload analysis, template gen-

eration, and system deployment. The preliminary results showed

that FEBench can effectively reflect the strengths and weaknesses

of both the general-purpose system (Flink) and specialized system

(OpenMLDB). More information could be found in our project site:

https://github.com/decis-bench/febench.

ACKNOWLEDGEMENTS

This paper was supported by 4Paradigm, NSFC(61925205, 62232009,

62102215), Huawei, TAL education, and Zhongguancun Laboratory.

3608

https://github.com/decis-bench/febench

REFERENCES
[1] https://archive.ics.uci.edu/ml/index.php. Last accessed on 2023-2.
[2] https://github.com/4paradigm/openmldb. Last accessed on 2023-2.
[3] https://github.com/akopytov/sysbench. Last accessed on 2023-2.
[4] https://github.com/alibaba/feathub. Last accessed on 2023-2.
[5] https://github.com/feathr-ai/feathr. Last accessed on 2023-2.
[6] https://kilthub.cmu.edu/. Last accessed on 2023-2.
[7] https://medium.com/engineering-varo/feature-store-challenges-and-

considerations-d1d59c070634. Last accessed on 2023-2.
[8] https://tianchi.aliyun.com/. Last accessed on 2023-2.
[9] https://www.irs.gov/pub/irs-prior/p3415ś2021.pdf. Last accessed on 2023-2.
[10] https://www.kaggle.com/competitions. Last accessed on 2023-2.
[11] https://www.tecton.ai/. Last accessed on 2023-2.
[12] https://www.tpc.org. Last accessed on 2023-2.
[13] https://www.tpc.org/tpcds/. Last accessed on 2023-2.
[14] https://www.tpc.org/tpch/. Last accessed on 2023-2.
[15] Forecast: The business value of artificial intelligence. In Gartner, 2018.
[16] R. Ahmed, A. W. Lee, A. Witkowski, D. Das, H. Su, M. Zaït, and T. Cruanes. Cost-

based query transformation in oracle. In Proc. VLDB Endow., pages 1026ś1036.
ACM, 2006.

[17] S. P. Anderson. Advertising on the internet. The Oxford handbook of the digital
economy, pages 355ś396, 2012.

[18] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. Linkbench:
a database benchmark based on the facebook social graph. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data, pages
1185ś1196, 2013.

[19] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems
survey. Knowledge-based systems, 46:109ś132, 2013.

[20] R. J. Bolton and D. J. Hand. Statistical fraud detection: A review. Statistical
science, 17(3):235ś255, 2002.

[21] J. Cai, J. Luo, S. Wang, and S. Yang. Feature selection in machine learning: A
new perspective. Neurocomputing, 300:70ś79, 2018.

[22] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas.
Apache flink: Stream and batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, 36(4), 2015.

[23] S. Charrington. Machine learning platforms.
[24] C. Chen, J. Yang, M. Lu, and et al. Optimizing in-memory database engine for

ai-powered on-line decision augmentation using persistent memory. Proceedings
of the VLDB Endowment, 14(5):799ś812, 2021.

[25] R. L. Cole, F. Funke, L. Giakoumakis, W. Guy, and et al. The mixed workload
ch-benchmark. In Proceedings of the Fourth International Workshop on Testing
Database Systems, DBTest 2011, Athens, Greece, June 13, 2011, page 8. ACM, 2011.

[26] E. R. DeLong, D.M. DeLong, andD. L. Clarke-Pearson. Comparing the areas under
two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics, pages 837ś845, 1988.

[27] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux. Oltp-bench: An
extensible testbed for benchmarking relational databases. Proc. VLDB Endow.,
7(4):277ś288, 2013.

[28] D. S. Evans. The online advertising industry: Economics, evolution, and privacy.
Journal of economic perspectives, 23(3):37ś60, 2009.

[29] J. Gray, editor. The Benchmark Handbook for Database and Transaction Systems
(1st Edition). Morgan Kaufmann, 1991.

[30] I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu, D. Jajetic,
B. Ray, M. Saeed, M. Sebag, et al. Analysis of the automl challenge series.
Automated Machine Learning, 177, 2019.

[31] M. A. Hall. Correlation-based feature selection for machine learning. PhD thesis,
The University of Waikato, 1999.

[32] M. A. Hall and L. A. Smith. Practical feature subset selection for machine learning.
1998.

[33] S. Hur and J. Kim. A survey on feature store. Electronics and Telecommunications
Trends, 36(2):65ś74, 2021.

[34] G. Kang, L. Wang, W. Gao, F. Tang, and J. Zhan. Olxpbench: Real-time, semanti-
cally consistent, and domain-specific are essential in benchmarking, designing,
and implementing htap systems. arXiv preprint arXiv:2203.16095, 2022.

[35] K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady. Dbscan: Past, present
and future. In The fifth international conference on the applications of digital
information and web technologies (ICADIWT 2014), pages 232ś238. IEEE, 2014.

[36] I. Kononenko. Machine learning for medical diagnosis: history, state of the art
and perspective. Artificial Intelligence in medicine, 23(1):89ś109, 2001.

[37] H. Lan, Z. data s, and Y. Peng. A survey on advancing the DBMS query optimizer:
Cardinality estimation, cost model, and plan enumeration. Data Sci. Eng., 6(1):86ś
101, 2021.

[38] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neumann. How
good are query optimizers, really? Proc. VLDB Endow., 9(3):204ś215, 2015.

[39] G. Li, X. Zhou, and L. Cao. AI meets database: AI4DB and DB4AI. In SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021, pages 2859ś2866. ACM, 2021.

[40] G. Li, X. Zhou, J. Sun, and et al. opengauss: An autonomous database system.
Proc. VLDB Endow., 14(12):3028ś3041, 2021.

[41] Y. Luo, M. Wang, H. Zhou, Q. Yao, W.-W. Tu, Y. Chen, W. Dai, and Q. Yang.
Autocross: Automatic feature crossing for tabular data in real-world applications.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1936ś1945, 2019.

[42] OpenJDK, 2013. https://openjdk.java.net/projects/code-tools/jmh/, Last accessed
on 2020-11-15.

[43] L. Orr, A. Sanyal, X. Ling, K. Goel, and M. Leszczynski. Managing ml pipelines:
feature stores and the coming wave of embedding ecosystems. arXiv preprint
arXiv:2108.05053, 2021.

[44] T. percentile. Tp-x. https://support.huaweicloud.com/intl/en-us/productdesc-
apm/apm_06_0002.html, 2019.

[45] V. Steinbiss, B.-H. Tran, and H. Ney. Improvements in beam search. In Third
international conference on spoken language processing, 1994.

[46] C. Sun, N. Azari, and C. Turakhia. Gallery: A machine learning model manage-
ment system at uber. In EDBT, pages 474ś485, 2020.

[47] J. Sun and G. Li. An end-to-end learning-based cost estimator. Proc. VLDB Endow.,
13(3):307ś319, 2019.

[48] Z. Sun, X. Zhou, and G. Li. Learned index: A comprehensive experimental
evaluation. Proc. VLDB Endow., 16(8):1992ś2004, 2023.

[49] Y. Tay. Data generation for application-specific benchmarking. Proceedings of
the VLDB Endowment, 4(12):1470ś1473, 2011.

[50] T. Tsai. Competitive landscape: Ai startups in china. In Technical Report.
[51] J. Wang, C. Chai, J. Liu, and G. Li. FACE: A normalizing flow based cardinality

estimator. VLDB, 15(1):72ś84, 2021.
[52] S. Wang. A comprehensive survey of data mining-based accounting-fraud de-

tection research. In 2010 International Conference on Intelligent Computation
Technology and Automation, volume 1, pages 50ś53. IEEE, 2010.

[53] Wikipedia. LLVM, 2019. [Online; accessed 02-July-2022].
[54] S. Wu, Y. Li, H. Zhu, J. Zhao, and G. Chen. Dynamic index construction with

deep reinforcement learning. Data Sci. Eng., 7(2):87ś101, 2022.
[55] A. Yasin. A top-downmethod for performance analysis and counters architecture.

In ISPASS, pages 35ś44. IEEE Computer Society, 2014.
[56] X. Yu, C. Chai, G. Li, and J. Liu. Cost-based or learning-based? A hybrid query

optimizer for query plan selection. Proc. VLDB Endow., 15(13):3924ś3936, 2022.
[57] S. Zeuch, B. D. Monte, J. Karimov, C. Lutz, M. Renz, J. Traub, S. Breß, T. Rabl, and

V. Markl. Analyzing efficient stream processing onmodern hardware. Proceedings
of the VLDB Endowment, 12(5):516ś530, 2019.

[58] S. Zhang, B. He, D. Dahlmeier, A. C. Zhou, and T. Heinze. Revisiting the design
of data stream processing systems on multi-core processors. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pages 659ś670, 2017.

[59] S. Zhang, J. He, A. C. Zhou, and B. He. Briskstream: Scaling data stream pro-
cessing on shared-memory multicore architectures. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD ’19, page 705ś722,
New York, NY, USA, 2019. Association for Computing Machinery.

[60] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial intelligence: A
survey. IEEE Trans. Knowl. Data Eng., 34(3):1096ś1116, 2022.

[61] X. Zhou, G. Li, C. Chai, and J. Feng. A learned query rewrite system using monte
carlo tree search. Proc. VLDB Endow., 15(1):46ś58, 2021.

[62] X. Zhou, G. Li, J. Wu, and et al. A learned query rewrite system. Proc. VLDB
Endow., 16(12), 2023.

3609

https://openjdk.java.net/projects/code-tools/jmh/
https://support.huaweicloud.com/intl/en-us/productdesc-apm/apm_06_0002.html
https://support.huaweicloud.com/intl/en-us/productdesc-apm/apm_06_0002.html

	Abstract
	1 INTRODUCTION
	2 Background And Related Work
	2.1 Feature Extraction Operators
	2.2 Existing Database Benchmarks

	3 Benchmark Overview
	3.1 Design Goals
	3.2 Benchmark Methodology Overview
	3.3 RTFE Query Generation
	3.4 Target Test Systems

	4 Dataset Collection
	5 Workload Analysis
	5.1 Observations

	6 Benchmark Generation
	6.1 Query Template Selection
	6.2 Query Template Analysis

	7 Evaluation of Different Systems
	7.1 Overview of FEBench Pipeline
	7.2 Experiment Setting
	7.3 Overall Performance Results
	7.4 Profiling Analysis

	8 CONCLUSION AND future work
	References

