
Space-Efficient RandomWalks on Streaming Graphs

Serafeim Papadias
Technische Universität Berlin

s.papadias@tu-berlin.de

Zoi Kaoudi
Technische Universität Berlin

zoi.kaoudi@tu-berlin.de

Jorge-Arnulfo Quiané-Ruiz
Technische Universität Berlin
jorge.quiane@tu-berlin.de

Volker Markl
Technische Universität Berlin
volker.markl@tu-berlin.de

ABSTRACT

Graphs in many applications, such as social networks and IoT, are
inherently streaming, involving continuous additions and deletions
of vertices and edges at high rates. Constructing random walks in a
graph, i.e., sequences of vertices selected with a specific probability
distribution, is a prominent task in many of these graph applica-
tions as well as machine learning (ML) on graph-structured data.
In a streaming scenario, random walks need to constantly keep
up with the graph updates to avoid stale walks and thus, perfor-
mance degradation in the downstream tasks. We present Wharf, a
system that efficiently stores and updates random walks on stream-
ing graphs. It avoids a potential size explosion by maintaining a
compressed, high-throughput, and low-latency data structure. It
achieves (i) the succinct representation by coupling compressed
purely functional binary trees and pairing functions for storing
the walks, and (ii) efficient walk updates by effectively pruning the
walk search space. We evaluate Wharf, with real and synthetic
graphs, in terms of throughput and latency when updating ran-
dom walks. The results show the high superiority of Wharf over
inverted index- and tree-based baselines.

PVLDB Reference Format:

Serafeim Papadias, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and Volker

Markl. Space-Efficient Random Walks on Streaming Graphs. PVLDB, 16(2):

356-368, 2022.

doi:10.14778/3565816.3565835

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/spapadias/wharf.

1 INTRODUCTION

Random walks are used in a large number of graph analysis tasks,
such as PageRank [3, 16, 32, 36], SimRank [20], in influence maxi-
mization [10, 27, 28, 54], in recommendations [11, 13, 19], in graph
embeddings [9, 17, 41], in graph neural networks [60], and even in
spatiotemporal processing [24]. For example, random walks-based
graph embeddings enable many machine learning (ML) tasks on

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.
doi:10.14778/3565816.3565835

0 5 10 15 18
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

A
U
C

Ideal Learning

Static Learning

(a) Graph Embeddings

0 1 2 3 4 5 6 7 8 9
Snapshot

0

20

40

60

80

100

S
M
A
P
E

(b) Personalized PageRank

Figure 1: Applications of streaming random walks.

graphs, e.g., link prediction, vertex classification, and outlier de-
tection. Thus, computing random walks is at the core of many
important tasks today.

Yet, real-world graphs are inherently dynamic, entailing continu-
ous additions and deletions of vertices and edges [6, 26, 29]. In many
novel applications, such as the Internet of Things and digital twins,
graph updates occur with increasingly high frequency, requiring
low latency and high throughput processing. For example, Alibaba’s
e-commerce platform uses massive graphs to store their data [61]:
These graphs consist of billions of vertices (e.g., modelling products,
buyers, and sellers) and hundred billions of edges (e.g., representing
clicks, orders, and payments). Alibaba reported these graphs are
highly dynamic as they receive a high rate of real-time updates.

Thus, it is crucial to keep random walks up-to-date with the
continuous changes to not hurt the effectiveness or accuracy of the
downstream tasks. This is exacerbated in high-stake applications,
such as anomaly and fraud detection, where even a small percent-
age of higher accuracy is of utter importance. Let us illustrate how
the accuracy is affected if random walks are not kept up-to-date.
We ran an experiment where we consider a link prediction task
on a dynamic social network graph after running node2vec [17].
We executed node2vec in two different settings: static ś we train
embeddings only on the initial graph and reuse them subsequently,
and ideal ś we retrain embeddings from scratch at each snapshot
(see the setup for this experiment in Section 7.6). Figure 1a shows
the accuracy (i.e., AUC score) results. We observe that retraining
embeddings from scratch at each new graph snapshot, i.e., after
a set of new graph updates have been applied, is mandatory to
maintain high accuracy in the downstream ML task (Ideal Learning
in the figure). While in the static scenario, the accuracy drops, in
the dynamic scenario the accuracy increases as more graph up-
dates arrive. We also ran an experiment where we approximate
Personalized PageRank (PPR) scores using [3] on a dynamic citation
graph. Figure 1b shows the Symmetric Mean Absolute Percentage
Error (SMAPE) when approximating PPR scores. Specifically, we

356

https://www.acm.org/publications/policies/artifact-review-and-badging-current

illustrate the SMAPE between the actual algorithm in [3], which
updates all affected random walks at each snapshot, and a ś static
ś variant, which uses the existing random walks. We observe that
the error in PPR scores is above 80% even after the first snapshot
arrives. We thus expect that both the accuracy gap in graph em-
beddings applications and the estimation error in PPR applications
will increase very fast in streaming graphs, where updates arrive at
a very fast rate [12, 15, 35, 43, 61].

Despite this importance, the research community has paid little
attention to the problem of maintaining up-to-date random walks
on streaming (a.k.a, highly dynamic) graphs. We do find a large
number of works for efficiently computing random walks [1, 38, 48,
56, 58, 59], but all consider static graphs. Barros et al. [4] present
a variety of random walk-based works on Graph Representation
Learning (GRL) on dynamic graphs [5, 14, 18, 30, 31, 33, 44, 51, 62].
Some among those, such as [18, 44], consider updating random
walks but use simplistic inverted indexes to do so and are, thus,
inefficient ś they cannot cope with streaming graphs. There are also
theoretical works, such as [21, 55], that focus on randomwalks: [55]
studies how to store walks succinctly in an append-only fashion,
which is not applicable for the streaming scenario where parts of
walks have to be deleted; [21] proposes generating random walks
on single-pass graph streams but in an approximate manner.

Updating random walks for streaming graphs is thus an impor-
tant and open problem. However, doing so is challenging for three
main reasons: (i) One should update random walks with both low-
latency and high-throughput as streams can become quite bursting
and volatile with sudden spikes [23]; (ii) One must enable fast ac-
cess to (parts of) the walks state. This allows for realizing fast walk
updates by efficiently identifying the walks as well as their parts
(vertices) to update; (iii) Random walks state should be as succinct
as possible especially for applications where the total size of ran-
dom walks is multiple times larger than the size of the maintained
graph, e.g., Graph Representation Learning (GRL) [48].

We propose Wharf, a parallel system that tackles all above-
mentioned challenges to maintain stateful streaming random walks.
It stores randomwalks with the graph within a single data structure
forming a hybrid tree-of-trees. The main idea is to update walks
together with the graph: During a graph update, it identifies the
out-of-date walks and updates them in a bulk fashion.

In summary, after giving some preliminaries in Section 2, we
make the following major contributions:
(1) We formalize the problem of streaming random walks, which
entails storing walks in a space-efficient way, enabling efficient
batch walk updates with high-throughput and low-latency, and fast
node retrieval in the set of stored walks simultaneously (Section 3).
(2) We propose a novel hybrid-tree that stores random walks to-
gether with the graph in a compressed form. Specifically, we repre-
sent random walks as triplets which we encode to integer values
using pairing functions. This allows us to compact random walks
in a lossless manner and maintain the walks state in a way that also
serves as an index for efficient walk access. Overall, our structure
allows for safe parallelism, fast acquisition of lightweight graph
and walks snapshots, and high cache locality.
(3) We devise an output-sensitive algorithm for performing effi-
cient search in the set of walks by leveraging the ordering proper-
ties of pairing functions (Section 5). We also present a walk update

0 2 6

1 8

3 4

5 7

(a) Example graph

3

1 5

0 2 4 7

6 8

(b) 𝑃𝐹 -tree

5

2 73 4

0 1 6

8

tree
prefix

head chunk

(c)𝐶-tree

Figure 2: (a) Example graph. (b) The corresponding purely-

functional binary search tree: Each vertex id is stored in a

separate tree node; Orange vertices are heads. (c) The corre-

sponding 𝐶-tree.

mechanism that apply updates in batches and we prove that its
time complexity is lower than its competitor (Section 6).
(4) We validateWharf through extensive experiments on a variety
of real-world and synthetic graph workloads. The results show that
Wharf achieves its goals in terms of throughput and latency when
updating random walks, low memory footprint, and effectiveness
of the downstream tasks (Section 7).

We then discuss related work in Section 8 where we stress that
existing non-streaming random walk systems fail to address the
above-mentioned challenges. We conclude the paper in Section 9.

2 PRELIMINARIES

Running example. We use an e-commerce graph that contains
users and items extracted from the Taobao e-commerce plat-
form [63] as our running example. The vertices correspond to items
that can be purchased through the platform, and the edges denote
the item-item relationships, i.e., items that users purchase together.
Figure 2a illustrates an excerpt of the graph. We assign integer
identifiers to the vertices for simplicity.
Purely-Functional Trees (𝑃𝐹 -trees). A 𝑃𝐹 -tree is a mutation-free
tree structure that preserves its former versions when altered and
yields a new tree version reflecting the update [34]. Each element
of a 𝑃𝐹 -tree serves as key, and is kept in a separate tree node.
Figures 2b illustrates the 𝑃𝐹 -tree for our example graph.
Compressed Purely-Functional Trees (𝐶-trees).A𝐶-tree [15] is
a binary PF-tree [34], which is additionally compressed and stores
multiple elements in each vertex. A chunking scheme takes the
ordered set of elements to be represented and promotes some of
them to heads, which are stored in a purely-functional tree. In more
detail, given a set 𝐸 of elements, one first computes the set of heads
H(𝐸) = {𝑒 ∈ 𝐸 |ℎ(𝑒) mod 𝑏 = 0}, where 𝑏 is the chunking param-
eter indicating the number of elements each chunk roughly retains,
ℎ : 𝐾 → 1, . . . , 𝑁 is a hash function drawn from a uniformly random
family of hash functions (𝑁 is some sufficiently large range). For
each 𝑒 ∈ H (𝐸) let its tail be 𝑡 (𝑒) = {𝑥 ∈ 𝐸 | 𝑒 < 𝑥 < 𝑛𝑒𝑥𝑡 (H (𝐸), 𝑒)},
where𝑛𝑒𝑥𝑡 (H (𝑒), 𝑒) returns the next element inH(𝐸) greater than
𝑒 . Thus, the rest of the elements are stored in tails that are associ-
ated with each head vertex of the tree. It can exist a headless tail
containing the smallest elements to be represented, i.e., the prefix.
The prefix, as well as the tails, are both called chunks. Figure 2c
illustrates the compressed𝐶-tree variant of the 𝑃𝐹 -tree in Figure 2b
for our graph example in Figure 2a. 𝐶-trees maintain similar as-
ymptotic cost bounds as the uncompressed trees while improving

357

space consumption and cache performance. The expected size of
chunks in a𝐶-tree is 𝑏, while the maximum size is w.h.p.𝑂 (𝑏 log𝑛).
The number of heads in a 𝐶-tree over a set of 𝑛 elements is 𝑂 (𝑛/𝑏)
w.h.p., and the maximum size of a tail or prefix is w.h.p. 𝑂 (𝑏 log𝑛).
Pairings. A pairing function encodes a pair of natural numbers into
a single natural number, uniquely and reversibly. It is a computable
bijection 𝜋 :N×N→ N.We adopt the convention ⟨𝑥,𝑦⟩ for a pairing
between 𝑥 and𝑦. Pairing functions share a set of properties with the
basic ones being: A pairing function: (i) is an injection, (ii) does not
contain zero in its range, and (iii) is onto the set N∗. Furthermore,
pairing functions possess the following ordering properties that are
crucial for enhancing the performance of our algorithms, namely:

Property 1 (Strict Weak Ordering).

(⟨𝑥,𝑦⟩ < ⟨𝑥 ′, 𝑦′⟩ ↔ 𝑥 + 𝑦 < 𝑥 ′ + 𝑦′) or (𝑥 + 𝑦 = 𝑥 ′ + 𝑦′ and 𝑥 < 𝑥 ′)

Corollary 1. From Property 1 it follows that:

𝑥 + 𝑦 < 𝑥 ′ + 𝑦′ → ⟨𝑥,𝑦⟩ ≤ ⟨𝑥 ′, 𝑦′⟩ (1)

The most well-known pairing functions are Cantor [37] and
Szudzik [53]. We adopt the latter one because it ensures that, if
both operands are up to 𝑁 -bits, the range of encoded output stays
within the limits of a 2𝑁 -bit integer. Below, we provide the formulas
of 𝑆𝑧𝑢𝑑𝑧𝑖𝑘 (𝑥,𝑦) for pairing, and of 𝑆𝑧𝑢𝑑𝑧𝑖𝑘−1 (𝑧) for unpairing:

𝑆𝑧𝑢𝑑𝑧𝑖𝑘 (𝑥,𝑦) =
{

𝑦2 + 𝑥 if 𝑥 < 𝑦

𝑥2 + 𝑥 + 𝑦 if 𝑥 ≥ 𝑦

𝑆𝑧𝑢𝑑𝑧𝑖𝑘−1 (𝑧) =
{

{𝑧 − ⌊√𝑧⌋2, ⌊√𝑧⌋} if 𝑧 − ⌊√𝑧⌋2 < ⌊√𝑧⌋
{⌊√𝑧⌋, 𝑧 − ⌊√𝑧⌋2 − ⌊√𝑧⌋} if 𝑧 − ⌊√𝑧⌋2 ≥ ⌊√𝑧⌋

3 PROBLEM STATEMENT

We now formally define the problem we address in this paper. To do
so, we first formalize the streaming graph foundations (Section 3.1),
the notion of random walks and walk corpus (Section 3.2), where
we also define statistical indistinguishable random walks. Finally
we state the problem of streaming random walks (Section 3.3).

3.1 Streaming Graphs

We assume the popular edge stream model, where a graph stream is
regarded as a sequence of incoming edges. We consider unbounded
graph streams, i.e., there is no limit on the number of graph updates
that arrive. A graph update is a set of edge insertions and deletions.
In the edge stream model, vertex insertions and deletions happen
implicitly via edge updates: A vertex is added when an edge with a
vertex not present in the current graph is inserted, while a vertex is
deleted only when its degree becomes zero after an edge deletion.

Following this model, a streaming graph is a graph that is subject
to edge updates at a very high rate. Specifically, a graph update,
𝛿G, is a set containing both insertions and deletions of edges. Thus,
a streaming graph is a long sequence of discrete graph snapshots
containing graph updates that should be applied as they arrive. We
formally define a streaming graph as follows:

Definition 1 (Streaming Graph). A streaming graph is a se-

quence of discrete graph snapshots, G𝑡 = {V𝑡 , E𝑡 }, where V𝑡
=

{𝑣𝑡1, . . . , 𝑣
𝑡
𝑛} are the vertices, E𝑡 = {𝑒𝑡1, . . . , 𝑒

𝑡
𝑚} are the edges, and

𝑡 ∈ N is a timestamp.

0 1 3 5 4w0 :

1 0 3 5 6w1 :

2 3 5 3 0w2 :

3 5 3 5 3w3 :

4 5 6 7 4w4 :

8 2 5 4 5w8 :

.

.

. inconsistent

invalid

new

Figure 3: Excerpt of a walk corpus of our graph example.

Note that after applying a graph update 𝛿G𝑡 to a graph snapshot
G𝑡 we end up with the new graph snapshot at timestamp 𝑡 + 1,
i.e., G𝑡+1 = G𝑡 + 𝛿G𝑡 .

3.2 Random Walks

A random walk on a graph serves as a sample of the graph and is
utilized by many applications, such as PageRank [16, 36] and online
influence maximization [10, 27, 28, 54].

Definition 2 (Random Walk). A random walk is a 𝑘-th order

Markov chain, where the state space of which is the set of graph vertices

V and the future state depends on the last 𝑘 steps. A random walk

𝑤 of length 𝑙 comprises a sequence of vertices, 𝑣1, 𝑣2, . . . , 𝑣 𝑗 , . . . , 𝑣𝑙 ,

where 𝑣 𝑗 is the 𝑗-th vertex in 𝑤 and 𝑗 ∈ {1, . . . , 𝑙}, and every two

consecutive vertices are connected with an edge.

In the general case, a random walk 𝑤 is generated by sam-
pling a vertex 𝑣 𝑗 given the 𝑘 previous vertices 𝑣 𝑗−𝑘 , . . . , 𝑣 𝑗−1
in 𝑤 from the following transition probability distribution:
𝑝𝑟𝑜𝑏 (𝑣 𝑗 |𝑣 𝑗−1, . . . , 𝑣 𝑗−𝑘). Note that this probability is non-zero only
if an edge between vertices 𝑣𝑖−1 and 𝑣𝑖 exists.We compute the transi-
tion probability following a randomwalkmodel, e.g., DeepWalk [41]
which is a first-order random walk. In DeepWalk, a walker, which
is currently residing at a vertex, consults solely its neighbours to
derive the transition probability to select the next vertex for a ran-
dom walk to visit. For instance, the walker producing walk𝑤0 (see

Figure 3) moves from vertex 𝑣1 to 𝑣3 with probability 1
3 , as 𝑣1 has

three neighbours, namely 𝑣0, 𝑣2, and 𝑣3 (Figure 2a).
The set of random walks extracted from a graph is referred to

as walk corpus. Figure 3 shows an excerpt of a walk corpus that
contains a set of random walks for 𝑛𝑤 = 1 and 𝑙 = 5, where 𝑛𝑤
is the number of walks that initiate from each vertex and 𝑙 is the
length of each walk in W. As the graph evolves fast, walks can
become inconsistent, and even in certain cases invalid: A random
walk is inconsistent when it does not reflect the graph transition
probabilities correctly; An invalid random walk, in contrast, is an
inconsistent walk that has been disrupted by an edge deletion and
it cannot be recreated in the updated graph. Note that in the sequel,
whenever it is not necessary to differentiate between inconsistent
and invalid walks we refer to them simply as affected.

We illustrate both inconsistent and invalid random walks in the
walk corpus of Figure 3. Assume that the edge deletion of {4, 7}
happens before the edge addition of {2, 8} in the example graph of
Figure 2a. In this case, 𝑤2 becomes inconsistent as the transition
probabilities for a walker residing on graph vertex 𝑣2 change and
thus we need to refine all subsequent walk vertices of 𝑤2. Also,

358

𝑤4 becomes invalid due to the edge deletion, and at the same time
inconsistent as the transition probabilities of vertex 𝑣4 change.

Ideally, we want to update only those random walks that become
inconsistent or invalid after a graph update. Updating one of these
walks means updating all its affected vertices, i.e., those vertices that
make the random walk inconsistent or invalid. This is because they
might not match the transition probabilities of the updated graph
G𝑡+1. For instance,𝑤2 becomes inconsistent and we need to refine
all subsequent walk vertices of walk𝑤2, e.g., producing an updated
walk 𝑣2, 𝑣3, 𝑣5, 𝑣4, 𝑣2. In our work, we choose to refine both invalid
and inconsistent walks, to ensure statistical indistinguishability.
In specific, we say that a walk corpus is up-to-date when it is
statistically indistinguishable [44], which we define as follows:

Property 2 (Statistical Indistinguishability). Awalk corpus

W′, resulting from updating a walk corpus W after a graph update

𝛿G, is statistically indistinguishable if it is equi-probable with a new

walk corpus that is generated from scratch on graph G′
= G + 𝛿G.

3.3 Streaming Random Walks

We now formally define the problem of computing streaming ran-

domwalks. Specifically, we aim at representing walk corpuses space-
efficiently, enabling incremental updates, and allowing for fast
walks access. In the sequel, we refer to a specific random walk
algorithm as random walk model. Formally:

Problem Statement. Given a random walk modelM, we define

the problem of streaming randomwalks as (i) maintaining and storing

in main memory a walk corpus W that is generated based on M,

(ii) ensuring that W is always statistically indistinguishable, and

(iii) updatingW incrementally without recomputing it from scratch.

4 GRAPH-WALK STRUCTURE

Our goal is to come up with a data structure that stores the random
walk corpus together with the streaming graph. In this way, we can
both speed up the update process and reduce the required storage
space. In addition, we aim at indexing the random walks so that
we can quickly locate the (parts of) random walks that require
updating and keep them up-to-date with the graph updates. One
may think that maintaining a simple inverted index for the walks
suffices for fast access, yet it is not efficient for updating walks in a
streaming scenario as we will show in the experimental evaluation.

In a nutshell, we propose a hybrid-tree data structure (Section 4.1)
that aims at tackling both the challenge of efficiency and space. The
hybrid-tree not only enables efficient graph updates, but also effi-
cient access to random walks, and consequently, efficient random
walk updates by avoiding calculating all walks from scratch. We
store random walks as a set of triplets within the hybrid-tree (Sec-
tion 4.2). We use pairing functions with ordering properties to
encode the derived triplets into integers and reduce space. (Sec-
tion 4.3). This allows us to further compress the random walks
using difference encoding (Section 4.4).

4.1 Hybrid Tree

We illustrate the hybrid-tree data structure in Figure 4. The hybrid
tree is a tree-of-trees where each node of the outer tree consists of
an id and two trees. All the vertices of the graph are stored in the

3

1 5

0 2 4 7

6 8

s6

edge 

tree

walk 

tree
vertex  

tree

s3

s1 s2 s7
 s8

s4
 s5
 s9

V3v2 v4
 v7

edge-tree of vertex 5

walk-tree of vertex 5

Figure 4: Wharf’s hybrid-tree. The edge-tree of vertex 5 con-

tains its neighbors (𝑣2, 𝑣3, 𝑣4, 𝑣7) as shown in Figure 2a and the

walk-tree of vertex 5 contains the encoded triplets (𝑠1, . . . , 𝑠9)

that correspond to 𝑣5’s entries in the corpus of Figure 3.

outer tree, which we call vertex-tree (outer gray nodes in Figure 4).
Each vertex in the vertex-tree (outer tree) stores the identifiers of
its adjacent neighbours in a C-tree, which we call edge-tree (inner
left blue tree). In addition, each outer vertex also stores the parts
(vertices) of the randomwalks in which it participates in a second𝐶-
tree, which we call walk-tree (inner right yellow tree). Specifically,
a hybrid-tree enables both fast access to a specific entry of a vertex
in a random walk and storing large walk corpuses.

The hybrid-tree is a two-level tree structure that has 𝑂 (log𝑛)
overall depth using any balanced binary tree implementation. For
the vertex-tree, as well as for storing the heads of the edge-trees and
walk-trees, we use a parallel augmented map (PAM) [52], as they
enable safe parallelism and lightweight snapshots. In our design,
the edge- and walk-trees are subcomponents to ensure that once we
acquire a snapshot of the purely-functional vertex-tree, we directly
gain access to the state of both the graph and the walk corpus.
Note that we represent the edge- and walk-trees with the 𝐶-tree
structure as it allows for safe parallelism, lightweight snapshots,
strict query serializability, efficient space usage, and cache locality.

4.2 Walk Triplet Representation

We utilize a triplet-based representation to store a random walk
within the walk-tree: For each vertex of the graph, we keep the
walk id that the vertex participates in, the position of the vertex in
the walk, and the next vertex of the random walk.

In detail, each vertex 𝑣 in a corpusW can be uniquely described
by the pair (𝑤𝑖 , 𝑝 𝑗), where 𝑤𝑖 is the walk it participates in, with
𝑖 ∈ {1, ..., |W|}, and 𝑝 𝑗 is the position of 𝑣 in𝑤𝑖 where 𝑗 ∈ {1, ..., 𝑙}.
In other words, a pair (𝑤𝑖 , 𝑝 𝑗) serves as the coordinates of the ver-
tex in the corpusW and thus, when seeking for 𝑣 , this pair behaves
as its search key. We, thus, denote with 𝑣𝑤𝑖 ,𝑝 𝑗 the identifier of a
vertex 𝑣 ∈ W. Note that a vertex may appear multiple times in a
walk corpus as well as in the same walk. Instead of storing raw walk
sequences, we group the walk triplets by vertex identifier and store
them in their corresponding walk-trees of the hybrid-tree structure
associated with the appropriate vertex of the vertex-tree. This en-
ables fast access to specific vertices of walks in the corpus and space

efficiency.However, instantly accessing an affected vertex in the cor-
pus is not enough. We should also be able to traverse a walk so that
we can update it efficiently. To achieve this, we maintain the vertex

359

identifier of the next node, 𝑣𝑤𝑖 ,𝑝 𝑗+1 at position 𝑝 𝑗+1 in a walk𝑤 as
the third element of a walk triplet. We thus represent each vertex
𝑣𝑤𝑖 ,𝑝 𝑗 with a walk triplet of the form (𝑤𝑖 , 𝑝 𝑗 , 𝑣𝑤𝑖 ,𝑝 𝑗+1). Ultimately,
these walk triplets serve for both storing and traversing any random

walk sequence efficiently. For example, in the corpus of Figure 3,
walk𝑤0 can be represented as a sequence of the following triplets:
(𝑤0, 𝑝0, 𝑣1), (𝑤0, 𝑝1, 𝑣3), (𝑤0, 𝑝2, 𝑣5), (𝑤0, 𝑝3, 𝑣4), (𝑤0, 𝑝4, 𝑣4). Note
that the position numbering starts from 0 and that for the last
vertex of a walk, the next vertex of its walk triplet has the same
vertex id with the vertex itself denoting the end of the walk1.

4.3 Walk Triplet Pairing

Storing integer values instead of entire triplets objects achieves
great space savings. This is not only because of the object footprint
but also because it allows for difference encoding. We, thus, convert
the walk triplets into integers to store them in the 𝐶-trees. Our
main idea is to encode each walk triplet into a unique integer via
a pairing function. We could easily achieve this encoding by two
invocations of a pairing function: encoding the first two elements
of the triplet into a paired value and then encode again the paired
value with the third element. Yet, pairing comes at a cost. Recall
from Section 2 that for two operands that are up to 𝑁 bits, Szudzik
pairing function returns a 2𝑁 -bit number. Thus, the fewer pairing
function invocations, the smaller the encoded walk triplet values.

We, thus, reduce the number of pairing function invocations
by first encoding the walk identifier of a vertex along with its
position in the corresponding walk together into a single number.
Specifically, for a walk triplet (𝑤𝑖 , 𝑝 𝑗 , 𝑣𝑤𝑖 ,𝑝 𝑗+1) and given that the
length of𝑤𝑖 is 𝑙 , we devise the following function to encode𝑤𝑖 and
𝑝 𝑗 into a single integer: 𝑓 (𝑤𝑖 , 𝑝 𝑗) = 𝑤𝑖 × 𝑙 + 𝑝 𝑗 . We, then, invoke
Szudzik once to pair the output of this function, 𝑓 (𝑤𝑖 , 𝑝 𝑗), with the
identifier of the next node in the walk, 𝑣𝑤𝑖𝑝 𝑗+1 : ⟨𝑓 (𝑤𝑖 , 𝑝 𝑗), 𝑣𝑤𝑖 ,𝑝 𝑗+1 ⟩.
When we unpair an encoded walk triplet, we retrieve the walk id

and position from 𝑓 as follows:𝑤𝑖 =
⌊

𝑓
𝑙

⌋

and 𝑝 𝑗 = 𝑓 mod 𝑙 .

Note that 𝑝 is upper bounded by 𝑙 , and thus, we can utilize the simple
function 𝑓 to encode𝑤 and 𝑝 as well as revert to the original values
with the above-mentioned equations. However, in the streaming
setting there is no upper bound for 𝑣𝑤𝑖 ,𝑝 𝑗+1 , so we rely on a pairing
function for the final encoding. Specifically, we used the Szudzik
function because it ensures that for two 𝑁 -bit integer arguments,
its value is at most a 2𝑁 -bit integer, and thus, guarantees that there
will be no integer overflows. For instance, in our running example
for triplet (𝑤0, 𝑝0, 𝑣1), we invoke 𝑆𝑧𝑢𝑑𝑧𝑖𝑘 ⟨𝑤0 × 𝑙 +𝑝0, 𝑣1⟩ to get the
integer value that we will insert in the 𝐶-tree. Thus, function 𝑓 , as
well as 𝑣𝑤,𝑝 𝑗+1 , must be at most 𝑁 -bit numbers. Formally:

𝑓 (𝑤, 𝑝) = 𝑤 × 𝑙 + 𝑝 ≤ 2𝑁 − 1∧ 𝑣𝑤,𝑝 𝑗+1 ≤ 2𝑁 − 1, 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑗+1 ≤ 𝑙
which dictates the cap of maximum values for 𝑤 , 𝑙 , and 𝑣𝑤,𝑝 𝑗+1 .
Encoded triplets go in the walk-tree of the vertex they correspond.

Let us now illustrate how thewalk- and edge-trees in our running
example are populated. Focusing on vertex 𝑣5, assume that it only
appears in the walks that are shown in Figure 3 as well as in the
first position of𝑤5 with 𝑣7 as its next vertex (not shown). Figure 4
shows the contents of 𝑣5’s walk-tree. The walk triplets of vertex
𝑣5 are: (𝑤0, 𝑝3, 𝑣4), (𝑤1, 𝑝3, 𝑣6), (𝑤2, 𝑝2, 𝑣3), (𝑤3, 𝑝1, 𝑣3), (𝑤3, 𝑝3, 𝑣3),
1Note that we can use any other termination identifier such as the integer −1.

(𝑤4, 𝑝1, 𝑣6), (𝑤5, 𝑝0, 𝑣7), (𝑤8, 𝑝2, 𝑣4), (𝑤8, 𝑝4, 𝑣5). After the encoding
we get the integer values 𝑠1, 𝑠2, . . . , 𝑠9, respectively, where 𝑠1 <

· · · < 𝑠9 holds without loss of generality (w.l.g.) As we see in
Figure 4,Wharf stores the encoded triplets monotonically inside
the walk-tree and 𝑠3, 𝑠6, 𝑠9 are selected as head vertices. In addition,
Figure 4 shows the edge-tree of 𝑣5 that contains its neighbours
in our running example graph (Figure 2a), which are 𝑣2, 𝑣3, 𝑣4, 𝑣7.
Assuming that 𝑣2 < 𝑣3 < 𝑣4 < 𝑣7 (w.l.g.), they are monotonically
stored inside 𝑣5’s edge-tree (𝑣3 acts as head).

4.4 Walk Triplet Compression

It is worth noting that pairing invocations produce numbers that
are much larger than their arguments, which incurs a large stor-
age overhead. Difference encoding (DE) alleviates this problem, as
we store only the differences of the integers that correspond to
encoded walk triplets in each chunk. More specifically, we exploit
the fact that trees store elements (integer values) in sorted order
in chunks to further compress the data structure. Given a chunk
containing 𝑑 integers, {𝐼1, 𝐼2, . . . , 𝐼𝑑 }, we compute the differences
{𝐼1, 𝐼2−𝐼1, . . . , 𝐼𝑑−𝐼𝑑−1} and encode them using a variable byte-code
[49]. Note that after encoding the walk triplets with the Szudzik,
we store them monotonically in increasing order in the𝐶-trees, and
thus, the differences produced by the DE are always non-negative.
Clearly, the difference encoding scheme applied to the chunks coun-
terbalances the fact that we store łbigž numbers produced by the
pairings. Note that each chunk must be processed sequentially,
namely decompressed and then re-compressed as a whole. The cost
of the sequential decoding does not affect the overall work or depth
of parallel tree methods, as the size of each chunk is small (𝑂 (log𝑛)
w.h.p.) for a constant chunking parameter 𝑏. Similarly, chunks must
be re-compressed when receiving updates, which has a cost on par
with the cost of decompressing the chunks.

4.5 Space Complexity

Let us now elaborate on the memory footprint thatWharf needs
to store the walks. Assume we use 𝐵-bit integers, Wharf needs 𝐵
bits for each encoded walk triplet. The total number of walk triplets
in a walk corpus is |𝑊 | = 𝑛 ∗ 𝑛𝑤 ∗ 𝑙 , where 𝑛 is the number of
vertices in the graph, 𝑛𝑤 is the walks per vertex, and 𝑙 is the length
of each walk. Therefore,Wharf needsΘ(|𝑊 |×𝐵) space to store the
walks. This is because we have one encoded walk triplet for each
vertex in the walk corpus. On the other hand, a simplistic inverted
index-based solution similar to [18] that stores the whole walk
corpus sequentially needs Θ(|𝑊 | ×𝐵) space for the walk sequences.
Additionally, for the inverted index that relates each vertex id with
the set of walk ids it participates, it needs 𝑂 (2 × |𝑊 | × 𝐵) space.
Thus, total space complexity ends up being 𝑂 (3 × |𝑊 | × 𝐵).

5 OPTIMIZED SEARCH

Before delving into the details of how we update random walks, we
first discuss one of the factors that makeWharf highly performant
in updating random walks: its capability to search in walk-trees so
that walk traversal is possible. Traversing walk-trees is challenging
for two reasons. First, a random walk is represented as a set of
triplets stored under different vertices of the vertex-tree. Second,
the only available information in a walk-tree is unique integer

360

Algorithm 1 FindNext

1: Input: walk-tree𝑊𝑇 , walk id𝑤 , position 𝑝
2: Output: next vertex 𝑣𝑤,𝑝+1
3: 𝑙𝑏 = ⟨𝑤 × 𝑙 + 𝑝,𝑊𝑇 .𝑣𝑚𝑖𝑛𝑤,𝑝+1⟩ ⊲ lower bound search range

4: 𝑢𝑏 = ⟨𝑤 × 𝑙 + 𝑝,𝑊𝑇 .𝑣𝑚𝑎𝑥𝑤,𝑝+1⟩ ⊲ upper bound search range

5: if𝑊𝑇 is 𝐸𝑚𝑝𝑡𝑦 then

return null
6: else if𝑊𝑇 .𝑝𝑟𝑒 𝑓 𝑖𝑥 is 𝐸𝑚𝑝𝑡𝑦 then

return TraverseTree(𝑊𝑇 .𝑡𝑟𝑒𝑒.𝑟𝑜𝑜𝑡,𝑤, 𝑝, 𝑙𝑏,𝑢𝑏)
7: else

8: if 𝑢𝑏 ≥𝑊𝑇 .𝑝𝑟𝑒 𝑓 𝑖𝑥 .𝑓 𝑖𝑟𝑠𝑡 or 𝑙𝑏 ≥𝑊𝑇 .𝑝𝑟𝑒 𝑓 𝑖𝑥 .𝑙𝑎𝑠𝑡 then

return ExamineChunk(𝑊𝑇 .𝑝𝑟𝑒 𝑓 𝑖𝑥)
9: else

return TraverseTree(𝑊𝑇 .𝑡𝑟𝑒𝑒.𝑟𝑜𝑜𝑡,𝑤, 𝑝, 𝑙𝑏,𝑢𝑏)
10: end if

11: end if

values, which are the encoded triplets. In particular, given a vertex
𝑣 of a random walk𝑤 , the operation for finding the next vertex is
essentially searching for a triplet (𝑤, 𝑝, ∗), but without knowing
the actual value of its third element. Thus, when seeking the next
vertex in a walk of the corpus, the pair {𝑤, 𝑝} serves as a search key.
The fact that walk-trees are filled with integer values representing
encoded triplets, prevents us from directly using the search key to
find the triplet we are looking for. A trivial way of finding it would
be to visit each vertex of the walk-tree, decode its encoded triplets
to retrieve the original ones, and check if one of them corresponds
to walk 𝑤 at position 𝑝 . In the worst case, we would decode all
elements in the tree even if the triplet does not exist. The complexity
of this process is𝑂 (𝑛) where 𝑛 is the number of elements in a walk-
tree, which is prohibitive for large-scale streaming graphs. Next,
we describe an efficient search algorithm based on range queries.

5.1 Search Space Pruning

We start by describing how we enable efficient searching over walk-
trees without necessarily decoding all walk triplets in the worst
case. The use of pairing functions is a calculated move, as they
have properties that enforce ordering among triplets of a walk-tree.
We leverage this ordering property to reduce the search space in a
walk-tree and hence achieve efficient search.

Based on Corollary 1, we can construct a search range [𝑙𝑏,𝑢𝑏]
for a vertex of walk𝑤 at position 𝑝 where:

𝑙𝑏 = ⟨𝑤 × 𝑙 + 𝑝, 𝑣𝑚𝑖𝑛𝑤,𝑝+1⟩ and 𝑢𝑏 = ⟨𝑤 × 𝑙 + 𝑝, 𝑣𝑚𝑎𝑥𝑤,𝑝+1⟩

𝑣𝑚𝑖𝑛𝑤,𝑝+1 and the 𝑣𝑚𝑎𝑥𝑤,𝑝+1 are the minimum and maximum next vertex

ids that appear in all the walk triplets of the walk-tree, respectively.
We calculate the pair {𝑣𝑚𝑖𝑛𝑤,𝑝+1, 𝑣

𝑚𝑎𝑥
𝑤,𝑝+1} at the time we construct a

tree and refine it when we update the random walks. Conceptually,
the search range is a subset of the range [𝑚𝑖𝑛,𝑚𝑎𝑥] where:

𝑚𝑖𝑛 = ⟨𝑤𝑚𝑖𝑛 × 𝑙 + 𝑝𝑚𝑖𝑛, 𝑣𝑚𝑖𝑛𝑤,𝑝+1⟩ and𝑚𝑎𝑥 = ⟨𝑤𝑚𝑎𝑥 × 𝑙 + 𝑝𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥𝑤,𝑝+1⟩

The𝑚𝑖𝑛 and the𝑚𝑎𝑥 are the global minimum and global maximum
encoded values that can be possibly found in a walk-tree. Conse-
quently, the range [𝑚𝑖𝑛,𝑚𝑎𝑥] encloses all the walk triplets inside
the tree. [𝑙𝑏,𝑢𝑏] ⊆ [𝑚𝑖𝑛,𝑚𝑎𝑥] holds for the two aforementioned

ranges. Therefore, if the walk triplet exists in the walk-tree, its
encoded value must exist inside the range [𝑙𝑏,𝑢𝑏].

5.2 Next Vertex Search

Algorithm 1 illustrates the FindNext operation which intuitively
performs a range query in the reduced search range as defined above.
The algorithm receives as input a walk-tree𝑊𝑇 , a walk identifier
𝑤 , and a position 𝑝 , and returns the vertex 𝑣𝑤,𝑝+1 at position 𝑝 + 1

of walk𝑤 . We initiate our search from the prefix part of the walk-
tree (Lines 3-4). If the triplet is not found inside the prefix, then
we continue the search in the tree part of the walk-tree. Note that
Algorithm 1 calls the TraverseTree(𝑟𝑜𝑜𝑡,𝑤, 𝑝, 𝑙𝑏,𝑢𝑏) procedure
(Lines 6 and 9), which recursively traverses the tree part of a walk-
tree while searching for matching walk triplets. As pointed out in
[15], it is quite important to efficiently compute the first and last
elements of a chunk 𝑐 , i.e., the 𝑐 𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑙𝑎𝑠𝑡 , respectively. Recall
a chunk stores the encoded triplets. Of course, 𝑐 𝑓 𝑖𝑟𝑠𝑡 < 𝑐𝑙𝑎𝑠𝑡 holds.
To avoid scanning whole chunks, the first and last elements are
stored at the head of each chunk for fetching 𝑐 𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑙𝑎𝑠𝑡 in
𝑂 (1) work and depth. This modification is important to ensure that
FindNext can be done in 𝑂 (𝑏 log𝑛 + 𝑘) work and depth w.h.p. on
a walk-tree, where 𝑘 is the number of encoded triplet values lying
within this search range of𝑊𝑇 . We can skip searching in a chunk
𝑐 (either in the prefix or in the tree) if 𝑢𝑏 < 𝑐 𝑓 𝑖𝑟𝑠𝑡 or 𝑙𝑏 > 𝑐𝑙𝑎𝑠𝑡 ,
because all the encoded triplets inside 𝑐 are outside the search range
(Line 9). It is worth noting that as the tree part of𝑊𝑇 is actually a
binary search tree and its encoded triplets are stored in increasing
order, we search it by conducting an in-order traversal.

5.3 Complexity

We now discuss the complexity of our optimized search algorithm
for finding a walk triplet at position 𝑝 of walk𝑤 in a walk-tree𝑊𝑇 ,
and in a search range [𝑙𝑏,𝑢𝑏] of triplets encoded via a (constant
work) pairing function. We conduct two root-to-leaf path searches
based on the [𝑙𝑏,𝑢𝑏] range, which have complexity𝑂 (𝑏 log𝑛). The
range essentially dictates which łinternalž walk-tree nodes that are
enclosed in these two paths to search exhaustively. Then, assuming
there are 𝑘 = |{𝑒 |𝑒 ∈WT and 𝑒 ∈ [𝑙𝑏,𝑢𝑏]}| leaves between the
leaves of the two aforementioned search paths, we have to traverse
them all, which has 𝑂 (𝑘) complexity. Finally, the total complexity
for the output-sensitive range search is 𝑂 (𝑏 log𝑛 + 𝑘).

6 UPDATING RANDOMWALKS

Wharf applies walk updates in batches and in parallel. It receives
graph additions and deletions and buffers them to apply them in
bulk. This allowsWharf to perform fast walk updates. It identifies
the affected vertices, while updating the graph, and updates all those
random walks that contain them. This is important as the number
of affected vertices are several orders of magnitude smaller than
the total number of vertices. Next, we describe how we compute
and update the structure that keeps the affected vertices every time
a batch of updates arrives. Then, we present our update algorithm,
whose input includes the computed affected vertices structure.

361

6.1 Map of Affected Vertices

We construct a map of affected vertices (𝑀𝐴𝑉), while processing
a graph update, to be able to update only the affected vertices. In
a nutshell, the 𝑀𝐴𝑉 is responsible for bookkeeping key affected
vertices in each affected walk. Note that in each affected walk the
first encountered affected vertex is of special importance. This is
because some of (if not all) the transition probabilities with which
we sampled the subsequent vertices do not match the new probabil-
ities in the updated graph. Using walks that do not reflect the graph
structure accurately can lead to low accuracy of downstream tasks
that rely on them. We thus formally define the𝑀𝐴𝑉 as follows:

Definition 3 (Map of Affected Vertices ś MAV). A MAV is a

key-value map that contains affected vertices for each affected walk in

a walk corpus W: The key is the identifier of an affected walk𝑤 and

its value is the pair {𝑣𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛}, with 𝑣𝑚𝑖𝑛 being the first affected

vertex in𝑤 located at position 𝑝𝑚𝑖𝑛 .

We compute the𝑀𝐴𝑉 as follows. Assume, without loss of gen-
erality, a batch of graph updates, 𝛿G, containing undirected edges:
with each edge 𝑒 = (𝑠, 𝑑) ∈ 𝛿G being treated as two directed edges,
namely, one 𝑒1 initiating from a source vertex 𝑠 to a destination
vertex 𝑑 and another 𝑒2 starting from 𝑑 to 𝑠 . Once an edge is incor-
porated into the appropriate edge-trees (one for each direction), it
may render an existing walk in the maintained corpus inconsistent
or even worse invalid. Specifically, based on the edge update (either
insertion or deletion), we identify the affected walks and vertices
from the walk-trees. We distinguish the following two cases with
respect to an updated edge 𝑒1 (similarly for the other direction 𝑒2):
(1) Edge Insertion: After the insertion of an edge 𝑒1, any walk
𝑤 ∈ W containing vertex 𝑠 becomes inconsistent because its tran-
sition probability is not the same anymore; In this case, we insert
(𝑤, {𝑠, 𝑝𝑠 }), where 𝑝𝑠 is the position of 𝑠 in𝑤 , into the𝑀𝐴𝑉 if an
entry for𝑤 does not exist, otherwise, we update its entry with the
pair {𝑠, 𝑝𝑠 }, if 𝑝𝑠 is smaller than the current 𝑝𝑚𝑖𝑛 .
(2) Edge Deletion: After the deletion of an edge 𝑒1, any walk𝑤 ∈ W
containing vertex 𝑠 becomes inconsistent, but it is invalid if it also
contains a transition from 𝑠 to 𝑑 ; We update the𝑀𝐴𝑉 exactly as in
the case of edge insertion. Our hybrid-tree allows us to efficiently
update the 𝑀𝐴𝑉 , as we only have to search the walk-tree of the
source vertex that belongs to an edge addition/deletion.

6.2 Batch Walk Update

The main idea is to translate a batch of graph updates into a batch
of walk updates. We do so by populating an insertion accumulator

which gathers the encoded triplets that correspond to the newly
sampled vertices and then bulk-insert them in the corresponding
walk trees. A merge process then evicts the obsolete walk triplets.

As a walk corpus must remain statistically indistinguishable, we
adopt the following update policy: 2 We update both inconsistent
and invalid walks by deleting and re-sampling all affected vertices
of an affected walk starting from the first affected vertex at position
𝑝𝑚𝑖𝑛 until the last vertex at position 𝑝𝑙 . For instance, Figure 5 shows
that walk𝑤2 of our running example is inconsistent, and we thus
need to re-sample from its second vertex onward.

2Yet, note that the walk update policy is orthogonal to our algorithm.

2 3 5 3 0

6 5 3 1

inconsistent

new

w2 :

3

1 5

insertion

d
e
le
ti
o
n

Figure 5: Running example of BatchWalk Update algorithm.

Algorithm 2 BatchWalkUpdate

1: Input: hybrid-tree H , map𝑀𝐴𝑉 , walk model M
2: Output: updated hybrid-tree H
3: do in parallel

4: // Sampling of new walk parts
5: for𝑤 ∈ 𝑀𝐴𝑉 do in parallel ⊲ for each affected walk
6: 𝑛𝑒𝑤_𝑣𝑒𝑟 = 𝑣𝑤,𝑝𝑚𝑖𝑛

7: for 𝑝 = 𝑝𝑚𝑖𝑛, . . . , 𝑙 − 1 do ⊲ rewalk from 𝑝𝑚𝑖𝑛 < 𝑙

8: 𝑛𝑒𝑤_𝑣𝑒𝑟 = sampleNext(𝑛𝑒𝑤_𝑣𝑒𝑟,H ,M)
9: I = I ∪ EncodeTriplet(𝑤, 𝑝, 𝑛𝑒𝑤_𝑣𝑒𝑟)
10: end for

11: I = I ∪ EncodeTriplet(𝑤, 𝑙, 𝑛𝑒𝑤_𝑣𝑒𝑟) ⊲ last vertex
12: end for in parallel

13: // Evict obsolete walk triplets
14: if 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 then

15: Merge(H ,𝑀𝐴𝑉)
16: end do in parallel

17: MultiInsert(H ,I)
18: returnH

Wharf allows a vertex in the hybrid-tree to have more than one
walk-tree version, each containing walk triplets corresponding to a
distinct batch edge update.Wharf stores the walk-tree versions un-
der a vertex in the order that it creates them. Furthermore, it utilizes
a Merge operation that consolidates all the walk-tree versions of a
vertex into a single one, after evicting all the obsolete walk-triplets.
In specific, it scans the hybrid-tree in parallel, consults the MAV to
check which triplets are still valid, and removes the obsolete ones.
Wharf uses an on-demand policy, which corresponds to merging
walk-trees only when requested, e.g., when a downstream opera-
tion requests for the random walks. Different policies with different
throughput-memory trade-offs are also possible but we choose the
on-demand one because it achieves the highest throughput.

Algorithm 2 shows the pseudocode of the process to update
random walks. It takes as input the hybrid-tree,H , the𝑀𝐴𝑉 , and
the walk model M. For each affected walk that appears in the
𝑀𝐴𝑉 (Line 5), we first initialize the vertex pointer for re-walking𝑤
(Line 6). We, then, re-walk from this vertex pointer, i.e., the vertex
at the minimum affected position (Line 7), and fill the insertion
accumulator I (Lines 8-11). In detail, if we are not yet at the end
of 𝑤 (Line 11), we sample a new vertex with the new transition
probability (Line 9). Note that depending on the utilized walk model
M we must initialize the MH samplers [59] accordingly. For in-
stance, when we use DeepWalk only the current vertex is needed
for sampling the next vertex, however, when we use node2vec we

362

need to access the previous vertex id before 𝑝𝑚𝑖𝑛 for initializing
the samplers. Subsequently, we encode the triplet of the new ver-
tex (Lines 9 & 11). As a result, I maintains all the encoded walk
triplets (i.e., integer values) that should be inserted grouped by
vertex identifier. In Figure 5, we see𝑤2, which is affected, and an
excerpt of the hybrid-tree, namely, vertices 𝑣1, 𝑣3, 𝑣5. The newly
sampled vertices (circled in green) are converted into walk triplets
and then are batch-inserted to the corresponding walk-trees of 𝑣1,
𝑣3, and 𝑣5 (green arrows indicate insertion operations).

While we are running the re-walking process, we run theMerge

process in the background to delete the obsolete walk parts from
the walk-trees (Lines 14 & 15). In the example of Figure 5, the merge
process is triggered in parallel with the sampling of new vertices to
delete𝑤2’s inconsistent walk triplets (circled in orange) from the
corresponding walk-trees, e.g., of 𝑣3 and 𝑣5 (orange arrows show
deletion operations). Note that merge consolidates potentially mul-
tiple walk-tree versions, e.g., of 𝑣5 (more than one yellow trees).
Finally, we apply the batch insertions of the newly generated walk
parts (Line 17). Note that we use theMultiInsert method for ap-
plying batch updates to 𝐶-trees [15]. As an outcome, the algorithm
produces the hybrid-tree H with the updated walk corpus that is
statistically indistinguishable from a corpus generated from scratch.

6.3 Complexity and Correctness

Let us now elaborate on the time complexity of Algorithm 2 in terms
of number of walk triplets that are inserted and deleted. We have
to update 𝑎 = |𝑀𝐴𝑉 | affected walks. Precisely, we should insert in
the hybrid-tree after re-walking, |I | = ∑𝑖=𝑎

𝑖=1 (𝑙 − 𝑝𝑖𝑚𝑖𝑛) = 𝑂 (𝑎 × 𝑙)
walk-triplets, where 𝑝𝑖𝑚𝑖𝑛 is the minimum affected position of the

𝑖𝑡ℎ affected walk in the 𝑀𝐴𝑉 . The batch insertion is done by the
MultiInsert [15], which has a complexity of 𝑂 (|I| log |𝑊 |) work
overall, and 𝑂 (log3 |𝑊 |) depth, where |𝑊 | = 𝑛 ∗ 𝑛𝑤 ∗ 𝑙 is the total
number of walk-triplets in a walk corpus,𝑛 is the number of vertices
in the graph, 𝑛𝑤 is the walks per vertex, and 𝑙 the length of each
walk. Therefore, the complexity of Algorithm 2 is 𝑂 (|I| log |𝑊 |)
work and 𝑂 (log3 |𝑊 |) depth. An inverted index-based solution
needs Θ(∑𝑖=𝑎𝑖=1 𝑝𝑖𝑚𝑖𝑛) time to construct the 𝑀𝐴𝑉 , as it traverses
an affected walk from its first vertex till its 𝑝𝑚𝑖𝑛 . Additionally, it
has to update the affected walk parts like Wharf, and thus, the
total complexity is Θ(𝑎 × 𝑙) = Ω(|I|). Hence, the complexity of an
inverted index solution is greater than that of Wharf.

Theorem 1 (Correctness). Wharf updates the random walks in

a walk corpus, such that they remain statistically indistinguishable.

Proof sketch. Fix a random walk 𝑤 ∈ W, where W is the
maintainedwalk corpus. Let (𝑠, 𝑑) be an undirected edge that gets in-
serted (w.l.g.) into the graph.We discern the following two cases:
(1) 𝑠 ∉ 𝑤 and 𝑑 ∉ 𝑤 . As none of the two endpoints of the incoming
edge are łcoveredž by𝑤 , the transition probabilities with which𝑤
was sampled, using an walk model of up to second-order, do not
change. Specifically, in first-order walks (e.g., DeepWalk), a vertex
𝑣 uniformly samples one of its neighbors as the next vertex in 𝑤 .
Thus, the transition probabilities between vertices in𝑤 stay intact
and hence𝑤 remains valid. In second-order walks (e.g., node2vec),
a vertex 𝑣 (with 𝑣𝑝𝑟𝑒𝑣 as the previous vertex in𝑤) non-uniformly
samples one of its neighbors as the next vertex in𝑤 : It does so with

a probability that depends on whether the next vertex is (or isn’t)
connected with 𝑣𝑝𝑟𝑒𝑣 , or the next vertex is actually 𝑣𝑝𝑟𝑒𝑣 [17]. As
𝑠 ∉ 𝑤 and 𝑑 ∉ 𝑤 , the transition probabilities of𝑤 remain intact.
(2) 𝑠 ∉ 𝑤 but 𝑑 ∈ 𝑤 . When one endpoint is not łcoveredž by 𝑤 ,
Wharf incorporates 𝑑 into the edge-tree of vertex 𝑠 as well as 𝑠 into
the edge-tree of vertex 𝑑 right after the insertion of the undirected
edge (𝑠, 𝑑). Wharf also checks the walk-tree of 𝑠 , and the one of 𝑑 ,
where it finds the corresponding walk triplet belonging to 𝑑 , and
thus, identifies that 𝑤 is affected and proceeds to update it. This
holds for both first- and second-order walks.

□

7 EXPERIMENTAL EVALUATION

We evaluateWharf using a variety of large-scale real-world and
synthetic graphs and investigate: how efficient it is in terms of
throughput, latency, and space; how it scales to large graphs and
batch sizes; how it behaves in the presence of data skew; how its
range search and merge policy drives its performance; and whether
it can enable high accuracy on downstream tasks.

7.1 Setup

Hardware. We ran our experiments on a server with a 24-core
Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz and 1.5TB of main
memory. Our prototype uses the work-stealing scheduler in [15],
which is implemented similarly to Cilk for parallelism.We compiled
our programs with the g++ compiler (version 9.2.1) having the -O3
flag and ran all our experiments five times and report the average.
Implementation.We implementedWharf in C++20 on top of As-
pen [15] and used weight-balanced trees as the underlying balanced
tree implementation [7, 52]. Note that Aspen’s current implementa-
tion supports storing up to 64-bit integers in𝐶-trees. Consequently,
each Szudzik operand in Wharf should be up to 32 bits. We stress
that this is not a limitation of Wharf, but of the 64-bit implemen-
tation of Aspen (on which we built). Yet,Wharf can still support
much larger graphs for PPR use cases where walks are shorter
(around 5-15 vertices long). As explained in [3], the theoretical
guarantees are preserved for 𝑛𝑤 = 10 and 𝑙 = 10, so Wharf can
scale to graphs with up to (232 − 1)/100 ≈ 42.94M vertices, such as
the Twitter dataset [25] as we show in our experiments. Note that
the walk mixing time [45, 46] depends only on the walking model.

Table 1: Datasets Statistics.

Graph Num. Vertices Num. Edges Avg. Degree

com-YouTube 1,134,890 2,987,624 5.30

soc-LiveJournal 4,847,571 85,702,474 17.80

com-Orkut 3,072,627 234,370,166 76.20

Twitter 41,652,230 1,468,365,182 57.70

Datasets. We used four real-world (Table 1) and eight synthetic
graph datasets: Real Graphs ś com-Youtube is an undirected graph
of the Youtube social network [57], soc-LiveJournal is a directed
graph of LiveJournal social network [2], com-Orkut is an undi-
rected graph of Orkut social network [57], and Twitter is a di-
rected graph of the Twitter network, in which edges model the

363

follower-followee relationship [25]; Synthetic Graphs ś We gener-
ated large-scale synthetic graphs sampled from the R-MAT model
[8]. Specifically, we used the TrillionG3 [40] tool to generate Erdős

Rényi, er-𝑘 , graphs with 2𝑘 nodes, uniformly distributed edges
and witha an average vertex degree of 100 by setting the R-MAT
parameters to 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0.25. Additionally, we varied 𝑘 from
16 to 22 to evaluate the scalability of Wharf. We also generated a
set of skewed graphs, sg-𝑠 , with 220 nodes with an average degree
of 10, while varying the skew. We set the R-MAT parameters (𝑎, 𝑏, 𝑐 ,
𝑑) so that the number of edges in the bottom-right part of the matrix
is about 𝑠 times the top-left part of the matrix. We set 𝑏 = 𝑐 = 0.25.
Thus, when 𝑠 = 1, there is no skew, while if 𝑠 > 1, R-MAT generates
power-law graphs. We varied 𝑠 from 1 to 7 with a step of 2.
Baselines. As there is no system that maintains streaming random
walks, we compared Wharf with approaches proposed in [18, 44],
which use an inverted index formaintainingwalks.We call this base-
line Inverted Index-based (II-based). Specifically, II-based main-
tains the walks separately from the graph in sequences of vertices
stored in vectors. We used a dictionary for storing the walks, where
the key is the walk id and the value is the walk sequence. Addi-
tionally, II-based maintains an inverted index that relates a vertex
id with the set of walk ids it participates. For fairness reasons, we
implemented a fully parallel version of II-based by utilizing concur-
rent hashtables4. We also used a Tree-based baseline, which stores
the walk-triplets into parallel balanced binary trees (a.k.a. parallel
augmented maps) [52]; a structure that provides highly parallel
operations and upon which 𝐶-trees are built.

7.2 Overall Performance

Throughput & Latency.We compareWharf with II-based and
Tree-based in terms of throughput, i.e., number of updated walks
per second, and latency, i.e., the average time for updating one
walk, when updating random walks. If not stated otherwise, we
use the DeepWalk [41] walking model with the default parameters,
i.e., 𝑛𝑤 = 10 walks per vertex of length 𝑙 = 80. For this experiment,
we used the real graphs and generated walks of default length for
the first three real datasets, whereas 𝑙 = 10 for twitter dataset. We
also produced batches of 10, 000 edges, which we sampled based
on the R-MAT [8] model with parameters 𝑎 = 0.5, 𝑏 = 𝑐 = 0.1, and
𝑑 = 0.3 to induce graph updates as in [15]. We inserted 10 such
batches in total and report the average throughput and latency.

Figure 6 illustrates the throughput and latency results. We ob-
serve that Wharf is superior to both baselines in all cases. It
achieves up to ∼ 2.6× higher throughput and 2× lower latency,
which is crucial for streaming applications. This is thanks to its
parallel MultiInsert and Merge operations that update different
parts of the walk corpus on the hybrid-tree simultaneously. The ad-
vantage of Wharf is more evident for the datasets where we used
larger walk lengths, such as Livejournal. Contrary to what one may
think the Szudzik encoding/decoding function calls required only
3.66% of the total time for walk updates in com-YouTube, 10.055%
in soc-LiveJournal, 7.797% in com-Orkut, and 12.815% in Twitter.

3https://github.com/chan150/TrillionG
4https://github.com/efficient/libcuckoo

YouTube Orkut LiveJournal Twitter
0

50

100

150

200

T
hr
ou
gh
pu
t
(K

w
/s
)

II-based Tree-based Wharf

(a) Throughput

YouTube Orkut LiveJournal Twitter
0

5

10

15

20

L
at
en
cy

(µ
s)

II-based Tree-based Wharf

(b) Latency

Figure 6: Performance of Wharf on real graphs.

Also, Wharf’s default (on-demand) policy for merging allows it
to achieve maximum throughput by only merging at the last batch.5

On the contrary, even though II-based uses parallelism, maintain-
ing the walks in sequences that should be scanned to get updated,
leads to reduced throughput due to thread contention. Tree-based
achieves poor throughput because of re-walking obsolete parts of
affected walks to remove them. Furthermore, during our experi-
ments we observed that the total time and throughput of updating
the walks for edge deletions is within 10% of the time required
for edge insertions. To illustrate this, we generated 5 batches of
edges and for each batch we alternately applied insertion and con-
sequently deletion, where each triggers updates of afffected walks.
Figure 7 shows the throughput of updating walks on soc-LiveJournal
due to insertions (I) and deletions (D) for batches of 10K and 100K
edges. As shown, the throughput of deletions is similar to that of
insertions. We got similar results for the other real datasets. In the
sequel, we show results only for edge insertions.

We thus conclude thatWharf is superior than the baselines and

its high throughput makes it suitable for streaming graphs.

Memory Footprint. We also compare the memory footprint of
Wharf with that of II-based and Tree-based. We aim to compare
the compression capabilities of Wharf’s data structure irrespective
of the merge policy 6, and thus, we report the memory needed after
merging. Note that, we also compareWharf with KnightKing [58]:
Wharf requires less than 30% more storage. Yet, we focus only on
II-based and Tree-based, because KnightKing (i) requires to build
the entire graph after every single update, (ii) does not store random
walks in any structure but outputs them in raw files, and (iii) offers
neither any efficient search nor update capabilities for the walks.

Figure 8a shows the total space thatWharf needs to store the
walk corpus. We show a breakdown of the memory needed by
II-based to store the walks and the memory needed to store the
inverted index. We observe thatWharf can store the walks with
up to 1.7× less space than II-based. Especially, we observe that
Wharf stores its walks using only 10.22 − 29.54% more space than
the space II-based uses for storing only the walks. For instance, in
soc-Livejournal, II-based requires 29.25 GB for the walks and 26.09

GB for the inverted index, whereasWharf stores the walks, which
are implicitly indexed, using 38.83 GB. As for the Tree-based, we ob-
serve that its memory footprint is ∼3.5−4.4× higher thanWharf’s,
because it stores the walk-triplets without any compression.

5As expected, there exists a throughput-memory trade-off: one can achieve higher
throughput at the price of a higher memory footprint by merging less frequently.
6One may find a discussion on the merge policy in the full version of our paper [47].

364

10 100

Batch Size (K edges)

0

50

100

150

200

T
hr
ou
gh
pu
t
(K

w
/s
)

II-based (I)

II-based (D)

Tree-based (I)

Tree-based (D)

Wharf (I)

Wharf (D)

(a) LiveJournal

Figure 7: Mixed workload.

YouTube Orkut LiveJournal Twitter
0

50

100

150

M
em

or
y
F
oo
tp
ri
nt

(G
B
)

II-based (Walks)

II-based (Index)

Tree-based

Wharf

(a) Real Datasets

5 10 15 40 80 120
Walk Length

0

25

50

100

150

200

M
em

or
y
F
oo
tp
ri
nt

(G
B
) II-based (Walks)

II-based (Index)

Tree-based

Wharf

(b) LiveJournal, varying 𝑙 , 𝑛𝑤 = 10

10 20
Walks per Vertex

0

100

200

300

M
em

or
y
F
oo
tp
ri
nt

(G
B
) II-based (Walks)

II-based (Index)

Tree-based

Wharf

(c) LiveJournal, varying 𝑛𝑤 , 𝑙 = 80

Figure 8: Memory footprint of Wharf on real graphs.

10 25 50 75 100
Batch Size (K edges)

0

50

100

150

200

T
hr
ou
gh
pu
t
(K

w
/s
)

II-based Wharf

(a) Throughput

10 25 50 75 100
Batch Size (K edges)

0

5

10

15

20

L
at
en
cy

(µ
s)

II-based Wharf

(b) Latency

Figure 9: Scalability as the batch size increases on com-Orkut.

Figures 8b and 8c illustrate the total memory footprint when
varying the walk length 𝑙 and the number of walks per vertex
𝑛𝑤 . We report the results only for the soc-LiveJournal dataset be-
cause we observed the same behaviour for the other real graphs.
Figure 8b shows a linear behaviour in terms of space consump-
tion with respect to the walk length.Wharf requires on average
∼1.5× less space than II-based and ∼3.76× less space than Tree-
based. Figure 8c shows again a linear behaviour with respect to
𝑛𝑤 , i.e., Wharf has on average ∼1.6× smaller memory footprint
compared to II-based and ∼3.77× smaller than Tree-based. These
space-savings are thanks to the use of pairing functions in combi-
nation with differential encoding in the chunks of walk-trees. The
reader might think of applying a simple compression technique in
II-based, but existing techniques for compressing inverted indexes
are neither trivial nor suitable for dynamic data [42]. Therefore,
we conclude that our proposed walk-tree structure enables Wharf to

store an indexed walk corpus space-efficiently.

Based on all the results above, we decided to discard the Tree-
based baseline, and keep only the II-based baseline, in the subse-
quent experiments: II-based is comparable to Tree-based, in terms
of throughput, while occupying much less space.

7.3 Scalability

Batch Size. We now demonstrate Wharf’s scalability when vary-
ing the batch size for edge insertions. We produced batches with
sizes 10, 25, 50, 75, and 100 thousand edges that we inserted in
com-Orkut. Notice that we omit the results for the other two real
datasets because they follow the same trend as for com-Orkut.

Figure 9a illustrates the throughput results, where the black
horizontal lines represent the minimum throughput required to
generate the walks from scratch. We observe thatWharf is always
better than recomputing the random walks from scratch, which

is not the case for II-based for batch sizes larger than 25𝐾 . This is
because II-based can only perform 72.3K walk updates per second.
In general,Wharf achieves up to ∼2.6× higher throughput than
II-based. We also observe that the throughput of bothWharf and
of II-based decreases as the batch size increases, namely, ∼22.4% for
Wharf and∼10.6% for II-based going from batch size of 10K to 100K
edges. The reason is that the larger the batch size is the higher the
average number of affected walks is.Wharf’s throughput decreases
a bit more because (i) the time to compute the𝑀𝐴𝑉 increases as the
walk trees get larger with larger batch sizes, and (ii) the minimum
position of the affected walks decreases. During our experiments,
we observed that as the batch size increases not only the number of
affected walks increases, but also more and more walks are affected
at an earlier point of the walk sequence. This leads to more work for
updating the randomwalks. For instance, while inserting 50𝐾 edges
leads to ∼463K affected walks from the first position, inserting 100K
edges leads to ∼874K affected walks from the first position.

Figure 9b illustrates the latency results. We observe that the
latency of Wharf is ∼2× lower than the one of II-based. We also see
that both Wharf’s and II-based latency increases as the batch size
increases because of the increased number of walks. Yet, Wharf’s
latency stays considerably low thanks to its on-demand policy for
merging. We thus conclude that Wharf is more scalable than the

baseline in scenarios with many updates per batch.
Input Graph Size. We also study Wharf’s scalability when vary-
ing the input graph size w.r.t. the number of vertices. For this
experiment, we used the er-graphs and fixed the batch size to 10𝐾

edges. Figures 10a and 10b illustrate the throughput and latency,
respectively. We see thatWharf achieves 1.9−2.5× higher through-
put than II-based, and ∼1.8 − 2× lower latency. This is attributed to
two things: (i) the way Wharf stores the walks in the hybrid-tree
that enables updating various parts of the corpus simultaneously,
and (ii) its on-demand merge policy. Furthermore, we observe that,
as the distribution of vertex degree in the 𝑒𝑟 -graphs is uniform, the
throughput of both solutions remains steady: ∼115K walks/second
for Wharf and ∼50K walks/second for II-based. Consequently, the
number of affected walks increases proportionally to the graph size.
We conclude that it nicely scales with varying graph sizes.

7.4 Performance under Data Skewness

Next, we investigate the effect of graph skew onWharf’s perfor-
mance in terms of throughput and memory footprint. Specifically,
we use a set of skewed graphs, 𝑠𝑔-𝑠 , which all have 220 vertices,
where we vary the skew factor 𝑠 = 1, 3, 5, 7. We set the batch size to

365

16 18 20 22
Num. of Vertices (2k)

0

50

100

T
hr
ou
gh
pu
t
(K

w
/s
)

II-based Wharf

(a) Throughput

16 18 20 22
Num. of Vertices (2k)

0

5

10

15

L
at
en
cy

(µ
se
c)

II-based Wharf

(b) Latency

Figure 10: Scalability as the graph size increases on 𝑒𝑟 -graphs.

1 3 5 7
Skew Factor

0

50

100

150

T
hr
ou
gh
pu
t
(K

w
/s
)

II-based Wharf

(a) Throughput

1 3 5 7
Skew Factor

0

5

10

M
em

or
y
(G
B
)

II-based (Walks) II-based (Index) Wharf

(b) Memory footprint

Figure 11: Performance and space on the skewed 𝑠𝑔-graphs.

10𝐾 edges, and for each graph, we generate the edge updates using
RMAT such that they follow the same distribution as the graph.

Figure 11a depicts the throughput that Wharf and II-based
achieve while performing walk updates. Recall that the black hori-
zontal lines in the figure show the minimum throughput required
to generate the walks from scratch. We observe that Wharf has
up to ∼2× better throughput than II-based. Actually, II-based not
only has low throughput, but also needs more time to update the
walks than generating them from scratch for 𝑠 ≥ 3. This is because
the more skew in the graph the more often the high degree nodes
appear in random walks, and thus, more random walks get affected.
Therefore, II-based falls short as it has to update the walk sequences
and the walk index. Notice that the throughput of bothWharf and
II-based decreases by ∼18% when going from 𝑠 = 1 to 𝑠 = 7, yet
Wharf’s throughput remains sufficiently high.

Figure 11b shows the memory footprint. We see that the higher
the skew of the input graph the less space required to store the
walks. This happens because a small number of vertices has an
extremely high degree and appear many times in the majority of
the randomwalks. Therefore, the difference encoding in each chunk
of walk-trees, in whichWharf stores the vertex ids of the walks,
achieves better compression as the ids in a chunk mostly belong
to high degree nodes and their neighbouring vertices. In contrast,
II-based needs constant space for storing the walk sequences, while
the inverted index space decreases when the skew increases but
not as drastically as Wharf. Specifically, the memory footprint,
between skew factors 𝑠 = 1 and 𝑠 = 7, drops by ∼17.6% inWharf

while only by ∼6.4% in II-based. In conclusion,Wharf is robust to

skew in terms of both throughput and space efficiency.

7.5 In-Depth Study

Range vs. Simple Search.We proceed in exploring the benefits of
the output-sensitive FindNext range search algorithm thatWharf

com-YouTube com-Orkut soc-Livejournal
0

1

2

3

T
h
ro
u
g
h
p
u
t
IF

(a) Real graphs, ins. 10𝐾 edges

10 25 50 75 100
Batch Size (K edges)

0

0.5

1

1.5

T
hr
ou
gh
pu
t
IF

(b) Livejournal, vary batch size

Figure 12: Throughput improvement factor (IF) of Wharf

when using range over simple search for node2vec.

uses when seeking a specific walk triplet inside a walk-tree. As
baseline, we disabled this range search and leaveWharf with the
simple search that checks triplets by scanning the entire walk-trees.

Figure 12a illustrates the throughput improvement factor (IF)
that Wharf’s range search achieves when running node2vec, with
parameters 𝑝 = 0.5 and 𝑞 = 2, on all the real graphs. We observe
that the range search feature leads up to 3× higher throughput than
the baseline. Note that in smaller graphs, such as com-YouTube, the
gains from range search are higher than in larger graphs, such as
soc-Livejournal. This is because smaller graphs have less vertices
in their walk-trees, which makes the range search faster as the
constructed ranges are smaller‘. Furthermore, Figure 12b shows the
throughput IF for node2vec when varying the batch sizes of edge
insertions on the large graph soc-LiveJournal, where the walk-trees
contain a huge amount of walk triplets. We get similar results for
com-Orkut but we omit them due to space limitations. In this case,
range search enablesWharf to achieve on average ∼1.7× higher
throughput than the simple search. Note that the space overhead
for the {𝑚𝑖𝑛,𝑚𝑎𝑥} bounds in each walk-tree (necessary for our
search range search) is negligible (less than 1%). We thus conclude
that the range search technique significantly contributes to the high

throughput ofWharf with negligible space overhead.
Benefits of Difference Enconding.We now explore the impact
of difference encoding (DE) on Wharf’s throughput and memory
footprint. For this, we disabled the DE inWharf and used the re-
sulting variant as our baseline. We inserted 10 batches of 10K edges
and measured the average throughput and the memory footprint
after the merge operation for all our real graphs. We observed that
Wharf needs up to 1.4× less space to store the walks than when
not using DE. It also achieves quite a similar throughput for all real
graphs that is within 5% as the one achieved when not having DE.
For instance, on the LiveJournal dataset the throughput with DE is
≈ 207.4K walks/second, whereas without it is ≈ 214.6K walks/sec-
ond. We thus conclude that compression via difference encoding helps

improve the memory footprint ofWharf, however, its performance

does not stem from compression but from our proposed techniques.

Vertex Id Distribution. We now explore the effect that the vertex
id distribution has to the space needed to store random walks.
Specifically, we used our 𝑒𝑟 -18 graph that has 262, 144 vertices as
the initial graph𝐺1. In𝐺1 the vertex ids are fully clustered, i.e., they
range from 0 to 262, 143, as produced by TrillionG [40]. From 𝐺1,
we produced 𝐺2−𝑥20 by multiplying the vertex ids by 20 to make
the ids of the graph non-clustered, yet ordered. Additionally, we
created two more graphs out of 𝐺1, namely, 𝐺3−𝑟1𝑀 and 𝐺4−𝑟5𝑀
where we reassigned a unique random id to each vertex drawn from

366

the [0−1𝑀) and [0−5𝑀) ranges, respectively. We observed that the
space thatWharf needs to store the walks for𝐺1 is 1.553 GB, for
𝐺2−𝑥20 is 1.547 GB, for𝐺3−𝑟1𝑀 is 1.553 GB, and for𝐺4−𝑟5𝑀 is 1.547
GB. Thus, the delta encoding scheme ensures that the space Wharf

needs to store the walks is not affected by the vertex id distribution.

7.6 Effectiveness of Downstream Tasks

Lastly, we measure the accuracy of a vertex classification task and
a PPR task on Cora to show Wharf’s effectiveness in maintaining
walks. For the former, we implemented an incremental learning

approach that uses Wharf: it builds a predictive model, after each
graph update (snapshot), from embeddings that useWharf’s walks.
For the latter, we implemented [3] in Wharf for producing and
updating the walks used for approximating PPR scores. At each
timestep, we ingest a new batch of 250 edges.

Vertex classification. As baselines for the vertex classification
task, we considered (i) the ideal learning case, i.e., learning a new
model at every single snapshot, and (ii) the periodic learning case,
i.e., learning a newmodel every 𝑘 snapshots (we use 𝑘 = 5, 10). Both
ideal and periodic learn embeddings using random walks computed
from the scratch. For the incremental learning case (which is based
onWharf),Wharf updates the walks after each batch insertion
so that they remain statistically indistinguishable. We, then, in-
crementally refine the embeddings using yskip [22] with default
DeepWalk parameters (i.e., 𝑛𝑤 = 10, 𝑙 = 80), and trained 128-sized
embedding vectors. We used LogisticRegression for the classifi-
cation and report the average 𝐹1 score of three runs. Figure 13a
shows that the incremental learning achieves overall the same ac-
curacy as the ideal learning, demonstrating the high effectiveness
of Wharf to maintain high-quality random walks. Note that in
the periodic learning scenario the accuracy drops significantly in
between the snapshots where re-training takes place. The larger the
period (e.g., 𝑘 = 10) the lower the accuracy stays. These results are
aligned with Figure 1a, where we witnessed a large decrease in the
accuracy of a link prediction task if we do not keep the embeddings
up-to-date. Such drops in accuracy can have large negative impact
in the underlying ML tasks, especially for high-stakes applications,
such as fraud detection. We can then also conclude that having
statistically indistinguishable random walks is crucial.

Personalized pagerank. For the PPR task, we considered a static
variant of [3] as baseline, which reuses the existing random walks
instead of updating only the affected walks at every snapshot. We
generated 10 walks per vertex with a restart probability of 0.2, and
report the Symmetric Mean Average Error (SMAPE) between [3]
and the static variant (Figure 13b). We observe that as more graph
snapshots arrive the SMAPE constantly increases. In fact, even
after the first snapshot arrives, the error is already greater than 40%.
These results are aligned with Figure 1b, yet, because of the smaller
batch sizes we used here, the error gradually increases. These results
confirm the vertex classification results: keeping random walks
statistically indistinguishable is crucial for the downstream tasks.

8 RELATED WORK

Random Walk Systems. KnightKing [58] is a distributed system
for computing random walks on static graphs based on a walker-
centric computation model, which is able to express various walk

0 5 10 15 20
Snapshot

0.2

0.4

0.6

0.8

F
1
-m

ac
ro

Ideal

Incremental

Periodic (k=5)

Periodic (k=10)

(a) Ver. Classification (DeepWalk)

0 5 10 15 20
Snapshot

0

20

40

60

80

100

S
M
A
P
E

(b) Personalized PageRank

Figure 13: Accuracy of downstream tasks on Cora.

algorithms. ThunderRW [50] is a single-node system that conducts
in-memory random walks by devising a step-centric computation
model, which hides memory access latency by executing multiple
queries in an alternating manner. In contrast to the above systems,
Wharf is designed for streaming graphs, does not impose any main
memory constraints, and supports walks of any order.
Dynamic GRL. Barros et al. [4] categorize randomwalk-based GRL
methods on dynamic graphs into: (i) random walks on snapshots,
(ii) evolving random walks, and (iii) temporal random walks. In the
first category, random walks are re-computed at every snapshot
so that embeddings are learned from scratch. Wharf falls into the
second category, where random walks are not recomputed from
scratch after every graph update, but they are updated along with
the embeddings of the affected vertices [18, 30, 44]. Yet, Wharf

stores, indexes, and updates the walks more efficiently than the
competitor approaches as we show in the experimental section.
The third category, contains methods that consider temporal walks,
i.e., the temporal flux is respected during their creation [5, 14, 33].
However,Wharf does not consider the temporal aspect of edges.
Dynamic PageRank. Bahmani et al. [3] present a method for
calculating PPR scores via precomputing and storing random walks
for each node in the graph. The stored walks are not indexed leading
to a full scan of walks for each incoming edge update. In contrast,
Wharf’s structure offers an index on the walks which leads to
faster walk updates. Mo et. al. [32] present the Agenda framework
for fast and robust Single Source PPR queries on evolving graphs,
yet it does not store the entire random walks in main memory,
which might require recomputing walks from scratch.

9 CONCLUSION

We presented Wharf (the first step towards Kaixis [39]), a system
that produces and updates random walks in a streaming fashion
while storing them succinctly.Wharf represents walks concisely
by coupling compressed purely functional binary trees and pairing
functions and updates the walks efficiently by pruning the search
space leveraging the ordering properties of pairing functions. Our
experiments show that Wharf can incrementally update walks
with up to 2.6× higher throughput and up to 2× lower latency than
inverted index-based baselines.

ACKNOWLEDGMENTS

We thank Dordije Krivokapić who helped in the initial stages of
Wharf as part of his MSc. thesis, and Dr. Eleni Tzirita Zacharatou
for her feedback. This work was funded by the German Ministry for
Education and Research as BIFOLD - Berlin Institute for the Foun-
dations of Learning and Data (ref. 01IS18025A and ref. 01IS18037A).

367

REFERENCES
[1] Kyrola Aapo et al. 2013. DrunkardMob: Billions of Random Walks on Just a PC.

In RecSys.
[2] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.

Group Formation in Large Social Networks: Membership, Growth, and Evolution.
In KDD.

[3] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast Incremental
and Personalized PageRank. VLDB 4, 3 (2010).

[4] Claudio D. T. Barros, Matheus R. F. Mendonça, Alex B. Vieira, and Artur Ziviani.
2021. A Survey on Embedding Dynamic Graphs. ACM Comput. Surv. (2021).

[5] Moran Beladev, Lior Rokach, Gilad Katz, Ido Guy, and Kira Radinsky. 2020.
TdGraphEmbed: Temporal Dynamic Graph-Level Embedding. In CIKM.

[6] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten
Hoefler. 2019. Practice of Streaming and Dynamic Graphs: Concepts, Models,
Systems, and Parallelism. arXiv:1912.12740 [cs.DC]

[7] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just Join for Parallel
Ordered Sets. In SPAA.

[8] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. SIAM Proceedings Series.

[9] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Char-
alampos E. Tsourakakis. 2021. Deepwalking backwards: from embeddings back
to graphs. In ICML.

[10] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable Influence Maximization
for Prevalent Viral Marketing in Large-Scale Social Networks. In PODS.

[11] Minjin Choi, Jinhong Kim, Joonseok Lee, Hyunjung Shim, and Jongwuk Lee. 2022.
S-Walk: Accurate and Scalable Session-Based Recommendation with Random
Walks. InWSDM.

[12] Sutanay Choudhury, Lawrence B. Holder, George Chin Jr., Khushbu Agarwal, and
John Feo. 2015. A Selectivity based approach to Continuous Pattern Detection
in Streaming Graphs. In EDBT.

[13] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. 2014. Random
Walks in Recommender Systems: Exact Computation and Simulations. InWWW.

[14] Sam De Winter, Tim Decuypere, Sandra Mitrović, Bart Baesens, and Jochen
De Weerdt. 2018. Combining Temporal Aspects of Dynamic Networks with
Node2Vec for a More Efficient Dynamic Link Prediction. In ASONAM.

[15] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-Latency Graph
Streaming Using Compressed Purely-Functional Trees. In PLDI.

[16] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. To-
wards Scaling Fully Personalized PageRank: Algorithms, Lower Bounds, and
Experiments. Internet Math. 2, 3 (2005).

[17] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In KDD.

[18] Farzaneh Heidari and Manos Papagelis. 2019. EvoNRL: Evolving Network Repre-
sentation Learning Based on RandomWalks. InComplex Networks &Applications.

[19] Mohsen Jamali and Martin Ester. 2009. TrustWalker: A Random Walk Model for
Combining Trust-Based and Item-Based Recommendation. In SIGKDD.

[20] Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-Wing Wong. 2017. READS:
A Random Walk Approach for Efficient and Accurate Dynamic SimRank. VLDB
10, 9 (2017).

[21] Ce Jin. 2018. Simulating Random Walks on Graphs in the Streaming Model. In
ITCS.

[22] Nobuhiro Kaji and Hayato Kobayashi. 2017. Incremental Skip-gram Model with
Negative Sampling. In Proceedings of EMNLP.

[23] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking distributed stream data
processing systems. In ICDE.

[24] Patroumpas Kostas and Papadias Serafeim. 2019. Trajectory-aware load adaption
for continuous traffic analytics. In SSTD.

[25] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a Social Network or a News Media?. In WWW.

[26] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In OSDI.

[27] Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, and Pierre Senellart. 2015.
Online Influence Maximization.

[28] Wei-Xue Lu, Peng Zhang, Chuan Zhou, Chunyi Liu, and Li Gao. 2015. Influ-
ence Maximization in Big Networks: An Incremental Algorithm for Streaming
Subgraph Influence Spread Estimation. In IJCAI.

[29] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. 2015. LLAMA: Efficient
graph analytics using Large Multiversioned Arrays. In ICDE.

[30] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. 2018. dynnode2vec: Scal-
able Dynamic Network Embedding. In IEEE Big Data.

[31] Sandra Mitrovic and Jochen Weerdt. 2018. Dyn2Vec: Exploiting dynamic be-
haviour using difference networks-based node embeddings for classification.

[32] Dingheng Mo and Siqiang Luo. 2021. Agenda: Robust Personalized PageRanks in
Evolving Graphs.

[33] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.
In Companion Proceedings of the The Web Conference 2018. 969ś976.

[34] Chris Okasaki. 1999. Purely functional data structures. Cambridge University
Press.

[35] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. 2020. Regular Path Query
Evaluation on Streaming Graphs. In SIGMOD.

[36] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[37] Pairing function. 2021. Pairing function Ð Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/wiki/Pairing_function#Cantor_pairing_function
[Online; accessed 4-April-2021].

[38] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S. Li, and Hang Liu. 2020.
C-SAW: A Framework for Graph Sampling and RandomWalk on GPUs (SC ’20).

[39] Serafeim Papadias. 2020. Tunable Streaming Graph Embeddings at Scale. In PhD
Workshop at VLDB.

[40] Himchan Park and Min-Soo Kim. 2017. TrillionG: A trillion-scale synthetic graph
generator using a recursive vector model. In SIGMOD.

[41] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In KDD.

[42] Giulio Ermanno Pibiri and Rossano Venturini. 2020. Techniques for inverted
index compression. ACM Computing Surveys (CSUR) 53, 6 (2020).

[43] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-Time Constrained Cycle Detection in Large Dynamic
Graphs. VLDB 11, 12 (2018).

[44] Hooman Peiro Sajjad, Andrew Docherty, and Yuriy Tyshetskiy. 2019. Efficient
Representation Learning Using Random Walks for Dynamic Graphs. CoRR
abs/1901.01346 (2019). arXiv:1901.01346

[45] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. 2011. Estimating
pagerank on graph streams. JACM 58, 3 (2011).

[46] Thomas Sauerwald and Luca Zanetti. 2019. Random walks on dynamic graphs:
Mixing times, hitting times, and return probabilities. arXiv:1903.01342 (2019).

[47] Jorge-Arnulfo Quiané-Ruiz Volker Markl Serafeim Papadias, Zoi Kaoudi. 2022.
Space-Efficient Random Walks on Streaming Graphs (extended version). https:
//arxiv.org/abs/2209.06063 [Online; accessed 14-Sep-2022].

[48] Yingxia Shao, Shiyue Huang, XupengMiao, Bin Cui, and Lei Chen. 2020. Memory-
Aware Framework for Efficient Second-Order Random Walk on Large Graphs.
In SIGMOD.

[49] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller and Faster:
Parallel Processing of Compressed Graphs with Ligra+. In DCC.

[50] Shixuan Shun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen Li. 2021.
ThunderRW: An In-Memory Graph Random Walk Engine. VLDB 12, 12 (2021).

[51] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node Embedding over Temporal
Graphs. In IJCAI.

[52] Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. 2018. PAM: parallel augmented
maps. In PPoPP.

[53] Szudzik function. 2006. An Elegant Pairing Function. http://szudzik.com/
ElegantPairing.pdf [Online; accessed 4-April-2021].

[54] Jing Tang, Xueyan Tang, Xiaokui Xiao, and Junsong Yuan. 2018. Online Process-
ing Algorithms for Influence Maximization. In SIGMOD.

[55] Emanuele Viola, Omri Weinstein, and Huacheng Yu. 2020. How to Store a
Random Walk. In SODA.

[56] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C. S. Lui. 2020. Graph-
Walker: An I/O-Efficient and Resource-Friendly Graph Analytic System for Fast
and Scalable Random Walks. In USENIX ATC.

[57] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Com-
munities based on Ground-truth. CoRR abs/1205.6233 (2012). arXiv:1205.6233

[58] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang.
2019. KnightKing: A Fast Distributed Graph Random Walk Engine. In SOSP.

[59] Xingyu Yao, Yingxia Shao, Bin Cui, and Lei Chen. 2020. UniNet: Scalable
Network Representation Learning with Metropolis-Hastings Sampling. CoRR
abs/2010.04895 (2020).

[60] Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang
Ge, Zhiqiang Zhang, Lin Wang, Jun Zhou, and Yuan Qi. 2020. AGL: a Scalable
System for Industrial-purpose Graph Machine Learning. VLDB 13, 12 (2020).

[61] Jingren Zhou. 2019. Managing, Analyzing, and Learning Heterogeneous Graph
Data: Challenges and Opportunities. http://conferences.cis.umac.mo/icde2019/
wp-content/uploads/2019/06/icde-2019-keynote-jingren-zhou.pdf [Online; ac-
cessed 1-Oct-2022].

[62] Yujing Zhou, Weile Liu, Yang Pei, Lei Wang, Daren Zha, and Tianshu Fu. 2019.
Dynamic Network Embedding by Semantic Evolution. In IJCNN.

[63] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. VLDB 12, 12 (2019).

368

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem statement
	3.1 Streaming Graphs
	3.2 Random Walks
	3.3 Streaming Random Walks

	4 Graph-Walk Structure
	4.1 Hybrid Tree
	4.2 Walk Triplet Representation
	4.3 Walk Triplet Pairing
	4.4 Walk Triplet Compression
	4.5 Space Complexity

	5 Optimized Search
	5.1 Search Space Pruning
	5.2 Next Vertex Search
	5.3 Complexity

	6 Updating Random Walks
	6.1 Map of Affected Vertices
	6.2 Batch Walk Update
	6.3 Complexity and Correctness

	7 Experimental Evaluation
	7.1 Setup
	7.2 Overall Performance
	7.3 Scalability
	7.4 Performance under Data Skewness
	7.5 In-Depth Study
	7.6 Effectiveness of Downstream Tasks

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

