FEBench: A Benchmark for Real-Time Relational Data Feature

Extraction
Xuanhe Zhou Cheng Chen Kunyi Li Bingsheng He
Tsinghua University 4Paradigm Inc. Tsinghua University National Univ. of Singapore
zhouxuan19@thu.edu.cn chencheng@4paradigm.com lkg19@thu.edu.cn hebs@comp.nus.edu.sg
Mian Lu Qiaosheng Liu Wei Huang Guoliang Li
4Paradigm Inc. 4Paradigm Inc. 4Paradigm Inc. Tsinghua University,
lumian@4paradigm.com liugs@4paradigm.com huangwei@4paradigm.com Zhongguancun Laboratory
liguoliang@tsinghua.edu.cn
Zhao Zheng Yugiang Chen
4Paradigm Inc. 4Paradigm Inc.

zhengzhao@4paradigm.com

ABSTRACT

As the use of online Al inference services rapidly expands in various
applications (e.g., fraud detection in banking, product recommen-
dation in e-commerce), real-time feature extraction (RTFE) systems
have been developed to compute the requested features from incom-
ing data tuples in ultra-low latency. Similar to relational databases,
these RTFE procedures can be expressed using SQL-like languages.
However, there is a lack of research on the workload characteristics
and specialized benchmarks for RTFE, especially in comparison
with existing database workloads and benchmarks (e.g., concurrent
transactions in TPC-C). In this paper, we study the RTFE work-
load characteristics using over one hundred real datasets from
open repositories (e.g. Kaggle, Tianchi, UCI ML, KiltHub) and those
from 4Paradigm. The study highlights the significant differences
between RTFE workloads and existing database benchmarks in
terms of application scenarios, operator distributions, and query
structures. Based on these findings, we propose to develop a real-
time feature extraction benchmark named FEBench based on the
four important criteria for a domain-specific benchmark proposed
by Jim Gray. FEBench consists of selected representative datasets,
query templates, and an online request simulator. We use FEBench
to evaluate the effectiveness of feature extraction systems including
OpenMLDB and Flink and find that each system exhibits distinct
advantages and limitations in terms of overall latency, tail latency,
and concurrency performance.

PVLDB Reference Format:

Xuanhe Zhou, Cheng Chen, Kunyi Li, Bingsheng He, Mian Lu, Qiaosheng
Liu, Wei Huang, Guoliang Li, Zhao Zheng, and Yugiang Chen. FEBench: A
Benchmark for Real-Time Relational Data Feature Extraction. PVLDB,
16(12): 3597 - 3609, 2023.

doi:10.14778/3611540.3611550

Xuanhe Zhou and Cheng Chen contributed equally to the paper.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
do0i:10.14778/3611540.3611550

3597

chenyuqiang@4paradigm.com

Historical Transactions

S Card No. |Amount| TimeStamp
012112 | 223 |2022/01112 06:10:00 | wingwws
012159 | 15 |20220011120630:00| |
New Transaction 012159 | 1000 |2022/01/1207:59:56 |
1 :50:
Card No. | Amount | TimeStamp 012159 | 2000 |2022/01/1207:59:57 | 4o
______ = jmm——m— =
1 1
012159 1000 | 2022/01/12 08:00:00 => | 012159 | 1000 4 2022/01/12 08:00:00 |
7 Basic Real-Time
« > Features Feature Extraction
v Feature Vector
Max/Min/Avg/Top2 of ions M: fin/Avg/Top2 of Tr jons
G e, | Ame over th; last 10 seconds over t71e last 3 hours
012159 1000 | 2000 | 1000 | 1333 | [2000, 1000] | 2000 | 15| 1003 | [2000, 1000]

Figure 1: An example of real-time feature extraction.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/decis-bench/febench.

1 INTRODUCTION

Online AT applications are rapidly gaining popularity and are ex-
pected to dominate the Al market in the near future (e.g., account-
ing for 44% of the AI market share by 2030 [15, 47, 51, 56]). As
a crucial component of Al applications, real-time feature extrac-
tion (RTFE) aims to timely compute features over the incoming
new data tuples. These features play an important role in produc-
ing high-quality prediction, often referred to as the “fuel for AI
systems” [21, 31, 32, 50, 60]. However, with the rise of advanced
machine learning techniques (e.g., deep learning) and the increas-
ing complexity of Al-driven businesses, the number of features
that must be computed in real-time has significantly increased (e.g.,
over 600 features for fraud detection [20, 52], over 100 features
for online recommendation [17, 19, 28], over 400 features for sales
prediction [36, 37, 40, 54]). RTFE often accounts for a huge propor-
tion of execution time of the online machine learning pipeline (e.g.,
taking 70% time in the sales prediction service of an online car pur-
chase platform according to the practical experience in 4Paradigm?).
To provide a better understanding, we present a few examples of
typical RTFE applications.

!github.com/decis-bench/febench/tree/main/report (last checked on 2023-2)

https://doi.org/10.14778/3611540.3611550
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611550
https://github.com/decis-bench/febench
https://www.acm.org/publications/policies/artifact-review-and-badging-current

ExAMPLE 1 (FRAUD DETECTION). For the banking industry, it is
crucial to identify fraudulent activities (such as multi-location with-
drawals) in real time, so as to avoid serious financial loss (e.g., the
IRS reported a loss of $2.2 billion in a single year [9]). As shown in
Figure 1, for a new transaction, if the average transaction amount
within 10 seconds (one real-time feature) is much larger than that
within the last 3 hours, it may indicate a potential fraud event. In
addition to average values, 8 aggregation features (including a cus-
tomized operator “Top 2”) are computed over the two time windows
to provide a more informative feature vector. This real-time feature
extraction process helps to quickly identify suspicious transactions
and minimize the potential financial loss.

ExAMPLE 2 (ONLINE ADVERTISING). In companies like Criteo, it
is essential to dynamically optimize the placement of advertisers’
contents for each internet user (e.g., conducting 950 billion daily op-
timizations, each of which taking place within 50ms). To reach this
goal, it is challenging to rapidly update the features (for tasks like
clicking probability forecasting of each advertisement) based on a
large number of data sources (e.g., historical browsing records, users
with similar browsing records) and current user actions (e.g., most
recent browsing records). The real-time feature update process helps
to deliver fast responses to assist advertisers reach more users.

ExXAMPLE 3 (SALES PREDICTION). In retail companies like Wal-
mart, accurate prediction of product sales and recommendations to
customers are crucial. In this scenario, real-time feature extraction is
needed to compute both short-term (e.g., last one hour) and long-term
(e.g., last three months) features of user activities, to better under-
stand their purchasing habits and help retailers prepare their products
accordingly. Additionally, online sales (e-commerce) require the anal-
ysis of different users’ preferences based on search (not available in
offline sales) and purchase records (e.g., most clicked products in the
past 5 minutes, products with the most coupons right now). This is a
challenging task, especially when dealing with high-concurrency user
requests with ultra-low latency.

From above examples, we find that real-time feature extraction
is a complex and challenging task that requires (i) the storage of a
large volume of incoming data (e.g., for aggregation features) and
(ii) the execution of complex operations over multiple varying-
length windows and (iii) the ability to handle high-concurrency
query requests. Our research finds that similar applications exist in
both the commercial customers and open-source community part-
ners of 4Paradigm (e.g., Intel, 37GAMES, Akulaku, and JD.com)z,

These challenges and applications have prompted the develop-
ment of real-time feature extraction systems or components in
various projects (e.g., Flink [22], Feathr [5], FeatHub [4], and Open-
MLDB [2]). These efforts can be broadly categorized into two types
of system designs. (1) General-purpose stream processing systems
(e.g., Flink): Many companies have attempted to construct their
feature extraction systems on top of general-purpose systems like
Flink. These systems possess both batch and stream processing
capabilities, making them suitable for RTFE. (2) Specialized sys-
tems for feature extraction (e.g., OpenMLDB and Tecton): There are
two types of industrial-strength systems designed specifically for

2github.com/4paradigm/OpenMLDB/discussions/707 (last checked on 2023-2)

3598

feature extraction [33, 43, 46]. The first type focuses on serving on-
line features that have been pre-computed during the offline stage.
However, it may not be able to produce real-time features with low
latency. The second type aims to update real-time features in online
stage, ensuring the accuracy of the Al systems. For instance, in a
fraud detection scenario, features like “whether the user’s credit
card is locked” must be updated in real-time and cannot rely on
offline batch processing that has long latency.

Similar to relational databases, a common characteristic of these
system designs is that the RTFE procedures can be expressed using
SQL like languages, allowing data scientists to focus on describing
their feature requirements. A natural question is: are RTFE work-
loads different to existing database workloads? On the other hand,
although RTFE is increasingly viewed as essential for deploying Al
models in production, there is currently no research on the work-
load characteristics and benchmarks for RTFE, and especially the
comparison with existing database workloads and benchmarks.

In order to answer the above question, this presents three main
challenges. @ A benchmark should be rooted from real RTFE work-
loads. Due to the massive number of valuable real datasets available
online, it is laborious to obtain the required datasets (e.g., tabular
data with timestamps) and generate the RTFE queries based on
the data and task characteristics (C1). ® It is a non-trivial task to
design the benchmark to satisfy the four criteria proposed by Jim
Gray [29], which can be contradictory (e.g., adopting more queries
may enhance the effectiveness, but negatively affect the benchmark
simplicity) (C2). ® It is crucial to deploy the benchmark in both
general-purpose and specialized systems and gain insights into the
system designs with the benchmark (C3).

In this paper, we propose a real-time feature extraction (RTFE)
benchmark, called FEBench, based on our experience in provid-
ing Al solutions for customers from various sectors (including 75
companies in the Fortune Global 500).

What are the key distinctions between RTFE workloads and
existing database benchmarks? We analyze the key differences
between collected RTFE workloads (i.e., over 100 suitable datasets
extracted from over 1000 public machine learning tasks) and ex-
isting database benchmarks (e.g., transactional [3, 12], analyti-
cal [14, 38], and hybrid [13, 25] benchmarks) in consideration of the
data distribution, task types, and query operators and structures
(§Section 4, 5).

How can we design an effective and efficient benchmark for
real-time feature extraction? We collaborate with industry part-
ners to build a real-time feature extraction benchmark (FEBench).
This benchmark consists of selected datasets, query templates, and
an online request simulator. We ensured that FEBench meets the
four important criteria for a domain-specific benchmark proposed
by Jim Gray (§Section 3 6).

How do we utilize FEBench to compare different existing so-
lutions? We offer a testbed with reusable components (e.g., data
loader, workload simulator, performance monitor) to facilitate re-
searchers to develop RTFE systems with lower overhead on eval-
uation and implementation. We use FEBench to investigate the
effectiveness of feature extraction systems and the preliminary
results show all the tested systems have their own problems in

different aspects, e.g., (i) performance differences can arise due to
different implementation techniques: OpenMLDB (a specialized sys-
tem) runs in assembler code and is significantly faster than Flink (a
general-purpose system) that runs in JVM; (ii) the long tail problem
is more severe in OpenMLDB, which performs poorly in extreme
cases (such as the 99th percentile) due to inefficient log writing; and
(iii) the number of parallel threads has a more significant impact
on OpenMLDB than Flink. Our findings reveal that more work is
required to improve future feature extraction systems (§Section 7).

2 BACKGROUND AND RELATED WORK

In this section, we first introduce the feature extraction operators
in SQL expressions, and then discuss why existing database bench-
marks cannot be used to evaluate feature extraction systems.

2.1 Feature Extraction Operators

As mentioned in Introduction, the RTFE procedures can be ex-
pressed using SQL like languages. As shown in Figure 2, a simpli-
fied RTFE query for Example 1 (fraud detection) consists of three
subqueries. The first subquery employs a single-table window op-
erator to extract the basic profiling information, such as the user’s
credit and highest monthly balances. The second subquery per-
forms a customized join operator to efficiently extract information
from one or multiple tables ordered by timestamps, like the trans-
action amounts from the transaction table. The third subquery uses
multi-table window operators to calculate temporal features from
two time windows (10s and 100s) of the POS_CASH_balance table.
Note the example queries in this paper follow the SQL standards of
OpenMLDB. Other systems like Flink have similar SQL grammars.
To achieve the aforementioned procedures, various RTFE opera-
tors corresponding to distinct real-time features are available. Here
we showcase five main categories of operator patterns.
(1) Table Joins (basic information). Join operators are used to link
tuples of multiple data streams that share common columns. Differ-
ent from database joins, to reduce the need for a large intermediate
joined table and the costly tuple sorting associated with it (which
can slow down online execution), operators like last join match the
tuples in the left stream with the latest matched tuple in the right
stream (pre-ordered by the timestamp column).
Examgple. In Figure 2, the “information” table is joined with the
“transaction” table to obtain features like the historical transaction
amount of a user who just completed the latest transaction, where
a sudden increase in the amount may indicate fraudulent activity.

SELECT ‘information’. ‘reqld’ as reqld_3,
‘transaction’. ‘amount’ as transactionValue

FROM ‘information’ LAST JOIN
‘transaction’ ORDER BY ‘transaction’. ‘eventTime’
on ‘information’. ‘reqld’ = ‘transaction’. ‘reqld’

(2) Single-Table Windows (recent activities from single source). Dur-
ing feature extraction, the time window is a common operator that
splits a data stream into buckets of finite sizes (which can be split
by different columns), ranks the tuples within each bucket, and per-
forms various aggregations over these buckets. Unlike traditional
stream operators, RTFE often concatenates computed features from

3599

SELECT * FROM
(SELECT ‘reqld’,
‘AMT_CREDIT’,
top_n_frequency((MONTHS_BALANCE, 3),
avg(‘amount’) OVER information_0s_3h_100,
avg(‘amount’) OVER information_0s_10s_100, ...
FROM ‘information’
WINDOW information_0s_3h_100 AS (
PARTITION BY ‘NAME’
ORDER BY ‘eventTime’ between 3h
preceding and Os preceding MAXSIZE 100),
information_0s_10s_100 AS (
PARTITION BY ‘NAME’
ORDER BY ‘eventTime’ between 10s
preceding and Os preceding MAXSIZE 100)) AS outO
LAST JOIN
(SELECT “information’.reqld’,
‘transaction’.’amount’, ...
FROM
‘information’
LAST JOIN ‘transaction” ORDER BY ‘transaction’.’eventTime’

ON ‘information’.'reqld’ = ‘transaction’.'reqld”) AS out1
ON out0.reqld_1 = out1.reqld_3
LAST JOIN

(SELECT ‘SK_ID_CURR’,
distinct_count(’MONTHS_BALANCE’) OVER balance_0_10, ...
FROM (SELECT ‘reqld’ AS ‘SK_ID_CURR’ FROM ‘information’)
WINDOW balance_0_100 AS (
UNION ‘POS_CASH_balance’
PARTITION BY ‘ID_CURR’
ORDER BY ‘ingestionTime’ between 100s
preceding and Os),
balance_0_10 AS (
UNION ‘POS_CASH_balance’
PARTITION BY ‘ID_CURR’
ORDER BY ‘ingestionTime’ between 10s
preceding and 0Os)) AS out2
ON outO.reqld_1 = out2.reqld_4;

Figure 2: Feature Extraction Query (for Fraud Detection)

multiple parts of the same table with different window sizes in order
to offer features in different time spans.

Example. In Figure 2, the average amount features are derived from
two windows of the “transaction” table (split by the user name), i.e.,
“the average amount within 10 seconds” and “the average amount
within 3 hours” of the user. This can be expressed as:

SELECT AVERAGE (amount_transaction_10s),
AVERAGE (amount_transaction_3h),

FROM ‘transaction’

WINDOW transaction_3h as (PARTITION BY ‘NAME’

3h and 0s preceding MAXSIZE 200),
transaction_10s as (PARTITION BY ‘NAME’

10s and @s preceding MAXSIZE 200)

(3) Multi-Table Windows (recent activities from multiple sources).
Similar to traditional joins, multi-table windows enable time win-
dows from different data tables that share common columns (e.g., 8
common columns in the “information” and “POS_CASH_balance”
tables). By matching an incoming data tuple with these tables, we
can compute the time windows in each table, and concatenate the
output window features so as to enrich the feature vector.
Example. In Figure 2, the “information” and “POS_CASH_balance”
tables both contain the “reqld” column, while the
“POS_CASH_balance” table contains more profiling infor-
mation (e.g., credit-card balance, instalment amount). When a new
tuple is inserted into the “information” table, we can match the two
tables in time windows (i.e., within last 100 tuples) with the new
tuple and leverage the output features (on the matched tuples) to
enrich online inference information. Note the multi-table window
operator is not limited to OpenMLDB, as similar capabilities can be
realized in other systems like point-in-time joins in Tecton.

SELECT ‘reqId’,

avg (‘CNT_INSTALMENT’) over POS_CASH_balance_0_100,
FROM (SELECT ‘reqld’ FROM ‘information’)

WINDOW POS_CASH_balance_0_100 as (UNION
‘POS_CASH_balance’ PARTITION BY ‘ID_CURR’ ORDER BY
‘ingestionTime’ rows between 100 preceding and 0)

(4) Table Aggregations. Table aggregations are important in gen-

erating non-linear features from columns within a table window.
Basic aggregation functions (such as min, max, average) are com-
monly used, but customized functions for feature extraction such as
top_n_frequency and distinct_count are also useful. For feature ex-
traction, there are five major categories of aggregation functions:
e Transformation Features are used to convert attribute columns
in data sources into the required formats. This can include opera-
tors like (i) using the dayofweek function to obtain the day of the
week in a timestamp and (ii) using the degrees function to convert
radians to degrees. By using transformation features, it is possible
to manipulate the data to ensure that it is in the appropriate format
for further analysis.

o Accumulated Features are used to obtain accumulated statistics
over a period of time. One common way to get accumulated features
is by using basic window+count operators, such as calculating the
total purchase frequencies of products over the last month. This
type of feature is useful for understanding trends and patterns over
time, such as changes in consumer behavior or product popularity.
o Preference Features are used to determine the existence and
occurrence frequencies of specific items during a period of time.
Operators like window+count_ratio can be used to achieve this,
providing insights into the most frequently occurring activities or
items in a given time period. For example, this technique can be
used to determine the most frequently purchased products over the
last month. By using preference features, it is possible to identify
patterns in the data that can be used to guide decision-making and
inform future actions.

® Recent Status Features are used to reveal changes or distinct
values within a recent time period. They can achieve this in two
ways: (i) Compute the difference of features in recent tuples with

3Check detailed features in github.com/decis-bench/febench/tree/main/features

3600

Feature Enumerator |

Feature Set
Evaluation

Relation Selected

Graph | Features
data Table Relation ; SQL
o] | e | T) | coter
[Main Table - Feature Set ;
Secondary Tab/és } Generation

Figure 3: The workflow of RTFE query generation

Table 1: Relationships (with the main table) and the mapped
operators. Events indicate recent activities; Status denotes
long-term properties.

Secondary Table Relationship
one-to-one

one-to-many

Operator Pattern
last join

aggregation + left join
aggregation (events)
last join

aggregation (status)

static/attribute table

appendable table one-to-many

one-to-one

snapshot table
one-to-many

slightly earlier tuples (e.g., last time cycle); (ii) Compute the distinct
values within recent tuples (e.g., max/min/sum values of different
item families). By using recent status features, it is possible to
better understand the current state of the data and make informed
decisions based on these insights.

o Trend Features are used to reflect the trends in the near
future. This can be achieved by using operators like win-
dow+standard_deviation to compute the occurring distributions
of relevant items, such as the average sales in the last week. Trend
features reveal periodic changes in the data and generally involve
longer time spans than recent staus features. By using trend features,
we could better understand the long-term trends and changes in
the data, allowing for more accurate forecasting and prediction.
(5) Constraints. Efficient real-time feature extraction requires avoid-
ing an excessive number of tuples within the time windows, as this
may slow down the process. For example, the constraint “maxsize”
can be used to limit the number of tuples included within the win-
dows. By appropriately setting constraints, it is possible to balance
(i) the need for computing effective features and (ii) maintaining
the efficiency and responsiveness of the feature extraction process.

2.2 Existing Database Benchmarks

System benchmarking is a highly active area of both research and
industry communities [18, 48, 49]. Most standard benchmarks are
derived from real data and typical queries, including transactional
benchmarks [3, 12], analytical benchmarks [14, 38], and hybrid
transactional/analytical benchmarks [13, 25, 34].

2.2.1 Transactional Benchmarks. Online transaction processing
(OLTP) benchmarks evaluate the ability to maintain business data
and process high-concurrency transactions, which generally in-
volve a limited number of tuples.

Scenarios. The scenarios of OLTP benchmarks involve two critical
aspects. First, since the data stored in OLTP systems is generally
critical to the business, it is vital to ensure the atomicity, consistency,
isolation and durability (ACID) of the data. Second, OLTP systems
must efficiently handle high-concurrency transactions with short
response time (e.g., within milliseconds).

Example. TPC-C [12] simulates a real transactional scenario, where
a company (with multiple warehouses and sales districts) processes

data

sources 100+ RTFE
iy Dataset Workloads Workload
| Collection Analysis
new Operator
systems | requirements 6 Query Patterns
Templates
F:/,',-,k i System ‘ Template
Tecton i Deployment Generation
OpenMLDB

Figure 4: The workflow of FEBench generation.

client orders. TPC-C provides a write-heavy workload, which con-
tains 92% write operators over 9 tables under default settings [27].
TPC-C tables can be scaled to different sizes, indexed based on
the number of configured warehouses. The benchmark metric is
throughput (e.g., tpmC), which reflects the efficiency of processing
concurrent simple operators. Thus, in TPC-C, the operator patterns
are relatively simple (e.g., with single table access and no unions of

multiple tables).
2.2.2° Analytical Benchmarks. Online analytical (OLAP) bench-

marks evaluate the performance of complex data analysis tasks.
Scenarios. Different from OLTP systems, OLAP systems aim to
efficiently process large-scale table scans, aggregations, data joins
from multiple tables, and perform multi-dimensional operators (e.g.,
with up to three level subqueries) [16, 39, 61, 62].

Example. TPC-H [14] simulates a real scenario, where a whole-
sale supplier delivers goods worldwide. The workload contains 22
business queries, each of which performs complex data operators
(e.g., joins, subqueries). TPC-H does not consider write operators,
and the dataset size remains constant during workload execution.
The benchmark metrics include both throughput (e.g., QphH) and
total execution latency. Besides, TPC-DS is a more complex OLAP
benchmark than TPC-H, with 99 queries that include operators like
table unions that do not exist in TPC-H queries. However, these
OLAP benchmarks only test batch processing capacity over global
data, and also do not consider online evaluation over data streams.

2.2.3 HTAP Benchmarks. Hybrid transactional/analytical process-
ing (HTAP) benchmarks aim to efficiently support both operational
workloads (e.g., small transactions with high update ratios) and
analytical workloads (e.g., with complex access patterns) within
the same system.
Scenarios. First, HTAP systems perform real-time data analytics
between online transactions. Second, they need to prevent the
interference of analytical queries over the dynamically-changing
data tables.
Example. CH-benCHmark [25] provides a mixed workload based
on TPC-C and TPC-H benchmarks. It enables separate serving
of transactional and analytical queries by two types of clients. It
merges the two table schemas into a single one to allow analytical
queries to access transaction tables. However, for feature extraction,
HTAP benchmarks face the similar challenges of OLAP benchmarks,
such as the lack of support for time-series data and the need of
executing analytical queries for relatively long time (in batch mode).
In summary, existing database benchmarks fail to (i) simulate
RTFE scenarios (e.g., stream processing for feature extractions) or
(ii) support complex operator patterns over time windows or (iii)
conduct evaluations in online mode. RTFE systems require a new
benchmark to evaluate real-time complex analytics over data streams.

3601

3 BENCHMARK OVERVIEW

3.1 Design Goals

We design the feature extraction benchmark by following the 4
benchmark design criteria proposed by Jim Gray [29].

Relevance. The benchmark covers a wide range of feature extrac-
tion behaviors, including different operator complexities. We have
collected over 100 real feature extraction workloads from various
sources, including 45 Kaggle datasets [10], 11 Tianchi datasets [8], 8
KiltHub datasets [6], 28 UCI ML datasets [1], and 26 applications in
4Paradigm. These datasets cover the major feature extraction opera-
tors (Section 2.1) and scenarios that heavily rely on real-time feature
extraction, such as ride prediction, healthcare, energy consumption,
sales prediction, and fraud detection.

Simplicity. The benchmark is designed to eliminate redundant
tests and be easily understandable. First, we apply clustering tech-
niques to the collected RTFE workloads and only use a small part as
query templates, which represent typical RTFE operator patterns
and reduce redundant tests on similar workloads. Besides, for each
query template, we separately describe the data distributions, query
semantics, and operator patterns for ease of understanding.

Portability. The benchmark is applicable to different feature extrac-
tion systems that support SQL-like language. The query templates
are written in SQL expressions. With minor modifications (e.g.,
replacing the customized functions with the combinations of basic
operators), these query templates can be easily migrated to a new
feature extraction system.

Scalability. The benchmark includes real datasets of different data
sizes and distributions, allowing it to simulate various incoming
data sizes and changing patterns (Figure 8).

3.2 Benchmark Methodology Overview

Based on the design goals, we build the benchmark in a workflow
of four steps (see Figure 4). Firstly, we extract suitable workloads
from a variety of public and industry-grade data sources. Secondly,
we compare the collected workloads with other benchmarks, high-
lighting the unique characteristics of the RTFE workloads. Thirdly,
based on the four benchmark criteria from Jim Gray, we cluster
origin queries and select six representative query templates. Finally,
we explain how to implement the benchmark on feature extraction
systems and evaluate their performance from different perspectives.

Dataset Collection. This module includes two parts. First, we
search for datasets in various public Al repositories to cover as
many Al applications as possible. We collect datasets that meet
the RTFE settings, such as (i) being in tabular data format and (ii)
having at least one timestamp column and (iii) being large enough
to support minutes of tests. Besides, we obtain real datasets from
4Paradigm [24]. For each collected dataset, we synthesize the RTFE
query using our automatic query generation tool (Section 3.3).

Workload Analysis. We compare the collected datasets and
queries with existing database benchmarks. We analyze the data
distributions (e.g., table schema, incoming data patterns) and query
structural differences (e.g., the types/numbers/patterns of supported
operators). Using this analysis, we summarize the major data/query
characteristics in real-time feature extraction.

Table 2: Histogram information of the 118 datasets. - S — _
Offline Data wp | Offine - Offline Feature
Tables 1 [2 [3 [a 5 |6 718 10 Import Storage EX"E;C“O”
#Dataset 29 110 | 13 | 21 13 | 22 315 2 - - - .
Offline-Online Consistency ‘
DataSize | 0-10GB | 10-20GB | 20-50GB | 50-100GB | >100GB I
#Dataset | 62 26 15 9 6 Online Data W,-ndow
Import Online Data Deployment
. Storage :> | query request
Template Generation. To ensure the simplicity and effective- Data Streams m
ness of the benchmark, we cluster the RTFE queries into templates Feature Extraction | - atures

that combine queries with similar operator patterns and scenario
requirements. First, we utilize logistic regression to rank the impor-
tance of different query features (e.g., the nested level, the operator
number) based on their impact on execution latency, and assign
each feature a weight. Then, we apply DBSCAN [35] to divide
the origin queries into clusters based on these weighted features.
Note that, to balance between the benchmark simplicity and effec-
tiveness, we tune the DBSCAN parameters (e.g., eps controls the
minimal distance of queries within the same cluster, min_samples
controls the minimal queries in the same cluster) and try to pick
queries that come from different scenarios around the centroid of
each cluster to better cover diversified RTFE cases.

Deployment on Target Systems. After selecting the workloads
(i.e., query templates and real datasets), we implement them on ap-
propriate systems, such as general-purpose systems like Flink [22]
and specialized systems like OpenMLDB [2, 24]. More details can
be found in Section 3.4. Under the same benchmarking environ-
ment, we test the performance of these systems with the selected
workloads and obtain some interesting findings (e.g., the trade-off
between execution efficiency and system compatibility) by profiling
the execution results in finer granularity.

3.3 RTFE Query Generation

Next we introduce how to generate the RTFE queries. In practice, it
is laborious and time-consuming for data scientists to sample and
try out different feature combinations. To simplify the process, we
utilize the industry-grade automated machine learning (AutoML)
technique, which can express RTFE in SQLs for ease of building Al
models [30, 41]. This tool has been implemented in 4Paradigm’s
commercial product* and served in many real-world scenarios (such
as Industrial and Commercial Bank, UnionPay).

In this work, the data scientists at 4Paradigm have verified the
validity and effectiveness of generated queries for our collected
datasets. Given an Al task and source data, the selection of features
and generation of RTFE queries involve four steps (Figure 3):
Step 1 (initialization): We first identify the main table (storing the
stream data) and secondary tables (e.g., static/appendable/snapshot
tables) in the dataset. Next, we enumerate the one-to-one/one-
to-many relations (corresponding to different RTFE operators) of
columns within the main table and secondary tables, like columns
with similar names or key relations.

Step 2 (table relation calculator): Next we map the column rela-
tions to RTFE operators. As shown in Table 1, for a secondary table,
if it has the one-to-one relationship with the main table (e.g., user
profiling information), we directly join the secondary table with
incoming tuples in the main table and retrieve the whole or a partial

“4https://en.4paradigm.com/product/hypercycle_mlhtml (last checked on 2023-2)

3602

Figure 5: The general architecture of RTFE systems.

set of join results; and if they are of one-to-many relationship (e.g.,
historical transactions of a user), we first join the secondary and
main tables and then perform aggregations on the join results. The
adopted aggregation functions depend on the secondary table type
(e.g., count operator for static tables, groupby_count operator for
appendable tables). Each mapped operator pattern corresponds to
a candidate feature (represented by an output column).

Step 3 (feature enumerator): After extracting all the candidate
features, we utilize beam search [45] to iteratively generate effective
feature sets. That is, we first initialize a root node (level 0) denoting
the basic features in origin tables. Next, in each iteration, we select
one most promising node N to expand nodes of next level (e.g.,
adding a candidate feature to the feature set of N) based on metrics
like AUC (measuring the model inference accuracy with the updated
feature set [26]) and selection frequency (the occurrence numbers
of different columns). This iterative procedure is terminated once a
specified condition (e.g., the maximum iteration time) is met and
the feature set of the best leaf node is chosen.

Step 4 (SQL converter): Finally, the selected features are converted
into a semantically equivalent SQL query, which needs to integrate
into the feature extraction system before evaluation (e.g., the “DE-
PLOY” command in OpenMLDB). Note for a new feature extraction
system, the SQL converter can be easily adapted provided the SQL
grammar of this system is known.

3.4 Target Test Systems

Real-time feature extraction refers to on-demand RTFE query ex-
ecution and request response in online stage. Although there are
various products that support feature extraction (e.g., Michelangelo
in Uber [43], Zipline in Airbnb [23], Feathr in Microsoft [5], Tec-
ton [11], OpenMLDB in 4Paradigm [2]), some systems pre-compute
the feature values in offline and store in caching for online requests,
which is not in the scope of this paper. As shown in Figure 5, a
RTFE system typically has three main modules:

(1) Online feature extraction is essential for real-time processing
of incoming stream data into features that enable timely model
inferences. The online storage is mostly memory-based, containing
only the latest feature values to model the current state of the world.
Online stores support multiple copies of table data to ensure high
availability. With the RTFE query deployed in advance (Section 3.3),
the systems use an optimized query engine to process online re-
quests. Different from traditional stream systems, the query engine
enhances the procedure through various optimization designs, such
as supporting (i) data structures like double-layered skiplist to op-
timize window operators by sorting tuples based on both the key
column and time ranges [24] and (ii) overlapped window reuse

that helps to enhance data requests over multiple windows [21]
(see the example query plan in Figure 14).

(2) Offline feature extraction is commonly used to persist feature
data over extended periods (often months or years), and conduct
batch model training with these data. The feature data is usually
stored in data warehouses or data lakes. Offline feature extraction
shares the same feature extraction query as the online module.
(3) Offline-and-online consistency. Machine learning models require
a consistent view of features across development (offline batch
training) and production (online inference). Subtle differences in
the features can cause significant changes in the inference outcome.
For example, Varo, an online bank from the US, discovered that
inconsistent execution definitions of "account balance" between
offline and online stages cause significant model quality degradation
at production [7]. They use the account balance from yesterday
at offline and the current account balance at online, which caused
inconsistency. Therefore, maintaining a consistent view of feature
definitions across offline and online feature extraction is essential
for an industry-grade RTFE system.

4 DATASET COLLECTION

In this section, we explain how to collect and prepare the RTFE
datasets together with the feature extraction queries.

Finding 1. The selected 118 datasets cover 5 common feature
extraction scenarios, comprising relational data with various
timestamp distribution (e.g., cycles, sudden bursts). In these
datasets, the number of tables is within [1,10], and the data
sizes span from 2MB to 10TB (Table 2).

We spent over 2 person years to comprehensively analyze vari-
ous machine learning tasks from multiple popular open data sources
(e.g., Kaggle [10], Tianchi [8], UCI ML [1], KiltHub [6]). For example,
Kaggleis one of the largest online communities of data scientists and
ML practitioners, with 579 competitions that provide real decision-
making tasks and datasets (last checked on February 14, 2023). For
real-time feature extraction, any selected dataset must meet the
following requirements:

(1) Relational data: Most online decision-making tasks store data
in tabular format, where each tuple represents an instance and each
column corresponds to a basic feature;

(2) Timestamp column: Real-time feature extraction requires the
updating of computed features by the most recent data. Thus, any
selected dataset must contain a “timestamp” column that simulates
the various incoming data distributions in real online scenarios
(e.g., periodic cycles for the flu forecast task in Figure 8 (b), random
bursts for the loan payment task in Figure 8 (e));

(3) Data scales: We need the dataset that includes at least one table
with timestamps (usually the main table) and contains over 1 x 10°
tuples. This allows us to simulate the real-world data incoming
scenarios and test the performance for minutes. Note, similar to
other benchmarks like TPC-C and Sysbench, we only insert tuples
by the order of their timestamps during evaluation.

Based on these requirements, we have collected a total of 118
datasets, including 26 internal datasets from 4Paradigm, 45 Kaggle
datasets, 11 Tianchi datasets, 8 KiltHub datasets, and 28 UCI ML
datasets. For example, from the over 500 Kaggle competitions, we

3603

first exclude non-tabular datasets and examine each tabular dataset
to ensure it has a “timestamp” column and meet our data distri-
bution criteria (e.g., the average interval between two tuples is
no longer than 1 minute). This yields 45 potentially useful Kaggle
datasets for real-time feature extraction. For each collected dataset,
we generate the feature extraction query (see Section 3.3).

These RTFE datasets have three characteristics. First, the collected
datasets cover a wide range of data distributions. As shown in Table 2,
the number of tables ranges from 1 to 10, and the dataset sizes span
from 1MB to 10TB. Second, the operator patterns in RTFE queries
are affected by the datasets. For example, for datasets with a single
table (typically used for model training), their RTFE queries involve
multi-table windows (of different sizes) over the same tables; for
datasets with multiple tables (e.g., 2-6 tables), their queries may
contain tricky subqueries of dozens of levels (e.g., joining multiple
tables as the intermediate results). Third, the sizes of most datasets
are no larger than 50GB, because (i) RTFE qeuries are generally
executed over most recent data (full data is stored in HDFS for
batch training) and (ii) only the data tuples within time windows
are required. Note we also have relatively large datasets (e.g., over
10TB), whose RTFE queries do not involve windows but join the
incoming tuple with full static tables.

5 WORKLOAD ANALYSIS

We demonstrate the analysis of the unique workload characteristics
of RTFE in comparison with typical database benchmarks.

5.1 Observations

Based on the discussion in Section 2.2, we further analyze the
detailed operator distributions of RTFE workloads (FEBench) with
transaction (TPC-C), analytic (TPC-DS, TPC-H, JOB), and hybrid
workloads. The results are shown in Figure 6.

Finding 2. Among the 118 queries, they support 15 typical op-
erators and various customized aggregations. Compared with
transactional/analytical queries, most of the RTFE queries in-
volve much more complex query structures over time windows.

RTEFE Operators vs Transactional Operators. First, both RTFE
and OLTP workloads support high-concurrency queries. However,
OLTP supports data update (e.g., 28.0% update queries), while RTFE
only supports appending data to the end of data streams. Second,
OLTP only involves simple queries (e.g., single table scans), while
RTEFE contains queries with complex operators, and needs to pro-
cess these operators in time windows. Third, OLTP systems stress
the ACID characteristics and are generally disk-based, while RTFE
systems focus on the high efficiency of processing complex opera-
tors and adopt in-memory architectures.

RTFE Operators vs Analytical Operators. As shown in Figure 6,
RTFE queries cover a much larger range of operator space than
OLAP queries. To quantify, the highest number of toal operators
and aggregations observed in a query is (477, 38) for TPC-H, (883,
73) for TPC-DS, (4969, 233) for RTFE. Besides, most RTFE queries
have distinct operator distributions from TPC-H/TPC-DS queries.
For example, RTFE queries own over six hundred of aggregations
while TPC-DS queries have 40 aggregations at most, and many
of the RTFE aggregations do not exist in TPC-DS queries (e.g.,

Table 3: Operator Comparison. The operators with underlines do not exist in TPC-DS and TPC-H.

TPC-H HTAP

Top 10 most frequently used operators
FEBench | last join; average; max; distinct count; top ratio; min; order by, (window) union; partition by, group by
TPC-DS | sum; case ...; count; distinct; with ... as; order by; left join; limit; group by; or
TPC-H group by; order by; count; left join; average; case ...; having; with ... as; exists; min
151 15 ‘ 200 15 T
10{ 10 ! s 10
B T 8 100{ pom e i
51 5 e B
B m_ e L , | [-
ol p - = -2 0 - L —< = . ol — - ——— o~ . — o] — - — —_
febench fe-all TPC-DS JOB TPC-H HTAP febench fe-all TPC-DS JOB TPC-H HTAP febench fe-all TPC-DS JOB TPC-H HTAP febench fe-all TPC-DS JOB
(a) Join (b) Selection (c) Aggregation (d) Group/Order

Figure 6: Contrast of query operators (y-axis denotes the number of corresponding operators). Note FEBench denotes the selected
6 RTFE query templates, FE-all denotes the whole set of 118 RTFE queries, and TPC-DS/JOB/TPC-H are analytical queries.

topN, last join, count_where). These observations indicate RTFE
is richer in query operators and has much more complex operator
patterns than TPC-DS and TPC-H. Note analytical queries in HTAP
benchmarks [25] have similar characteristics as OLAP queries, and
so also cannot well handle the evaluation of RTFE systems.

Summary. Compared with existing database queries, feature ex-
traction queries bring new challenges. (i) They involve some com-
plex operators (e.g., orderby/unions over long time windows), which
are uncommon cases in traditional database queries (Table 3). Note
traditional stream queries are generally of simple operator patterns
and do not involve orderby operators in online mode; (ii) The query
structures correspond to a large number of real-time features and
are very complex, e.g., hundreds of aggregations over multiple data
streams (Figure 6); (iii) They require to handle high-concurrency
requests and ensure strict real-time guarantees (e.g., the latency
of dozens of seconds are intolerable) for many online Al-driven
applications like millisecond-level fraud detection.

6 BENCHMARK GENERATION

In this section, we first explain how to generate the FEBench bench-
mark by selecting templates out of the over 100 generated queries,
some of which may contain similar query operators/structures, such
that affecting the benchmark simplicity. Next we provide scenario
analysis of these templates.

6.1 Query Template Selection

With the 118 collected datasets and feature extraction queries, we
select representative templates based on both the clustering results
and scenario characteristics (Figure 7).

Specifically, we utilize the clustering algorithm DBSCAN to di-
vide the 118 generated RTFE queries based on their feature vectors.
First, for each RTFE query, the feature vector is composed of five
parts: (i) the number of output columns, which reflects the result
scales; (ii) the total number of query operators, which reflects over-
all query complexity; (iii) the occurrence frequencies of complex
operators (e.g., joins, windows, customized aggregations), which re-
flect the detailed operator-level complexity; (iv) the highest level of
nested subqueries (nested level), which reflects the query-structure
complexity; (v) the constraints of maximal tuples in windows.

Since query features have different importance to the evaluation
effectiveness (e.g., time windows are often more crucial than simple
aggregations), before query clustering, we need to evaluate the

3604

#-windows

(a) High-level features

(b) Highest-weighted features

Figure 7: Query Clustering Analysis. The 118 origin RTFE
queries are divided into 6 clusters (query templates).

relation of these features with the execution characteristics. That
is, we train a logistic regression model, with the above five kinds
of features as input and the execution time of a RTFE query as
output. Then we utilize the regression weights of each feature as
their clustering weights (e.g., 4.518 for nested level, 15.037 for last
joins, 16.132 for windows). Note different from traditional database
queries, RTFE queries generally involve time windows, and so the
query complexity is not directly affected by the batch data scale.
Next, with these weighted query features, we utilize a density-
based spatial clustering algorithm DBSCAN to divide these origin
queries. There are three main steps. (i) Choose an epsilon distance
and a minimum number (e.g., 3 queries) to define a dense region.
(ii) Randomly select an unvisited query and check its neighborhood
within epsilon distance. If the number of queries in the neighbor-
hood is greater than or equal to the minimum number, create a
new cluster and add the queries and its neighbors to the cluster.
If the query is not in a dense region, mark it as noise (note we
iteratively adjust the epsilon distance and minimum number to
ensure there is no query marked as noise) and move to the next
query. (iii) Repeat the process until all queries have been visited.
The benefit of DBSCAN is that it does not need to manually set the
cluster number and can better reflect the query distribution.
Finally, the clustering results are shown in Figure 7. We find that
the 118 queries are divided into 6 clusters. In each cluster, we extract
queries around the centroid as the candidate templates. Besides,
since Al applications have various feature extraction requirements,
around the centroid of each cluster, we try to pick queries that come
from different scenarios to better cover the feature extraction cases.

il
\

H‘H‘H
Il \H
AEEAn

L1

Inserted Tuple Count

M
H‘\
i
H“

\H‘H
L]

T
Il Il
HI \

AONNNnn o=
U

I
[(4]
L
H““ HH\“\ |
LYY
AARREARR

| |

| |

3 T S PR oo
& S S e

Inserted Tuple Count

N

TP DD PSS PSS S DD D o E e o T
R At e o S ST ST 9
Date

(@ Qo

5

BF AP AP P S
PRARE A A

Date

(b) Q1

S

le Count

S 1500
E

Inserted Tuple Count

Inserted

Date

(d) Q3

Date

(e) Q4

Figure 8: The real data distribution of selected six datasets in FEBench.

Table 4: The statistics of selected datasets.

Cluster Task Tables | Columns | Tuples
Qo Ride Prediction 1 11 2.62 % 10°
01 Flu Forecast 1 6 3.54 x 10°
Q2 Energy Forecast 8 61 8.0 x 10°
03 Sales Prediction 7 85 1.5x 1010
04 Loan Evaluation 9 245 1.0 x 107
Q5 Fraud Detection 10 773 1.3 x 1017

As a result, we pick 6 query templates from the 118 RTFE queries,
where 1 for traffic, 1 for healthcare, 1 for energy, 1 for sales, and 2 for
financial transactions. Note the first three templates are from public
datasets, and the last three are real applications in the industry.

6.2 Query Template Analysis

Finding 3. The selected 6 query templates have similar operator
patterns as the 118 RTFE queries. These templates cover 6 main
RTFE tasks and have diversified operator patterns, which are
relevant to the datasets (e.g., table relations) and task types.

With the selected 6 workloads (denoted as Q0-Q5), we explain
why they follow the four benchmark criteria (Section 3.4) by ana-
lyzing the data (Table 4) and query characteristics (Table 5).

6.2.1 Ride Duration Prediction (Q0). The task aims to predict the
total ride duration of taxi trips in New York City. The task is highly
relevant to the real-time traffic monitoring, which involves massive
GPS data of taxis and buses.

Data (6 months). For the ride prediction task, we collect open
NYC transportation data ranging from 2016-01-01 to 2016-06-30. As
shown in Figure 8 (a), the arrival time of the incoming data tuples
is relatively random, with the number of inserted tuples within
intervals ranging from 12,000 to over 28,000. The data schema
consists of a single table with 11 columns, including two timestamp
columns, two string columns, and seven numeric columns.
Query (single-table window). The features (output columns) in
the query QO include three parts: (i) all the origin table columns
(basic features); (ii) aggregation features separately from two time
windows (e.g., distinct counts of “pickup_latitude” in last 1/2 hour);
(iii) aggregation features computed across different time windows
(e.g., the division of the 1h/2h window features). Since there is only

3605

one base table, QO is limited to fundamental RTFE operators (e.g.,
aggregations), and windows over the same table.

6.2.2 Flu Forecast (Q1). The task aims to predict the cumulative
number of confirmed COVID19 cases in various places, as well as
the number of resulting fatalities in the near future.

Data (2.5 months). For the flu forecast task, we have collected
covid19 data ranging from 2020-01-22 to 2020-04-07. As shown in
Figure 8 (b), the incoming data tuples follow a periodic distribution,
i.e., in each cycle, the number of inserted tuples increases to the
peak value (around 310). The data schema contains one base table
with only 6 columns, including one timestamp columns, two string
columns, three numeric columns. Note Q1 is not strict real-time
(with day-level timestamps) and is taken as a special test case.
Query (variable-length windows). First, different from QO0, the
query Q1 involves more window operators, e.g., there are 25
window-aggregation operators in Q1, while Q0 only has 11. The rea-
son is that Q1 contains much fewer basic features (6 table columns)
and it is vital to derive effective new features to support accurate
forecast. Second, Q1 involves 10 different sizes of time windows.
For example, the death cases in last one day or one month may
both be useful in different COVID phases. And so Q1 can help to
test the capability of variable-length window processing [22].

6.2.3 Wind Energy Forecasting (Q2). The task aims to predict the
hourly power generation of the seven wind farms.

Data (3 years). For the power forecast task, we have collected
the open wind-power data ranging from 2009-07-01 to 2012-06-26.
Until Dec. 6th 2011, the number of incoming data stays steadily
(around 265). After that, the number of incoming data sharply drops
and periodically changes around 120. The data schema contains 10
tables with 61 columns, in which seven tables separately record the
power changes in each farm (farm tables) and the rest three tables
are used to train the prediction model (training tables).

Query (1:1 join across multiple tables). In the query Q2, joint
features are computed from multiple tables (e.g., features of nearby
farms and recent hours) by conducting the last join operator (Sec-
tion 2.1) on 7 farm tables and 1 training table, providing a useful
test for online one-to-one joining performance. Interestingly, Q2
mainly extracts temporal features (e.g., the last distinct values of

Table 5: The statistics of selected query templates

output columns / features | aggregations | last joins | time windows | subqueries | (window) unions | max window size
Qo0 28 17 0 2 2 0 200
Q1 24 18 0 10 10 0 200
Q2 44 6 8 1 2 0 no limit
Q3 132 61 7 9 9 7 100
Q4 261 200 9 1 18 12 100
Q5 666 662 10 1 3 0 no limit

timestamp features), which is different from other queries that in-
volve a large number of aggregations on numeric columns. Note
that Q2 does not contain time windows, so all the historical tuples
could contribute to the feature computation with incoming tuples,
which is markedly different from traditional stream cases.

6.2.4 Sales Prediction (Q3). The task aims to predict the sales trend
and replenish goods intelligently for a casual wear retailer. The
sales can be significantly affected by various factors like locations,
seasons, product sources, and even weather.

Data (3.5 years). For the sales-prediction task, we have collected
real data in Uniqlo ranging from 2017-12-31 to 2021-05-30. Before
May 30th 2018, data is rarely inserted. After that, the incoming
data quickly increases and, from Feb 3rd 2019 to Aug 4th 2020, the
number of new incoming data is over 1200 per interval. And after
Aug 4th 2020, the incoming data slightly decreases (over 300 tuples
each day). The data schema owns 7 tables together with 85 columns,
in which there are both steam tables, such as storing (canceled)
orders, and attribute tables like product information.

Query (window unions + multi-level subqueries). For the query
Q3, it involves 113 RTFE operators and 15GB batch data, most of
which are aggregations over joined window tables. Besides, differ-
ent from above templates (Q0—Q2), (i) Q3 performs set conjunction
operators (e.g., unions) over two data streams, since multiple tables
in Q3 have some of the same feature columns; (ii) Q3 has up to
6-level subqueries that include both the whole tables (e.g., all tu-
ples in ’product_item’) and tables over time windows (e.g., sales
within a 10-hour period). These types of subqueries can be costly
to process due to the large amount of data involved and the com-
putational overhead required for aggregating data over different
time windows. Thus, Q3 is useful to test the performance of complex
subquery processing.

6.2.5 Loan Evaluation (Q4). The task aims to predict whether cus-
tomers will pay back their loans on time for a credit card company.
Q4 owns 9 tables together with 1GB data and 245 columns, most of
which occur in two days and cause sudden bursts. In the query Q4,
it involves 110 features from the origin tables and 122 aggregations.
Since it needs to characterize the customer behaviors, there are
multiple window-count operators to reflect the recent activities of
the customers. Besides, it has 17 subqueries, which involve origin
tables, single-table windows, or multi-table windows. Thus, Q4 is
a bit more complex than Q3 in the operator patterns, and the rela-
tively large intermediate table sizes in Q4 can significantly affect
the processing efficiency.

6.2.6 Fraud Detection (Q5). Fraud detection is a special type of the
outlier detection problems, which aims to estimate the likelihood

3606

of fraudulent activities within milliseconds. Here we consider a
fraud detection case in banking scenario. The temporal data was
inserted periodically, with peak values around 8,000 in each cycle.
Q5 owns 10 tables with over 13GB origin data and 773 columns.
The query Q5 contains the most query operators among the 6 query
templates, incorporating 659 RTFE operators, most of which are
multi_last_value directly derived from the results of multi-table
joins. Similar to Q2, the query of Q5 does not involve time win-
dows, which leverages the entire dataset (all past user behaviors)
to compute features for incoming tuples.

Summary. The benchmark satisfies the four criteria of a domain
specific benchmark outlined by Jim Gray (Section 3.4). First, the
query templates exhibit a diverse range of feature extraction pat-
terns, e.g., the number of operators varies from 46 to 681, and the
number of aggregations ranges from 11 to 652 (relevance). Second,
each template is expressed in SQL-like language (portability) and
incorporates unique operator patterns, i.e., (i) Q0-Q2 own relatively
simple operators (on public datasets), but still surpass the complex-
ity of traditional analytic queries (e.g., Q1 and Q2 involve dozens of
aggregations and multi-table joins/windows) and (ii) Q3-Q5 own
more tricky operator patterns (on real applications in 4Paradigm),
which are difficult to optimize for ultra-low latency (simplicity).
Third, each dataset can be scaled to larger or smaller sizes by fol-
lowing their real distribution of incoming data (scalability). We will
highlight their respective strengths in evaluations.

7 EVALUATION OF DIFFERENT SYSTEMS

In this section, we introduce how to implement FEBench. As a
starting point, we utilize FEBench to compare a general-purpose
system (Flink [22]) and a specialized system (OpenMLDB [2, 24]).

7.1 Overview of FEBench Pipeline

As shown in Figure 9, FEBench consists of three components: data
loader, workload simulator and performance monitor. Taking prod-
uct forecast as an example, data loader is responsible for loading
static data such as the basic user/shop information into the sys-
tem; workload simulator preloads all of the historical transactions
(data tuples) into DRAM, and then sends the tuples one by one to
simulate the arrival of new transactions. With each incoming trans-
action, the system performs a predefined RTFE query and inserts the
new transaction. We record the response time of each transaction
and reports performance metrics like 50th/99th/999th percentile
latency [44] (denoted as TP-50/TP-99/TP-999). For simplicity, we
define tail latency as TP-99/TP-999. FEBench is implemented in
JMH (Java Microbenchmark Harness) [42], which communicates
with different systems through Java clients.

TP-50 Latency

Performance TP-99 Latency
Monitor
TP-999 Latency
Workload (C) (d)

Simulator

Figure 9: The overview of FEBench pipeline.

TP-50 Latency

10000 4
OpenMLDB

@ Flink 890.24

1,370.49 1,312.82
1000] 7

386.40
250.35 31588

Latency (ms)

10
3.80)

\|

Q5

Figure 10: The TP-50 latency of all tasks (5 threads).
7.2 Experiment Setting

System Setup We test two typical systems that support real-time
feature extraction in SQL-like languages. First, Flink is a popular
general-purpose stream platform. The version of Flink is 1.15.2, with
one job manager node and three task manager nodes deployed as the
Flink cluster. Flink caches part of the data in DRAM (the watermark
mechanism is fine-tuned to ensure all the online required data is
memory-cached) and persists data in RocksDB. Second, OpenMLDB
is a popular specialized platform for real-time feature extraction.
The version of OpenMLDB is 0.6.4, with three tablet servers and one
name server deployed as the OpenMLDB cluster. OpenMLDB stores
all the data in DRAM. To maintain data consistency, OpenMLDB
writes logs on HDD for newly added data tuples. We plan to evaluate
the benchmark for more systems such as Tecton in the future.

Hardware Setup We deploy both FEBench and the tested systems
on a server with 40 Cores 2.2 GHz Xeon(R) E5-2630 (2 sockets,
640KB/2.5MB/25MB for L1/L2/L3 caches of each socket), 500 GB
memory, and we use 7.3 TB hard disk as storage. The OS is CentOS-
7.9 with kernel 3.10.0.

7.3 Overall Performance Results

In the following, we present some preliminary results and observa-
tions. Our primary objective is not to compare the end-to-end perfor-
mance of these systems. Instead, we demonstrate the usage of FEBench
for illustrating the pipeline of our benchmark, and for showing the
impact of different system implementation and design.

Overall Performance. Different choices of implementation tech-
niques can result in large performance gaps. As shown in Figure 10,
the TP-50 latency of Q0/Q1/Q2 is shorter than that of Q3/Q4/Q5,
as the latter queries require more complex operators (e.g., over 2x
number of operators and more aggregations). Furthermore, Flink
is almost two orders of magnitude slower than OpenMLDB. These

3607

Tail Latency
£ TP-99 OpenMLDB

Y
o

TP-999 OpenMLDB

w
v

S TP-99 Flink MM TP-999 Flink

w
o

21.8

N
wv

20.6

Normalized Latency
BN
v ©O U»n O

o

Figure 11: Normalized tail latency (all values are normalized
to that of the TP-50 latency for each system).

TP-50 Latency
£ 10 Threads OpenMLDB
50 Threads OpenMLDB
@20 Threads Flink

220 Threads OpenMLDB
m 10 Threads Flink
750 Threads Flink

Normalized Latency

Figure 12: Normalized TP-50 latency (relative to 5 threads).

performance differences are mainly due to implementation choices.
Flink is implemented in Java to support various application sce-
narios and cross-platform deployment, and all RTFE queries are
executed in the JVM. In contrast, OpenMLDB was initially designed
for latency-sensitive applications like financial anti-fraud. Designed
as a high-performance in-memory system, OpenMLDB uses Low-
Level Virtual Machine (LLVM) [53] to transform RTFE queries into
assembler code, which is much faster than that in the JVM [57].

Long Tail Latency. OpenMLDB exhibits a noticeable long tail issue,
while the tail latency of Flink is more stable. To examine the growth
rate of tail latency, we normalize the TP-999 and TP-99 latency to
that of TP-50 latency for each system. As shown in Figure 11, the TP-
999 latency of Flink only increases up to 12.69% compared to TP-99,
whereas the TP-999 latency of OpenMLDB is up to 10.32 times that
of TP-99 latency and up to 21.8 times that of TP-50 latency in Q0-Q5.
Such long-tail issues have also been observed in other in-memory
databases [24], which is mainly caused by the back-end fsync
operations (for log writes) on the persistent storage. Instead, Flink
stores newly added transaction data in a third-party database (e.g.,
RocksDB), which executes RTFE and new data inserts in different
engines. Moreover, as discussed above, Flink takes longer time to
complete each RTFE query, which reduces the frequency of new
data insertions and hence mitigates the performance impact of
database log writes.

Concurrency Performance. In Figure 12, latency values are nor-
malized to that of five threads. We find OpenMLDB’s TP-50 latency
remains relatively stable when the thread number increases from
five to twenty. However, setting the number of working threads to
50 leads to a significant increase in TP-50 latency (up to 5.92X that

I Retiring I Backend Bound [Bad Speculation I Frontend Bound

OpenMLDB Flink

° Qo Q1 Q2 Q3 Q4 Q5 0 Qo Q1 Q2 Q3 Q4 Q5

Figure 13: Micro-Architectural Metric Analysis

w

Latency (ms)

of five threads). In contrast, Flink exhibits smaller changes in TP-50
latency. There are two reasons. First, OpenMLDB strives to fully
utilize system resources for each feature extraction request (such
as ensuring high-parallelism computation for operators like aggre-
gations), which may result in more frequent thread collisions in
high-concurrency scenarios. Second, OpenMLDB already achieves
millisecond-level latency, where even subtle performance degrada-
tion can be much more noticeable than in systems like Flink.

7.4 Profiling Analysis

Execution time breakdown We conduct the profiling study for
detailed performance analysis and decompose the execution latency
into TMAM metrics [55], including retiring (the time of retiring
instructions), bad speculation (the time wasted due to branch predic-
tion errors), backend_bound (instructions that cannot be dispatched
due to resource shortage), frontend_bound (the time of fetching
instructions and decoding them into executable micro-instructions).
As depicted in Figure 13, for Q0-Q2, the frontend_bound metric
is most time-consuming (over 45%), where the operator patterns
are relatively simple and most time is spent in switching between
instructions of user request processing and feature extraction. This
finding is consistent with the previous study on data streaming
systems [58, 59]. For Q3-Q5, the most influential metrics are back-
end_bound (involving more secondary and intermediate tables that
increase cache misses) and retiring (performing more instructions
for complex operators like window unions). OpenMLDB reduces
cache misses by reusing time windows over the same tables and
performing customized operators (e.g., fetching the matched one
tuple with most recent timestamp), which lead to superior perfor-
mance in milliseconds. These query templates allow us to identify
different performance bottlenecks at a micro-structural level.

Execution Plan. Next we use QO (ride duration prediction) as an
example to illusrate the difference in execution plans. The execu-
tion plan of other queries could be found in our project website.
The execution plan of Q0 includes three stages: (i) extract two time
windows of taxi X, and execute aggregations, (ii) extract basic infor-
mation of taxi X and execute calculations on the selected columns,
(iii) join the results of the first two parts and execute calculations
to output results. As shown in Figure 14, a series of operators have
been adopted, including request (locate the required data), exchange
(pass the intermediate results to other nodes), agg:xh (aggregation
on x-hour window), limit (truncate data), join (concatenate the
intermediate results), and calc (calculate on the input data).

We have the following observations. First, in Flink, the calc
operator takes the most time and there are 28 features to compute in
Q0, whose computation complexity is much higher than traditional

3608

OpenMLDB

3

Join

T
|

1 2
Agg:lh Agg:2h
Request

T

90%

(estimated) time ratio

Figure 14: Example Execution Plans (Q0)

stream queries. Instead, OpenMLDB spends most time on initial
window computation, whose results will be reused by the following
window operators. Second, to reduce the latency of each RTFE
query, OpenMLDB has made several optimizations at plan level.
On one hand, Q0 requests to read two time windows (i.e., past 1/2
hours of taxi X). The default behavior of the plan is to read the
data of two time windows separately. Instead, OpenMLDB senses
the overlap of the time windows, reads only the data of the larger
2-hour time window, and performs the aggregation operator on
the 1-hour and 2-hour time windows respectively, which reduces
the duplicate data reading overhead and leads to lower retiring
(Figure 13). On the other, OpenMLDB adopts multiple optimized
operators to reduce the latency: (i) the customized aggregation
functions (e.g., distinct_count, count_where) help to streamline
the required instructions (lower retirng); (ii) the lightweight join
operator (last join in Section 2.1) matches tuples on the index of the
data, avoids the duplication check (only one result tuple) and data
copy overhead, and can efficiently execute within limited memory
space (lower backend_bound).

8 CONCLUSION AND FUTURE WORK

Real-time feature extraction is an emerging trend and widely taken
as essential to enable AI applications in production. In this pa-
per, we first explained how to borrow the ideas in relational data
and SQL to conduct feature extraction for real-world applications.
Next, based on the over 100 collected real datasets, we proposed a
benchmarking architecture FEBench for real-time feature extrac-
tion, involving dataset collection, workload analysis, template gen-
eration, and system deployment. The preliminary results showed
that FEBench can effectively reflect the strengths and weaknesses
of both the general-purpose system (Flink) and specialized system
(OpenMLDB). More information could be found in our project site:
https://github.com/decis-bench/febench.

ACKNOWLEDGEMENTS

This paper was supported by 4Paradigm, NSFC(61925205, 62232009,
62102215), Huawei, TAL education, and Zhongguancun Laboratory.

https://github.com/decis-bench/febench

REFERENCES

[18]

[19]
[20]
[21]
[22]

[26]

[27]

[28]
[29]

[30]

[31]
[32]
[33]

[34]

https://archive.ics.uci.edu/ml/index.php. Last accessed on 2023-2.
https://github.com/4paradigm/openmldb. Last accessed on 2023-2.
https://github.com/akopytov/sysbench. Last accessed on 2023-2.
https://github.com/alibaba/feathub. Last accessed on 2023-2.
https://github.com/feathr-ai/feathr. Last accessed on 2023-2.
https://kilthub.cmu.edu/. Last accessed on 2023-2.
https://medium.com/engineering-varo/feature-store-challenges-and-
considerations-d1d59c070634. Last accessed on 2023-2.
https://tianchi.aliyun.com/. Last accessed on 2023-2.
https://www.irs.gov/pub/irs-prior/p3415-2021.pdf. Last accessed on 2023-2.
https://www.kaggle.com/competitions. Last accessed on 2023-2.
https://www.tecton.ai/. Last accessed on 2023-2.

https://www.tpc.org. Last accessed on 2023-2.

https://www.tpc.org/tpeds/. Last accessed on 2023-2.
https://www.tpc.org/tpch/. Last accessed on 2023-2.

Forecast: The business value of artificial intelligence. In Gartner, 2018.

R. Ahmed, A. W. Lee, A. Witkowski, D. Das, H. Su, M. Zait, and T. Cruanes. Cost-
based query transformation in oracle. In Proc. VLDB Endow., pages 1026—-1036.
ACM, 2006.

S.P. Anderson. Advertising on the internet. The Oxford handbook of the digital
economy, pages 355-396, 2012.

T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. Linkbench:
a database benchmark based on the facebook social graph. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data, pages
1185-1196, 2013.

J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems
survey. Knowledge-based systems, 46:109-132, 2013.

R.J. Bolton and D. J. Hand. Statistical fraud detection: A review. Statistical
science, 17(3):235-255, 2002.

J. Cai, J. Luo, S. Wang, and S. Yang. Feature selection in machine learning: A
new perspective. Neurocomputing, 300:70~79, 2018.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas.
Apache flink: Stream and batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, 36(4), 2015.

S. Charrington. Machine learning platforms.

C. Chen, J. Yang, M. Lu, and et al. Optimizing in-memory database engine for
ai-powered on-line decision augmentation using persistent memory. Proceedings
of the VLDB Endowment, 14(5):799-812, 2021.

R. L. Cole, F. Funke, L. Giakoumakis, W. Guy, and et al. The mixed workload
ch-benchmark. In Proceedings of the Fourth International Workshop on Testing
Database Systems, DBTest 2011, Athens, Greece, June 13, 2011, page 8. ACM, 2011.
E.R.DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under
two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics, pages 837-845, 1988.

D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux. Oltp-bench: An
extensible testbed for benchmarking relational databases. Proc. VLDB Endow.,
7(4):277-288, 2013.

D. S. Evans. The online advertising industry: Economics, evolution, and privacy.
Journal of economic perspectives, 23(3):37-60, 2009.

J. Gray, editor. The Benchmark Handbook for Database and Transaction Systems
(1st Edition). Morgan Kaufmann, 1991.

1. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu, D. Jajetic,
B. Ray, M. Saeed, M. Sebag, et al. Analysis of the automl challenge series.
Automated Machine Learning, 177, 2019.

M. A. Hall. Correlation-based feature selection for machine learning. PhD thesis,
The University of Waikato, 1999.

M. A. Hall and L. A. Smith. Practical feature subset selection for machine learning.
1998.

S. Hur and J. Kim. A survey on feature store. Electronics and Telecommunications
Trends, 36(2):65-74, 2021.

G. Kang, L. Wang, W. Gao, F. Tang, and J. Zhan. Olxpbench: Real-time, semanti-
cally consistent, and domain-specific are essential in benchmarking, designing,
and implementing htap systems. arXiv preprint arXiv:2203.16095, 2022.

3609

[35

[36]

(37]

K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady. Dbscan: Past, present
and future. In The fifth international conference on the applications of digital
information and web technologies ICADIWT 2014), pages 232-238. IEEE, 2014.
I. Kononenko. Machine learning for medical diagnosis: history, state of the art
and perspective. Artificial Intelligence in medicine, 23(1):89-109, 2001.

H. Lan, Z. data s, and Y. Peng. A survey on advancing the DBMS query optimizer:
Cardinality estimation, cost model, and plan enumeration. Data Sci. Eng., 6(1):86—
101, 2021.

V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neumann. How
good are query optimizers, really? Proc. VLDB Endow., 9(3):204-215, 2015.

G. Li, X. Zhou, and L. Cao. Al meets database: AI4DB and DB4AI. In SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June

20-25, 2021, pages 2859-2866. ACM, 2021.
G. Li, X. Zhou, J. Sun, and et al. opengauss: An autonomous database system.

Proc. VLDB Endow., 14(12):3028-3041, 2021.

Y. Luo, M. Wang, H. Zhou, Q. Yao, W.-W. Tu, Y. Chen, W. Dai, and Q. Yang.
Autocross: Automatic feature crossing for tabular data in real-world applications.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1936-1945, 2019.

Open]JDK, 2013. https://openjdk.java.net/projects/code-tools/jmh/, Last accessed
on 2020-11-15.

L. Orr, A. Sanyal, X. Ling, K. Goel, and M. Leszczynski. Managing ml pipelines:
feature stores and the coming wave of embedding ecosystems. arXiv preprint
arXiv:2108.05053, 2021.

T. percentile. Tp-x. https://support.huaweicloud.com/intl/en-us/productdesc-
apm/apm_06_0002.html, 2019.

V. Steinbiss, B.-H. Tran, and H. Ney. Improvements in beam search. In Third
international conference on spoken language processing, 1994.

C. Sun, N. Azari, and C. Turakhia. Gallery: A machine learning model manage-
ment system at uber. In EDBT, pages 474485, 2020.

J. Sun and G. Li. An end-to-end learning-based cost estimator. Proc. VLDB Endow.,
13(3):307-319, 2019.

Z. Sun, X. Zhou, and G. Li. Learned index: A comprehensive experimental
evaluation. Proc. VLDB Endow., 16(8):1992-2004, 2023.

Y. Tay. Data generation for application-specific benchmarking. Proceedings of
the VLDB Endowment, 4(12):1470-1473, 2011.

T. Tsai. Competitive landscape: Ai startups in china. In Technical Report.

J. Wang, C. Chai,]. Liu, and G. Li. FACE: A normalizing flow based cardinality
estimator. VLDB, 15(1):72-84, 2021.

S. Wang. A comprehensive survey of data mining-based accounting-fraud de-
tection research. In 2010 International Conference on Intelligent Computation
Technology and Automation, volume 1, pages 50-53. IEEE, 2010.

Wikipedia. LLVM, 2019. [Online; accessed 02-July-2022].

S. Wu, Y. Li, H. Zhu, J. Zhao, and G. Chen. Dynamic index construction with
deep reinforcement learning. Data Sci. Eng., 7(2):87-101, 2022.

A. Yasin. A top-down method for performance analysis and counters architecture.
In ISPASS, pages 35-44. IEEE Computer Society, 2014.

X. Yu, C. Chai, G. Li, and J. Liu. Cost-based or learning-based? A hybrid query
optimizer for query plan selection. Proc. VLDB Endow., 15(13):3924-3936, 2022.
S. Zeuch, B. D. Monte,]J. Karimov, C. Lutz, M. Renz, J. Traub, S. Bref3, T. Rabl, and
V. Markl. Analyzing efficient stream processing on modern hardware. Proceedings
of the VLDB Endowment, 12(5):516-530, 2019.

S. Zhang, B. He, D. Dahlmeier, A. C. Zhou, and T. Heinze. Revisiting the design
of data stream processing systems on multi-core processors. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pages 659-670, 2017.

S. Zhang, J. He, A. C. Zhou, and B. He. Briskstream: Scaling data stream pro-
cessing on shared-memory multicore architectures. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD ’19, page 705-722,
New York, NY, USA, 2019. Association for Computing Machinery.

X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial intelligence: A
survey. IEEE Trans. Knowl. Data Eng., 34(3):1096-1116, 2022.

X. Zhou, G. Li, C. Chai, and J. Feng. A learned query rewrite system using monte
carlo tree search. Proc. VLDB Endow., 15(1):46-58, 2021.

X. Zhou, G. Li, J. Wu, and et al. A learned query rewrite system. Proc. VLDB
Endow., 16(12), 2023.

https://openjdk.java.net/projects/code-tools/jmh/
https://support.huaweicloud.com/intl/en-us/productdesc-apm/apm_06_0002.html
https://support.huaweicloud.com/intl/en-us/productdesc-apm/apm_06_0002.html

	Abstract
	1 INTRODUCTION
	2 Background And Related Work
	2.1 Feature Extraction Operators
	2.2 Existing Database Benchmarks

	3 Benchmark Overview
	3.1 Design Goals
	3.2 Benchmark Methodology Overview
	3.3 RTFE Query Generation
	3.4 Target Test Systems

	4 Dataset Collection
	5 Workload Analysis
	5.1 Observations

	6 Benchmark Generation
	6.1 Query Template Selection
	6.2 Query Template Analysis

	7 Evaluation of Different Systems
	7.1 Overview of FEBench Pipeline
	7.2 Experiment Setting
	7.3 Overall Performance Results
	7.4 Profiling Analysis

	8 CONCLUSION AND future work
	References

