
The Story of AWS Glue
Mohit Saxena*, Benjamin Sowell†, Daiyan Alamgir, Nitin Bahadur, Bijay Bisht, Santosh

Chandrachood, Chitti Keswani, G2 Krishnamoorthy, Austin Lee, Bohou Li, Zach Mitchell, Vaibhav
Porwal, Maheedhar Reddy Chappidi, Brian Ross, Noritaka Sekiyama, Omer Zaki, Linchi Zhang,

Mehul A. Shah†
Amazon Web Services

glue-paper@amazon.com

ABSTRACT
AWS Glue is Amazon’s serverless data integration cloud service
that makes it simple and cost effective to extract, clean, enrich,
load, and organize data. Originally launched in August 2017, AWS
Glue began as an extract-transform-load (ETL) service designed to
relieve developers and data engineers of the undifferentiated heavy
lifting needed to load databases, data warehouses, and build data
lakes on Amazon S3. Since then, it has evolved to serve a larger
audience including ETL specialists and data scientists, and includes
a broader suite of data integration capabilities. Today, hundreds of
thousands of customers use AWS Glue every month.

In this paper, we describe the use cases and challenges cloud
customers face in preparing data for analytics and the tenets we
chose to drive Glue’s design. We chose early on to focus on ease-
of-use, scale, and extensibility. At its core, Glue offers serverless
Apache Spark and Python engines backed by a purpose-built re-
source manager for fast startup and auto-scaling. In Spark, it offers
a new data structure — DynamicFrames — for manipulating messy
schema-free semi-structured data such as event logs, a variety of
transformations and tooling to simplify data preparation, and a new
shuffle plugin to offload to cloud storage. It also includes a Hive-
metastore compatible Data Catalog with Glue crawlers to build and
manage metadata, e.g. for data lakes on Amazon S3. Finally, Glue
Studio is its visual interface for authoring Spark and Python-based
ETL jobs. We describe the innovations that differentiate AWS Glue
and drive its popularity and how it has evolved over the years.

PVLDB Reference Format:
Mohit Saxena, Benjamin Sowell, Daiyan Alamgir, Nitin Bahadur, Bijay
Bisht, Santosh Chandrachood, Chitti Keswani, G2 Krishnamoorthy, Austin
Lee, Bohou Li, Zach Mitchell, Vaibhav Porwal, Maheedhar Reddy Chappidi,
Brian Ross, Noritaka Sekiyama, Omer Zaki, Linchi Zhang, Mehul A. Shah.
The Story of AWS Glue. PVLDB, 16(12): 3557 - 3569, 2023.
doi:10.14778/3611540.3611547

1 INTRODUCTION
When we started AWS Glue (circa 2016), databases and analytics
on the cloud were new and rapidly growing businesses, and AWS

*Corresponding Author
†Work done while at Amazon Web Services
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611547

Figure 1: Table data types in the AWS Glue Data Catalog

had recently released a variety of modern data services. Customers
were using systems like Amazon RDS and Aurora for their opera-
tional data, Amazon DynamoDB for NoSQL data, Amazon Kinesis
for streaming data, and Amazon Redshift for data warehousing.
We also saw customers collect and store large amounts of semi-
structured data in large object stores like Amazon S3 because of
its scalability, durability, and low cost. These datasets range from
gigabytes to petabytes and examples include distributed system
logs, mobile event streams, clickstreams, adtech data, social feeds,
and IoT streams. Customers increasingly built data lakes and turned
to big data services like Amazon EMR or Amazon Athena to query
the data in place.

Facing an explosion in the variety of data and data use-cases,
as well as in the types of systems they could use to query that
data, customers told us that they lacked tools that made it easy
to discover, prepare, and move their data between cloud services.
Existing extract-transform-load (ETL) tools, for example, were de-
signed for an earlier era to move data from structured databases
into data warehouses, and were difficult to scale. Customer expecta-
tions in the cloud were also different. They wanted services rather
than software and expected their tools to be elastic and scalable by
default. Instead of using those tools, we saw customers write their
own ETL scripts and manage their own infrastructure, which was
both tedious and brittle. To address this problem, we set out to build
AWS Glue with a cloud-oriented perspective on data movement
and data preparation, and launched it in August 2017.

An important premise that differentiated and drove our approach
with AWS Glue is that ETL is a long tail problem. There is no 80-20
rule for formats, sources, or targets, and our experience shows that

3557



each use case requires some customization (Section 2). As an exam-
ple, consider the data types found in the AWS Glue Data Catalog,
a metadata store that customers use for organizing and querying
their data lake tables and other enterprise datasets. Figure 1 shows
a high-level breakdown of the common types as of September 2022
in one of the major AWS regions. While Apache Parquet is the most
common, there are a sizable percentage of text-based formats like
JSON and CSV, each of which have innumerable variations as well
as relational tables and a long tail of other formats. While popular
formats have changed over time, this distribution remains long
tailed and is a reasonable proxy for the data types stored on S3.

Given the complexity of ETL, we also made the choice to initially
target cloud developers and data engineers. They were often tasked
with transforming this variety of data into optimized formats like
Apache Parquet for data lakes or loading cloud data warehouses.
These developers were comfortable writing code, but wanted gen-
eral purpose tools to help prepare and transform large datasets.

With these factors in mind, we adopted a set of principles for
developing AWS Glue. The first is to provide customers with self-
service escape valves to let them solve their own problems when the
system falls short. For example, we made it easy for customers to
write code to customize their ETL pipelines or directly edit service-
generated scripts for their use cases. The second principle is to
be descriptive, not prescriptive [21]. The analytics environment is
increasingly heterogeneous, and it is not always possible to define
a single data model, type system, or query language to support all
use cases. Rather than requiring customers to standardize their data
before getting started, we let them bring what they have, even if it
cannot be used everywhere, so that they can incrementally adopt
Glue for new applications and use cases. The final principle is to
minimize undifferentiated work. While our customers are developers,
they did not want to spend time managing infrastructure.

We set about building the AWSGlue service with these principles
in mind; its architecture is shown in Figure 2. For data transfor-
mation, the AWS Glue ETL stack includes several key components
(Section 3). First, Glue Studio is a visual interface for job authoring
that automatically generates human readable Apache Spark scripts.
We learned that even developers appreciate low-code tools that
help them get started quickly, and this interface eventually helped
us broaden our reach to ETL specialists and data scientists. Sec-
ond, the AWS Glue ETL runtime includes the core Spark packages
and Glue-specific libraries. We chose to build on Apache Spark
because it was a general purpose tool that developers were famil-
iar with, and we extended it with libraries designed to make ETL
jobs more efficient and resilient. These libraries introduce a new
data structure, the DynamicFrame, and new transformations that
are specifically designed to help prepare and clean deeply nested,
semi-structured data. These libraries have been publicly available
since 2019 and used by thousands of customers daily to develop
their ETL scripts [11]. Third, Glue offers an orchestration system
to stitch together multiple jobs into a pipeline and new features to
simplify incremental processing.

Glue also offers a serverless interface for running Apache Spark
jobs (Section 3.3). Users submit Spark jobs for execution, and the
service does the rest. Glue was one of the earliest serverless analyt-
ics services in production. Over the years, we have seen customers
build on and use this serverless interface in ways we did not expect.

For example, customers use much smaller batch sizes when they
do not have to worry about keeping clusters highly utilized. We
were surprised to find that the median Glue Spark job runtime has
dropped steadily and is now less than a few minutes. Also, while
originally aimed for batch ETL, users routinely used Glue for inter-
active debugging and experimentation. This motivated us to push
the boundaries of our serverless compute backend to provide faster
start times and dynamic auto scaling. Today, Glue jobs often start
within a few seconds allowing for interactive execution. Glue also
dynamically scales resources up and down during job execution to
lower cost and provide better availability.

Finally, we learned that customers need more than just data
transformation to effectively manage their ETL pipelines. Since
much of their data was stored in Amazon S3, often without a clear
schema, they needed ways to collect and store metadata. The AWS
Glue Data Catalog provides a scalable metadata service (Section 4).
The catalog lets customers model datasets as databases and tables,
where tables can refer to data in a variety of stores such as Amazon
S3, relational databases, NoSQL stores, and streaming data services.
AWS services such as Amazon Athena, Amazon EMR, and Amazon
Redshift can natively query tables defined in the data catalog, and
users can leverage an Apache Hive Metastore-compatible adapter
for usewith open source engines like Apache Spark and Presto. Also,
to facilitate data discovery and create table definitions automatically,
AWS Glue crawlers scan objects in Amazon S3 to infer file formats,
schemas, table boundaries, and partitions (Section 5) as well as
collect metadata from databases and other data services.

AWS Glue has been in production for six years, and during
that time we have seen the ETL and data analytics environment
evolve considerably. As data lakes have become more popular and
customers have adopted an increasingly broad set of tools, we have
learned several lessons about building and operating a modern
data integration service. In the rest of this paper, we present the
architecture of AWS Glue, how it has evolved to meet the changing
needs of our customers, and the lessons we learned.

2 USE CASES AND CHALLENGES
Customers use AWS Glue for a wide variety of ETL and data inte-
gration applications. In this section, we present a few representative
use cases and introduce some of the technical challenges that our
customers face that helped motivate the features and architectural
decisions described in the remainder of this paper.

2.1 Use Cases
Over the past six years that we have operated AWS Glue, we have
seen customers’ ETL and data integration use-cases evolve signif-
icantly. When we first started, data lakes were still nascent, and
many customers were just starting to experiment with analytical
queries on datasets outside of traditional data warehouses. As data
lakes have matured, customers have developed more and more
sophisticated pipelines to process their data.

Figure 3 shows some examples of some common use cases we
have seen while operating AWS Glue. Figure 3a shows one early
use case we encountered where customers were trying to load
semi-structured data from Amazon S3 into Amazon Redshift to
take advantage of its query performance and broad set of tools.

3558



Figure 2: AWS Glue Architecture

(a) Loading a data warehouse (b) Connecting to an on-prem RDBMS (c) Ingesting streaming data

Figure 3: Sample AWS Glue use cases

Here, Glue has to discover the schema of the source data, populate
the data catalog, perform any required transformations, such as
unnesting data, and load the data into Redshift. Figure 3b shows
a slightly more complex example where a customer copies data
from an on-premise database into Amazon S3 in a format like
Parquet. Query engines like Amazon Athena can leverage such
formats to speed up analytics. Finally, Figure 3c shows a more
complex streaming ingestion pipeline. Here the customer puts raw
data from a streaming source like Amazon Kinesis into S3, and
then performs several phases of transformation to clean and pre-
aggregate the data, and ultimately load it into multiple destinations,
such as Amazon S3 and Amazon Redshift.

2.2 Challenges
While helping customers with the use-cases described above and
others, we encountered a number of technical challenges.We loosely
group them based on the stage in the ETL pipeline where customers
most often encounter them.

2.2.1 Data Discovery and Ingest. As customers seek to analyze
increasingly diverse data, they have to deal with missing or in-
consistent metadata. Many datasets, particularly semi-structured
datasets like logs, often lack associated metadata. For example,
JSON data typically does not come with a schema, and it is common
for two files in the same dataset to contain slightly different sets
of attributes. Even when a customer uses a tool like AWS Glue
crawlers to discover the schema, there may still be inconsistencies.

3559



For example, a single field may appear with different types in differ-
ent records, which makes the dataset hard to query in traditional
analytics tools. With Glue, we want to provide mechanisms for
customers to query and transform these datasets, and give them
tools to fix inconsistencies over time.

Customers also face challenges integrating with external sys-
tems. Customers want to use ETL to process data from a wide
variety of external systems, including object stores like Amazon S3,
NoSQL stores like Amazon DynamoDB, and a variety of relational
databases, from those managed in AWS with Amazon RDS to those
run on-premise. Accessing these systems requires traversing a va-
riety of network isolation mechanisms, from virtual private clouds
(VPCs) and subnets, to separate physical networks for on-premise
resources, as well as different authentication mechanisms, such as
Amazon’s IAM service for AWS-based resources and passwords or
secrets for accessing relational databases via protocols like JDBC.
Customers need help configuring these options and reusing them
across multiple ETL jobs.

Scalability can also be a challenge when working with external
systems. Systems like Apache Spark are designed to scale horizon-
tally to process massive amounts of data in parallel, and this can
easily overwhelm source systems with different scaling properties.
This is particularly important for relational sources, which may run
on a single host, but even services like Amazon DynamoDB and
Amazon S3 limit the throughput with which clients can access data
under a hot partition or single prefix respectively. Customers need
mechanisms to throttle their ETL jobs and retry on failure to avoid
browning out their source systems.

2.2.2 Reliable Data Processing. Operations like crawling and ETL
are often performed on a schedule without manual intervention, so
reliability and hands-off maintenance are critical. While customers
care deeply about performance, reliability is essential, and they will
often choose a system with good predictable performance over one
that is faster on individual queries but less predictable overall.

Reliability is particularly important given scale and workload
variability over time. While many ETL jobs are run incrementally
on a schedule, in practice data sizes vary for many reasons. For
example, customers often need to perform backfill operations where
they process years of data at once, and they often develop and test
their ETL processes with datasets that are significantly smaller than
what they see in production. This can lead to scaling cliffs where
performance degrades or jobs fail due to exhausting resources like
memory or local disk.

2.2.3 Output and Physical Layout. Since customers directly man-
age the files that make up a data lake in an object store like Amazon
S3, they need tools to help manage physical layout and data par-
titioning. Many big data systems, including Apache Hive, Apache
Spark, and Trino, support dataset partitioning, where certain at-
tributes are encoded in the file path. For example, records in data
files under the prefix /year=2022/month=05/day=01would implic-
itly have year, month, and day attributes with the corresponding
values. Selecting a good partitioning scheme is critical for query
performance, as query engines use partition values to prune the set
of files they read from the underlying object store. Metadata about
each partition is stored in a metadata store like the AWS Glue Data
Catalog, and customers need help keeping this metadata up-to-date

as new partitions arrive, as well as re-partitioning data to improve
query performance.

File size is also critical for query performance in data lakes. The
latency of making a request to an object store means that it is
essential to store data in larger objects to amortize this per-request
overhead. This often creates a tension with streaming ingestion
processes, which write small files to reduce the time it takes to
make new data available for querying. When customers use AWS
Glue to process raw data, we have seen datasets ranging from a
single un-splittable 100GB gzip file to millions of files containing
a single record each. Customers want to use AWS Glue to help
re-organize these datasets to accelerate their query workloads.

3 GLUE ETL STACK
In this section, we describe Glue’s ETL stack (see Figure 2), which
comprises a user interface, a Glue ETL runtime, a serverless com-
pute backend, a job orchestration system, and key capabilities for
making ETL jobs more reliable and efficient.

While working with customers, we learned that ETL was a long-
tail business – inmost implementations, developers reliedmostly on
the pre-packaged capabilities, but inevitably needed some custom
logic in their implementations to complete their task. Our approach,
therefore, was to automate as much of the undifferentiated work as
possible, while giving developers a general-purpose programming
environment in which they could easily build their solutions. At the
time (circa 2015-2016), Apache Spark was an increasingly popular
big data engine often used for ETL use cases, and we chose it
because of its flexibility and familiarity among developers.

While user interfaces for ETL are not new, our approach was to
build one that generated human-readable code which customers
could then directly edit and customize. The user interface used
the data catalog as a convenient starting point because sources,
schemas, and targets were often pre-populated, and the system
could focus on ostensibly straightforward transformations to go
from source to target. Data transformation, however, is usually not
that simple because there are often unexpected variations in the
content, structure, and scale of the data.

To make transformations faster and more robust, we added Glue
ETL libraries in the runtime to handle the unexpected changes and
innumerable variations which are the characteristic of ETL work-
loads. At the core of these libraries is a new base data structure,
a DynamicFrame, which is a collection of self-describing records,
DynamicRecords. As a result, DynamicFrames are more efficient
for single-pass data transformation jobs that we often saw in ETL
workloads. They do not require a schema upfront and can efficiently
represent data sets like the GitHub Timeline [20] which contain
widely varying record types from a few to hundreds of columns.
The Glue ETL libraries also include new transformation operations
for flattening and materializing DynamicFrames on-the-fly into
column-oriented formats like Apache Parquet in a streaming fash-
ion. Separately, we built vectorized readers for DynamicFrames in a
native language (C++) which use hardware parallelism and colum-
nar in-memory formats to speed up processing of raw formats like
CSV and JSON.

Configuring and managing infrastructure was another major
pain point for developers, so Glue sought to eliminate that alto-
gether through a serverless interface for Apache Spark jobs. Glue’s

3560



Figure 4: An example job created with AWS Glue Studio

serverless compute backend efficiently and securely provisions clus-
ters for running those jobs. It includes a warmpool manager that
maintains pre-provisioned EC2 virtual machines (VMs), a purpose-
built Spark scheduler that integrates with the serverless compute
to allocate resources to jobs, and mechanisms for security, network-
ing, and isolation. To make serverless compute more efficient, we
solved a few important challenges that we think will also translate
to other data parallel systems. First, we decoupled Apache Spark
executors from depending on local storage, e.g. for intermediate
shuffles. Second, we improved job startup time from longer than 8
minutes on average down to a few seconds. Third, the decoupling
and fast startup paved the way for a scheduler that dynamically
scales resources up and down (auto scales) during the execution of
individual job runs to achieve better performance, availability, and
cost-efficiency for customers.

Glue also includes an orchestration system, Glue Workflows,
for composing multiple ETL jobs and running them reliably. It al-
lows stitching together of multiple jobs, automatic scheduling, and
convenient features for incremental processing. This includes job
bookmarks, which help jobs pickup from where they left off in the
previous run. So, developers need not worry about maintaining
execution state between job runs. Finally, it provides “bounded exe-
cution”, a feature that allow Glue Spark jobs to gracefully degrade
when the input size overflows the amount of metadata that Spark
can handle in a single machine.

3.1 User Interface
To make it easier for users to get started with AWS Glue, we built
a visual ETL interface and code generation mechanism for ETL
scripts. This capability has gone through several iterations over the
years, but all of them rely on an intermediate representation of an
ETL script as a DAG (directed acyclic graph). This DAG is similar
to a simple query plan where nodes correspond to data sources
or transformations, which can be simple relational operations like
filter or join or ETL-specific operations like flattening nested fields.

Figure 4 shows an example of an ETL job created using the latest
Glue Studio UI [7], which allows customers to create ETL scripts
visually. This example takes one data source from Amazon S3 and

Figure 5: Spark DataFrame with Rows and Glue Dynam-
icFrame with DynamicRecord

performs an ApplyMapping, which is used to restructure or flatten
nested objects. Then, it joins the result with a table from the Data
Catalog and writes the output to Amazon S3. Users can customize
each node in the DAG, and when they are ready they can generate
code. They can also choose to edit the script directly to add logic
that may not be easy to embed in a DAG.

3.2 Glue ETL Library with DynamicFrames
When we started developing Glue, one of the challenges we saw
customers face over and over again was dealing with the realities
of messy, semi-structured data. At the time, many customers were
just starting to use Spark.

Most popular big-data query engines, including Spark, require
a schema before they can be used to query or transform datasets.
For example, Spark relies on Dataframes, which are organized as a
collection of nested arrays (Rows). Spark handles this process by
performing schema inference during the ingestion process. This
works well for formats such as Avro and Apache Parquet, where the
schema can be extracted without reading the complete dataset, but
it a requires a full scan of the data for formats like JSON that do not
have a declared schema. This additional pass can add significant
execution time for large datasets. In some cases it may not be
possible to infer a schema, as some fields may appear with multiple
types, either due to corruption or legitimate schema changes.

To make it easier for our customers to work with this kind of
messy data, we built Glue’s ETL runtime library on top of a new
data-structure called the DynamicFrame. Rather than requiring a
schema up-front, DynamicFrames embed schema information in
each record and compute a global schema only when required.
This means that many ETL jobs can avoid the cost of computing a
schema all together, and those that do need a schema compute it as
late as possible.

Internally, DynamicFrames are stored as Spark RDDs of Dy-
namicRecords, which are tree-based data structures containing both
column information and data values. DynamicRecords are self-
describing and support all of the standard data types found in
Spark, including complex types such structs, maps, and arrays. The
Glue ETL libraries include readers to create DynamicFrames from
many common file formats, including Avro, CSV, JSON, ORC, and
Apache Parquet, and data sources, including relational databases
over JDBC and common NoSQL stores like Amazon DynamoDB
and MongoDB.

3561



Figure 6: Choice types and ResolveChoice transform in Glue

DynamicFrames support a number of standard transformations
such as selection and projection, and have support for UDFs in
Python and Scala for filtering and transforming individual records.
These operations can be performed record-at-a-time without ever
computing a local schema. DynamicFrames also include a number of
transformations specially designed for working with deeply nested
data. For example, relationalize is a transformation that is designed
to make it possible to prepare data for ingestion into a relational
database without requiring any additional input from the user. It
does two things. First, it flattens nested structs so that all fields are
at the top-level, and second, it pivots arrays and extracts them into
a separate table. This is applied recursively to support data with
arbitrarily nested structs and arrays.

While Glue DynamicFrames provide a number of capabilities for
ETL, they’re not as full-featured as Spark Datasets, particularly for
analytics-type operations such as joins and complex aggregations.
For those types of operations, users can convert DynamicFrames
to Datasets simply by using the toDF method. This conversion
does require a schema and may trigger an additional pass over
the data, but we do see a common pattern of customers using
DynamicFrames to read and filter data, taking advantage of their
flexibility, and then converting them to Dataframes for further
processing. Both data structures are supported in Glue.

3.2.1 Schema Inference. While many ETL transformations can be
performed without requiring a global schema, they are sometimes
required. For example, one transformation in Glue drops all fields
in which every value is null. This is useful because a more specific
type cannot be inferred and many ETL targets don’t support fields
with a null type.

Our schema inference algorithm is similar to that used by Spark,
except that it is designed to return a valid schema for any possible
set of records, even when there is a schema conflict. We inspect
every record and union the structures – field name and types –
that we encounter. To keep the schema concise, we also union
the schemas found within nested arrays. Unlike Spark, however,
we track nulls, absence of values (null-type), as well as schema
conflicts that cannot be easily resolved. We accomplish this by
introducing a union type, which we call a ChoiceType, that records
every possible type taken by a specific field in a DynamicFrame.
For example, Figure 6 shows an example of part of a schema that
might be inferred by Glue. We also use ChoiceTypes to represent
the type of arrays with heterogeneous elements. The addition of

ChoiceTypes, along with a few other extensions such a NullType to
represent the absence of a value, allow us to compactly represent
any collection of records. For more details, see [31].

ChoiceTypes give users the ability to incrementally transform
and improve data even when a simple schema cannot be inferred. To
facilitate cleaning, Glue provides the ResolveChoice transformation,
which allows users to specify a policy to indicate what should
happen when a ChoiceType is encountered. Options include casting
the data to a common type, keeping only a single one of the variants,
or retaining both as part of a struct field or as top-level columns.
Finally, the match catalog option allows the user to specify a Data
Catalog table and resolves ChoiceTypes by attempting to cast to
the type of the corresponding field in the Catalog.

The ResolveChoice transformation can be applied either to spe-
cific fields or as a default to any ChoiceType in the DynamicFrame.
For example, you can specify that all ChoiceTypes should be re-
solved by making each choice a top-level column with the type in
the column name. This works well in the case where users are unfa-
miliar with their data, but it does require an extra pass over the data
to infer the schema and determine which fields are ChoiceTypes.
If a certain field is known to be a ChoiceType, it can be resolved
directly. This does not require the schema to be computed, as the
resolution operation is applied directly to each record.

3.2.2 Glue Parquet Writer. When we launched Glue, one partic-
ularly common use case was converting raw data into Parquet
format [4]. Parquet is a binary columnar format that is well sup-
ported across the different analytics engines and can significantly
accelerate queries compared to formats like JSON. Many customers
use Glue to perform basic data cleaning operations and then write
the data into partitioned Parquet for further analysis in a system
like Athena or Redshift Spectrum.

As we worked with customers on this use case, we realized that
they were not getting the benefit of using DynamicFrames because
the Parquet writer requires a schema up-front. Parquet files are
organized as a sequence of row groups, each of which stores a subset
of the rows in the file in a columnar fashion. Metadata, including the
schema, is stored in the footer of the file. Nested data is serialized
using a layout scheme first proposed in the Dremel system [23].
Values have an associated definition level, which is used to track
the presence of optional fields, and repetition level, which is used to
identify instances of repeated fields. The presence of these fields
depends on the schema. If a field is required it does not have a
definition level, and if it cannot be repeated it does not have a
repetition level.

In 2019, we introduced the Glue Parquet writer to eliminate the
need for a schema up-front. The Glue Parquet writer incrementally
builds the first row group in memory before setting the schema
or flushing anything to disk. Every time a new field is discovered,
the writer instantiates a new column and sets the definition and
repetition levels appropriately. Once the amount of data stored in
memory exceeds a configurable limit, 128 MB by default, the first
row group is flushed and the schema for the file is fixed. Subsequent
row groups and the file footer are written as usual.

If we find a new field after having written out the first row group,
we flush the existing file and start a new file with the larger schema.
In the worst case, where every record has a different schema, the

3562



Figure 7: Glue DynamicFrames versus Spark Dataframes for
filtering and converting the GitHub timeline (lower is better).

writer would create a new file for every record, but in practice we
have not found this to be a problem. The first 128 MB typically
contain the majority of fields, and the impact to the average file
size is minimal. Some systems consuming the resulting Parquet
files do require different options when reading collections of files
that have different schemas. For example, Spark requires that the
mergeSchema parameter be set to true so that it reads the schema
from all of the files instead of just one.

3.2.3 Experiment. Figure 7 compares the performance of Glue ETL
libraries and Apache Spark 3.3.0 processing the GitHub timeline for
various durations [12]. The input is a collection of gzipped JSON
files that record public GitHub API accesses for a day (22nd, 249MB,
48 files), month (January, 10.3GB, 1488 files), and year (2017, 136GB,
8699 files). It contains over 30 event types whose aggregate schema
has 751 distinct attributes. The experiment measures the execution
time for selecting only ForkEvents (2.9% selectivity), projecting
their payload, and writing the output to Parquet. We run the job in
the Glue 4.0 environment using 10xG.1x instances each having 4
vCPU, 16GB of RAM, and 64GB of SSD. The DynamicFrame runs
use the Glue Parquet writer, so the entire job requires only one
pass over the data, while Dataframe runs use the default Parquet
writer, and we configure Spark to compute the entire schema to
avoid missing attributes. For small sizes, DynamicFrames are com-
petitive with Dataframes, and as input sizes grow, DynamicFrames
are 1.5x faster because they avoid the upfront pass for comput-
ing the schema. DynamicFrames have small memory overhead;
the maximum memory usage is 8.9% for DynamicFrames versus
7.3% for Dataframes during the run. DynamicFrame output is also
more succinct including only the 90 columns of ForkEvents, instead
of Dataframes which include all 751 columns, most of which are
null. This experiment shows DynamicFrames are better suited for
common single-pass filtering, transformation, and conversion jobs,
which are often the first step of data preparation.

3.3 Serverless, Fast Startup, and Auto-scaling
From its start, Glue has offered a serverless interface to eliminate the
undifferentiated work of managing infrastructure. Glue jobs consist
of a script and context metadata such as access control parame-
ters required for execution. Users submit scripts via the Glue Jobs

Figure 8: Job start time distribution in Glue 1.0 and Glue 4.0.
Note, the startup time axes in (a) and (b) are scaled differently.

API [9] and the system does the rest. Glue relieves customers from
configuring security, networking, software and its dependencies. It
uses VM-level isolation across jobs, which provides stronger pro-
tection than containers, and isolates resources at the network level
with various auditable defense in depth strategies. It also segregates
and protects data in transit and at rest. In addition, Glue relieves
customers from allocating, tuning, and scaling clusters. Because
of the variability in data preparation workloads, customers often
either over-provision leading to increased cost, or under-provision
risking performance and stability. So, we set out to offer efficient
resource allocation and scaling on a per-job level.

Our initial approach in Glue 1.0 was cluster-based and intended
for mostly batch workloads. On job start, we choose from three
options: (a) run the job on a previously allocated cluster for the user,
(b) allocate from a service-widewarmpool of “T-shirt”-sized clusters,
(c) provision a new cluster from EC2. Jobs only start after the entire
cluster is allocated. The scheduler retires allocated clusters after a
fixed idle period to reduce costs, and uses rule-based heuristics to
provision more capacity in the warmpool to fill demand. Figure 8(a)
shows the distribution of job start times for Glue 1.0 [13]. When
clusters are already provisioned (warm start - (a) and (b)), we see
start latencies less than one minute. When a new cluster needs to
be provisioned, however, the latencies jump to 8-10 minutes and
are highly variable. In these cold start cases, clusters are larger and
must wait until the last machine is provisioned before starting.

Since serverless makes running jobs much easier and customers
do not pay for slow start or idle resources between jobs, we saw
customer behavior shift. They built more micro-batch pipelines and
interactive applications on Glue, which resulted in the median job
runtime dropping below a few minutes. Customers found these
start times painful, especially when job runtimes were short.

To speedup start times, we introduced a new resource manager
and lighter weight Spark application stack with Glue 2.0 in 2020.
Glue 2.0 schedules a job on a dynamically-sized cluster, and the job
starts as soon as the first instance is ready. We modified Spark’s
scheduler [27] to run executors on workers from our resource
manager, instead of a cluster-based one like YARN. When needed,
our resource manager allocates workers from (a) a service-wide
warmpool of instances with Spark initialized or (b) provisions new
instances from EC2. The warmpool uses ML models to forecast how

3563



many EC2 instances are needed for each region and availability
zone based on incoming demand as well as intra- and inter-day
variability. Figure 8(b) shows that start times are mostly under 10
seconds and often under a couple seconds (Glue 2.0 to 4.0 all have
the same job start times). Cold start times are shorter, rarer, and
less variable because the warmpool often fulfills demand, and jobs
need not wait for an entire cluster.

With faster startup and a dynamic scheduler, we had the op-
portunity to further optimize costs for customers, especially for
streaming workloads. Glue 3.0 introduced auto scaling which dy-
namically tunes cluster size during a job. To do so, we solved two
key challenges for auto scaling. First, while the Glue 2.0 scheduler
allows for scaling up, we needed a way to scale down during peri-
ods of inactivity without losing intermediate state. To do so, Glue
extends Spark’s shuffle tracking algorithm [29] to avoid retiring
workers with intermediate shuffle data that need downstream pro-
cessing. Second, since resizing happens more frequently in intra-job
scaling, we dampen resizing based on inactivity within and across
jobs to avoid high churn on global compute resources. With auto
scaling, customers get a truly serverless experience.

3.3.1 Interactive Execution. Although we originally targeted batch
ETL, we quickly learned that customers needed an interactive expe-
rience for testing and debugging scripts in the Glue environment.
So, for use with notebooks and local interactive development envi-
ronments (IDEs), we offered Glue development endpoints at launch.
They provided an always on experience at the cost of keeping
clusters running. Glue’s user base broadened as it grew, and cus-
tomers started using Glue for data exploration, experimentation,
and powering interactive applications like data wrangling. Though
not ideal, customers would sometimes use the Jobs API for interac-
tive applications to avoid development endpoint costs. So, in 2022,
enabled by fast start and auto scaling, we introduced the Glue in-
teractive sessions API [8] and Glue Studio Notebooks [10]. With
these, customers can submit granular Spark statements that execute
immediately as an extension of their development environment.
Interactive sessions provide an open-source Jupyter kernel that
integrates with IDEs such as PyCharm, IntelliJ, and VS Code. Glue
Studio Notebooks further simplifies development by providing an
in-browser integrated notebook environment, so users do not need
to install IDEs.

3.4 Decoupling Storage for Cloud Shuffle
Spark uses a shuffle operator to redistribute data for large state-
ful transformations like Join and GroupBy, and the default shuffle
materializes intermediate data onto local storage [33]. When cus-
tomers process skewed datasets or under-provision local storage,
their workloads often run into both memory and disk limits on indi-
vidual workers. Before 2021, Glue customers only had two options
to address out-of-disk failures: scale out and provision more hosts
or re-partition their datasets. While this helps in some cases, it still
does not guarantee reliable execution, since data skew can lead
to scenarios where disk space is exhausted on just a few workers.
Even when adding hosts does help, it costs customers more, as they
pay for additional compute just to get more disk space.

In 2021, we introduced the cloud shuffle storage plugin that
instead materializes to Amazon S3, thereby completely decoupling

Figure 9: Decoupling compute and storage in Glue

storage and compute for Apache Spark (see Figure 9). Amazon
S3 offers highly available, low-cost, and elastic storage. On the
other hand, existing approaches such as Cosco [14], Zeus [26] and
Magnet [28] require managing an additional storage fleet for shuffle.
This plugin required us to extend components in Spark such as
the block manager and shuffle reader and writers. We also added
support for multi-part uploads and jitter-reducing strategies for
optimizing I/O to Amazon S3.

In 2022, we also extended the plugin to operate for other cloud
storage provider implementations with Glue versions 3.0 and 4.0,
and released the software binaries for customers and the community
to use in any Spark environment [22].

3.5 Performance with Vectorized Readers
A large fraction of Glue workloads transform data in raw formats
such as CSV and JSON to modern formats such as Apache Parquet.
One of the key bottlenecks for such ETL workloads is the CPU cost
to deserialize the data read from S3 into memory. While over the
years, Amazon S3 bandwidths have improved with advancements
in networking, CPU and memory bandwidths have not kept up,
especially with (Java) byte code execution.

To address this bottleneck, we introduced native SIMD vector-
ized readers in Glue in 2021. This required re-implementation of the
Glue readers for raw formats such as CSV and JSON using a native
language (C++) and use of SIMD vectorized CPU instructions. Vec-
torization helps us to use CPU micro-parallelism for the different
steps in the reading data, thereby speeding up parsing, tokenization
and indexing. Glue’s vectorized readers also read data into an in-
memory columnar format based on Apache Arrow [1] for improved
memory bandwidth utilization and to reduce the additional cost
for conversion from in-memory row to on-disk columnar formats
such as Apache Parquet.

Figure 10 compares the performance of native SIMD vectorized
readers against Java based implementations in Glue 4.0 to convert
large datasets from CSV to Apache Parquet. It uses the largest
store_sales table in the TPC-DS benchmark dataset [30] (3 TB)
stored in Amazon S3 and 60 G2.X workers on AWS Glue. All values
in store_sales table are numeric. With schema enforcement, we
cast values into numeric data types, and without schema enforce-
ment, we cast them to strings. Enforcing schema to numeric types
allows for more compact in-memory representations and hence
faster deserialization, and no schema enforcement gives more flexi-
bility. This experiment shows Glue’s native vectorized readers are

3564



Figure 10: Glue job performance with vectorized CSV readers

nearly 2.2x faster than Java based implementation with schema
enforcement and about 2.7x faster without schema enforcement.

3.6 Glue Workflows & Incremental Processing
In practice, customers often need to compose multiple jobs into
pipelines that can be executed on a schedule to repeatedly process
new data. To simplify this process, we built an orchestration layer
into Glue that allows customers to build higher level pipelines
calledworkflows. Glue workflows allow customers to build pipelines
from multiple Glue crawlers, Glue Spark jobs, and Glue Python jobs
that are executed together. When defining workflows, customers
can define parameters to be passed between jobs, special tasks to be
performed in the event of failures, and triggers to start the workflow
based on a schedule or a combination of events. Customers can
monitor the progress of an entire workflow or drill down into each
job for troubleshooting.

Figure 11 shows an example Glue workflow that is triggered
when 1000 new objects are added to an Amazon S3 bucket using
Amazon EventBridge [18]. The workflow then starts a sequence of
jobs and crawlers to parse the data, register the schema in the Glue
Data Catalog, and write output to Amazon Redshift.

To make it easy for customers to process new data as it arrives,
we built a new construct in the Glue ETL library called Glue Job
Bookmarks. A job bookmark is the state associated with an exe-
cution of a Glue job (job run) that can be used to track the data
it processed. When job bookmarks are enabled, jobs pickup from
where they left off. Bookmark state is committed on job comple-
tion and is used in subsequent job runs to skip already processed
data. Glue job bookmarks simplify incremental processing of Glue
catalog tables, S3 bucket locations with CSV, JSON, Parquet, ORC,
Avro file formats, and JDBC sources such as relational databases
(MySQL, SQLServer, Aurora) with the use of one or more columns
as bookmark keys.

Customers also face challenges with large initial loads. We com-
monly see customers with millions of files in an S3 prefix, and
processing these all at once can cause job failures due to memory
limits in individual Spark workers. To address this problem, we in-
troduced the ability to bound the execution of a job run by limiting
the number of files or dataset size processed per job. Customers
can then execute the job multiple times to complete the initial load.

Figure 11: Data pipeline orchestration with Glue workflows

While this is a simple approach, it works surprisingly well in prac-
tice and helps customers reliably complete large migrations without
having to worry about complex performance tuning.

3.7 Monitoring Pipelines and Data Quality
Today, customers also want to observe the quality of their data as it
gets transformed and monitor it closely to avoid data downtime or
inconsistency. Glue provides different mechanisms for customers to
monitor and trouble-shoot failures such as logs and metrics in Ama-
zon CloudWatch and detailed execution plans in Spark UI. These
mechanisms give customers fine-grained information that they can
use to alert and avoid downtimes for their pipelines. In 2021, we
also built Glue job insights [17] to further simplify diagnosis or root
cause analysis of errors for customers. With job insights, customers
can now quickly retrieve meaningful error messages, line number
of their application code which was last executed before the failure,
and rule-based recommended action to fix the issue. With these
mechanisms, customers can not only quickly alert on their pipeline
failures, but also trace the issue back to their application logic and
identify resulting data inconsistencies.

In 2022, we released tools to help customers evaluate and moni-
tor quality of both in-transit and at-rest data. Built on top of the
open-source DeeQu framework [19], our solution allows customers
to express their data quality rules against dimensions such as data
accuracy, freshness, and integrity. Customers can select from rec-
ommended data quality rules or implement their own rules using a
Data Quality Definition Language. They can then run data quality
checks which evaluate data quality using these rules and compute
a quality score. Customers can monitor the score to further take
action or decide if the dataset is fit for use, and they can publish
these metrics to Amazon CloudWatch.

3.8 Connectivity for Data Integration
We launched AWS Glue with support for reading and transforming
data from a variety of popular AWS storage services, including Ama-
zon S3, Amazon RDS, and Amazon Redshift. As Glue has grown
into a full-fledged data integration service, customers increasingly
rely on it to connect to their data, wherever it is stored. We have
found this to be reminiscent of Metcalfe’s law [25] – the value of
the platform increases quadratically with the number of sources
and sinks it supports. Thus it makes sense for us to support as many
formats, sources, and sinks as possible, and to make it possible for
customers to extend to their own legacy or unique formats. To meet
this challenge, we invested in connectors along two dimensions.
First, we continued to optimize high volume data sources like Ama-
zon S3 and Amazon Redshift to improve performance. Second, we

3565



have greatly expanded the variety of data sources in AWS Glue to
support new storage formats and SaaS services.

Since it is so widely used for data lakes, Amazon S3 has been a
particularly important data source for AWS Glue customers. Glue
launched with basic support for common open file formats such as
CSV/Text, JSON, Avro, XML, and columnar storage formats such
as Apache Parquet and ORC. Since then, we introduced a variety of
optimizations to improve performance and reliability. These include
(a) access path optimizations such as automatically batching small
files into tasks to reduce per task overhead, (b) mechanisms to
reduce the amount of data that has to be read, such as partition
pruning with the Glue Data Catalog or Job Bookmarks, and (c)
support for new features, such as special handling of S3 storage
classes like Amazon Glacier or fine-grained access control with
AWS Lake Formation. In 2022, we also built native support for open
data lake table formats such as Apache Hudi [2], Apache Iceberg [3]
and Linux Foundation Delta Lake [5] into AWS Glue. These formats
provide transactional (ACID) guarantees to data lake tables in S3.
We have also enhanced our native connectors to other AWS services
including Redshift [6], DynamoDB [15], and Aurora [32].

In addition to improving native connectors to high-volume data
sources, we also introduced support for a wide variety of new
data sources. In 2020, we introduced AWS Glue custom connectors,
which allow Glue to connect to a wide range of SaaS applications
such as Salesforce, cross-cloud data stores such as Google BigQuery,
and data warehouses such as Snowflake [16]. Customers can sub-
scribe to these connectors in the AWS Marketplace and use them
in their Glue jobs. To facilitate the development of new connectors,
we also released a collection of SDKs that make it easy to adapt
existing connectors built against the Spark DataSource API, JDBC,
or the Amazon Athena Federated Query API. Finally, we established
a certification process for developers to add a new Glue connector
to the AWS Marketplace [16].

4 THE AWS GLUE DATA CATALOG
The AWS Glue Data Catalog is a metadata repository for datasets
that customers work with in AWS. It stores information such as
data location, schema, and format for tables that may reside in
Amazon S3 or a variety of other databases and NoSQL stores. Like
the rest of AWS Glue, the Data Catalog has evolved to meet the
changing needs of our customers, and has grown to be a central
component in many AWS analytics services.

4.1 Background
As customers increasingly build and manage persistent data lakes
in data stores like Amazon S3, they need mechanisms to discover
and manage metadata about their datasets. Query engines need
metadata such as schemas and data locations to plan and execute
queries, and customers rely on metadata for data discovery and
governance across large organizations. Traditional databases store
this metadata in an internal catalog, but in a data lake setting where
many engines can be used to query the same datasets, the metadata
must be decoupled from the query engine.

The open source community pioneered a solution in this space
with the Hive metastore, which has become a de-facto standard in
the Hadoop ecosystem for metadata management [24]. It provides

a common interface for accessing metadata about databases, tables,
and partitions, and it is widely supported by open-source query
engines such as Apache Hive, Trino, and Apache Spark. While the
Hive metastore is widely deployed and battle-tested, it has some
limitations that make it insufficient for managing large data lakes.
First, it becomes yet another system that a data lake administrator
has to manage. The standard implementation of the Hive Metastore
uses a relational database, and customers are responsible for provi-
sioning, scaling, and patching the metastore. Performance is also
a challenge, and users often have to shard large Hive metastores,
which introduces an extra layer of complexity.

4.2 Data Model and Architecture
The Glue Data Catalog provides a set of public AWS APIs for cus-
tomers to store and retrieve metadata. Since one of our goals was
to provide a managed replacement for the Hive Metastore, we
largely adhere to the Hive Data Model and provide CRUD APIs
for databases, tables, and partitions. Among other items, the table
metadata includes the type of data (e.g. JSON), the schema, how
the data is partitioned (e.g. year, month, and day), and the specific
Hive Serdes that can be used to read the dataset. Query engines and
other users can either process this JSON directly, or use an open-
source adapter to translate the output into the metastore interfaces
expected by Apache Hive or Apache Spark.

While we followHive conventions in order to achieve compatibil-
ity with query engines, we intentionally do not enforce compliance
with the Hive data model. For example, the schema is defined as a
list of columns, but the types are simply text fields that callers can
fill in with any value. While the Glue console and crawlers (Sec-
tion 5) attempt to be Hive compatible, a sizable fraction of tables
contain at least one data type not in the Hive standard type system,
which often come from customers building custom applications on
the Glue Data Catalog or query engines with richer type systems
than Hive. We see similar patterns with other Hive-specific fields
like InputFormat [24]. This choice not to validate is not without
tradeoffs – it means that some tables cannot be read by some query
engines, but we found that the data lake space is too diverse and
too fast-moving to enforce a unified data model for everyone.

While customers most commonly use the Glue Data Catalog to
store metadata about datasets stored in S3, the model is flexible
enough to catalog datasets from a wide variety of different sources,
from relational databases to NoSQL databases like MongoDB, and
streaming sources like Amazon Kinesis or Apache Kafka. To support
these data sources, the Glue Data Catalog also supports connection
objects, which provide information on the physical connection
requirements for specific data stores. A relational database in AWS
may be configured so that it is only accessible from a specific Virtual
Private Cloud (VPC), and the connection stores information about
the subnet and security group required to connect, as well as either
encrypted credentials or a reference to login information in AWS
Secrets Manager. Even for S3, customers can use connections to
control how their data is routed in order to enforce security or data
sovereignty requirements. Connections are stored in the Glue Data
Catalog and can be referenced by tables and passed to ETL jobs.

The Glue Data Catalog is built on-top of low latency and highly
scalable storage. Its storage implementation also offers predictable

3566



Figure 12: Query performance with partition indexes

performance and high availability for hundreds of thousands of cus-
tomers monthly. While standard storage optimizations worked well
for problems such as skewed data and atomic table updates, as cus-
tomers started working with larger-and-larger datasets, partition
pruning became another bottleneck. As described in section 2.2.3,
big data query engines make heavy use of partitioning to improve
query performance by skipping files. By default, query engines
enumerate all partitions for a table and filter them client-side based
on the query predicate. This is reasonable when the number of par-
titions is small, but partition enumeration can become a significant
bottleneck when querying tables with millions of partitions.

To address this, we added support for partition indexes in 2020.
Customers can create an index on one or more partition attributes,
and they will be stored separately with support for efficient range
queries. This means that query engines can push partition predi-
cates all the way down to the Glue Data Catalog and only retrieve
the matching partitions. Figure 12 shows the benefits of a partition
index on a simple query that performs a count distinct over a single
partition. When the table has only 50,000 partitions, the index does
not make significant performance difference, but with one million
partitions the query is 8.6 times faster with the partition index.

4.3 Extensibility and Discovery
While it started as a replacement for the Hive Metastore, the suc-
cess of the AWS Glue Data Catalog shows the value of having a
centralized, managed, and easily accessible repository for metadata.
Today, the Glue Data Catalog serves as the main metadata store
for data integration with Glue ETL jobs, query engines such as
Amazon Athena and Amazon Redshift, and is widely used from
Apache Spark and Apache Hive on Amazon EMR. Beyond query
engines, the Glue Data Catalog is becoming a central integration
point for services that need to interact with customer datasets. For
example, AWS Lake Formation allows customers to enforce fine-
grained access control policies on entities in their data catalogs,
and the AWS Glue Schema Registry allows customers to specify
schemas separately from tables so that they can be reused by ana-
lytics applications and streaming services like Amazon Kinesis.

5 GLUE CRAWLERS
The Glue Data Catalog provides a repository to store metadata
about the data lake, but it is only valuable insofar as it is kept up-
to-date with accurate information. Glue ETL scripts are one way to
populate the Data Catalog – scripts can be configured to register
their output directly in the Data Catalog – and customers can also
use DDL statements from systems like Amazon Athena to create
databases and tables directly. While many customers opt for these
solutions, they do not address all use cases. For example, customers
have large amounts of existing data in S3 that would be impractical
to re-process using Glue ETL, and customers may not know the
schema of their data up-front to use in DDL statements. One of
our goals with Glue is to support a wide variety of semi-structured
data, for example JSON logs, which may have undefined or rapidly
changing schemas.

AWS Glue crawlers help address these challenges by scanning
data in S3 and automatically populating tables and partitions in the
Data Catalog without requiring manual configuration. Customers
simply specify a set of S3 prefixes and a destination database in the
Data Catalog, and Glue will crawl the files under those prefixes,
identify their types and schemas, and create or update the appro-
priate tables and partitions in the Data Catalog. Crawlers can be
used to identify schema changes in rapidly evolving datasets or to
register new partitions after an hourly ingestion. Crawlers have
been running in production since the launch of Glue and currently
process tens of billions of files per day.

In this section, we focus on crawling data stored in Amazon S3,
as this makes up the vast majority of data lakes in AWS. Crawlers
can also be used to crawl other systems, such as relational databases
(via JDBC), or NoSQL stores such as Amazon DynamoDB.

5.1 Architecture
Glue crawlers list and scan Amazon S3 files in parallel, infer their
type and schema, and then perform a post-processing step, which
we call the finalizer, to analyze the inferred schemas and populate
the Data Catalog with the appropriate tables and partitions. We
describe these stages below.

Listing and Classification. The first stage of crawling is to
enumerate the files in a collection of S3 prefixes. These files are
batched into tasks that are executed in parallel during the classifi-
cation stage. The primary job of this phase is to determine the file
format, compression type, and schema of each file in the dataset.
This metadata is aggregated at the prefix level and stored for future
processing by the finalizer.

In order to limit the amount of data that we must scan, each
crawler looks at only the first megabyte of each file and uses the
same algorithm described in Section 3.2.1 to infer the schema.While
this means that it is possible that the crawler might infer only a
subset of the actual schema, for example missing attributes that are
not present in the first megabyte, we find this to be rare in practice,
and systems like Glue ETL have additional logic for automatic
schema inference to handle fields not present in the Data Catalog.

Glue crawlers identify file types and schemas using a collection
of classifiers, each of which is responsible for determining whether
a file matches a specific format. These classifiers use a variety of
format-specific techniques to determine the file format and extract

3567



Figure 13: Computing schema similarity

the schema. For some file types this is straightforward. For exam-
ple, all Apache Avro files start with a common four byte magic
number Obj1 and contain the file schema serialized as JSON in the
header. Text based formats such as CSV require additional heuris-
tics. For example, to infer the delimiter, the crawler will try to parse
a few lines using common delimiters and see which produces more
consistent records. In a few cases, the crawler may need to fetch
additional data from S3. This is only required for binary files like
Apache Parquet, which store the schema explicitly in the footer.

Finalizer. Once the crawler has completed classifying each file
in the dataset, the finalizer is responsible for identifying tables and
partitions and populating the Glue Data Catalog. The primary task
is to categorize each prefix in S3 as either a table or a partition.
For example, consider a prefix like /Orders/EMEA/2022/01/09/.
Based on experience, we would expect this to correspond to a table
called Orders that is partitioned by region, year, month, and day.
To automate this, we start with the assumption that partitions in a
table are likely to have the same or similar schemas, whereas the
schemas of two different tables may differ significantly. Note that
we say similar schemas – when dealing with semi-structured data,
it’s very likely that two files may have slightly different schemas
even within a single partition. For example, in an event stream, the
fields in a record may depend on the type of event, and not every
event may appear in every file.

To formalize this, we define a simple similarity metric between
two schemas. A field present in both schemas is worth one point if
the names match, and two points if both the names and the types
match. For schemas𝐴 and 𝐵, call this intersect(𝐴, 𝐵). Then the simi-
larity between𝐴 and 𝐵 is intersect(𝐴, 𝐵)/(2·min(size(𝐴), size(𝐵))),
where size(𝐴) is the number of fields in the schema 𝐴. Figure 13
shows an example. In this example schemas 𝐴 and 𝐵 have the same
name and type for the id and name fields, but the address field
is a struct in schema 𝐴 and a string in schema 𝐵. As depicted, we
compute the similarity between these two schemas as 83%.

The finalizer traverses the metadata collected during the classi-
fication stage and computes the schema similarity at each sibling
prefix. If each prefix similarity is above a percentage threshold, then
we infer the prefixes as partitions. Anything less than that thresh-
old and we treat them as separate tables. This is clearly a heuristic
and it is not foolproof, but we find that it does a reasonable job in
allowing for the natural variance in schemas between partitions.

Recrawling. Glue crawlers allow customers to incrementally
crawl or recrawl only the new S3 partitions that were added since
the last crawl run. Using an S3 events based crawler, customers

can reduce crawl times significantly as crawls are now targeted
to changed folders. These options save on both time and cost for
updating the Glue Data Catalog.

Extensibility. Semi-structured data often does not conform to a
classification format or schema. In this case, Glue crawlers provide
customers with the flexibility to use custom classifiers, which can
be defined as a grok pattern, XML tag, or JSON/CSV based pattern.
Custom classifiers are evaluated before built-in classifiers to ensure
they take priority when multiple classifications match.

6 CONCLUSION
In this paper, we presented AWS Glue, Amazon’s serverless data
integration cloud service. We launched Glue in August 2017, and
in the intervening six years, it has grown into a full-fledged data
integration service that is used for a staggering variety of use cases,
from interactive data discovery and exploration to large scale data
transformation. Throughout this process, we have learned a variety
of lessons about building and running cloud data services at scale.
The first is that getting adoption for a general purpose platform is
challenging early on, and we found the most success by focusing
on a narrow set of customers and use cases – in our case developers
loading data warehouses and data lakes. Once we gained traction
with them, we were able to quickly expand to new users by leverag-
ing the underlying platform, for example by building Glue Studio
to serve less technical users.

We also found that we got disproportionate benefit from invest-
ing in our underlying serverless compute platform. Decoupling
storage from compute through features like the cloud shuffle plu-
gin make the system more flexible and enabled features like auto-
scaling. Enabling fast startup time was also extremely powerful. By
making very short jobs feasible, it enabled a whole new class of
applications such as interactive notebooks and data wrangling. Not
all of these applications were obvious when we started working on
startup time, but our customers have consistently shown that they
will find novel ways to leverage platform-level improvements.

Finally, data integration services live or die by their ecosystem
of connectors. Early on, Glue found success by helping customers
discover, catalog, and transform the many types of semi-structured
data they had in Amazon S3. As data formats and data stores have
continued to evolve, we have continued to extend Glue, for exam-
ple by adding support for transactional data formats like Apache
Iceberg and Apache Hudi, and by adding Glue connectors to the
AWS Marketplace to let customers and partners write their own.

The AWS Glue story does not end here. Guided by our tenets, we
continue working with customers to drive innovations in ease of
use, serverless execution, extensibility, and performance to reduce
the overall costs of data integration.

ACKNOWLEDGMENTS
AWS Glue has greatly benefited from thousands of Glue customers
whose continuous feedback helped the team to innovate on their
behalf. We thank Anurag Gupta for setting the original direction
for Glue. Most importantly, we thank the amazing past and present
Glue team members for their impactful contributions and the mo-
ments we had during the course of this evolution.

3568



REFERENCES
[1] Apache Arrow - a cross language development platform for in-memory analytics.

Last accessed: 02-27-2023. https://arrow.apache.org/.
[2] Apache Hudi - Hadoop Upserts Deletes and Incrementals. Last accessed: 02-27-

2023. https://github.com/apache/hudi.
[3] Apache Iceberg - open table format for analytics datasets. Last accessed: 02-27-

2023. https://github.com/apache/iceberg.
[4] Apache Parquet. Last accessed 02-27-2023. https://parquet.apache.org/.
[5] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul

Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Luszczak,
Michael Switakowski, Michael Szafranski, Xiao Li, Takuya Ueshin, Mostafa
Mokhtar, Peter Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold
Xin, and Matei Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proc. VLDB Endow. 13, 12 (aug 2020), 3411–3424.
https://doi.org/10.14778/3415478.3415560

[6] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, TJ Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-
niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subrama-
nian, and Doug Terry. 2022. Amazon Redshift re-invented. In SIGMOD/PODS
2022. https://www.amazon.science/publications/amazon-redshift-re-invented

[7] AWS Glue - Glue Studio documentation. Last accessed: 02-27-2023.
https://docs.aws.amazon.com/glue/latest/ug/what-is-glue-studio.html.

[8] AWS Glue - Interactive Sessions API. Last accessed: 02-27-2023.
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-interactive-
sessions.html.

[9] AWS Glue - Jobs API Documentation. Last accessed 02-27-2023.
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs.html.

[10] AWS Glue - Overview of using notebooks. Last accessed: 02-27-2023.
https://docs.aws.amazon.com/glue/latest/ug/notebook-getting-started.html.

[11] AWS Glue Libraries. Last accessed: 07-09-2023. https://github.com/awslabs/aws-
glue-libs.

[12] AWS re:Invent 2017: Building Serverless ETL Pipelines with AWS Glue (ABD315).
Last accessed: 07-09-2023. https://www.youtube.com/watch?v=eQBHIINW8VY.

[13] AWS re:Invent 2020: Serverless data preparation with AWS Glue. Last accessed:
07-09-2023. https://www.youtube.com/watch?v=pT5lAYTCYJ4.

[14] Cosco: An Efficient Facebook-Scale Shuffle Service Databricks. Last accessed:
02-27-2023. https://databricks.com/session/cosco-an-efficient-facebook-scale-
shuffle-service.

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value
Store. In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating
Systems Principles (Stevenson, Washington, USA) (SOSP ’07). Association for
Computing Machinery, New York, NY, USA, 205–220. https://doi.org/10.1145/
1294261.1294281

[16] Developing, testing, and deploying custom connectors for your data stores
with AWS Glue. Last accessed: 02-27-2023. https://aws.amazon.com/blogs/big-
data/developing-testing-and-deploying-custom-connectors-for-your-data-
stores-with-aws-glue.

[17] AWS Glue Job Insights Documentation. Last accessed: 02-27-2023.
https://docs.aws.amazon.com/glue/latest/dg/monitor-job-insights.html.

[18] Amazon EventBridge. Last accessed: 02-27-2023.
https://aws.amazon.com/eventbridge/.

[19] Deequ Unit Tests for Data. Last accessed: 02-27-2023.
https://github.com/awslabs/deequ.

[20] GHArchive. 2022. GH Archive. https://www.gharchive.org/
[21] Pat Helland. 2019. Extract, Shoehorn, and Load: Data Doesn’t Always Fit Nicely

into a NewHome. Queue 17, 2 (apr 2019), 13–17. https://doi.org/10.1145/3329781.
3339880

[22] Introducing the Cloud Shuffle Storage Plugin for Apache Spark. Last accessed: 02-
27-2023. https://aws.amazon.com/blogs/big-data/introducing-the-cloud-shuffle-
storage-plugin-for-apache-spark.

[23] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analy-
sis of Web-Scale Datasets. Proc. VLDB Endow. 3, 1–2 (Sept. 2010), 330–339.
https://doi.org/10.14778/1920841.1920886

[24] Apache Hive Metastore. Last accessed: 02-27-2023.
"https://cwiki.apache.org/confluence/display/hive/design#Design-Motivation".

[25] Bob Metcalfe. 2013. Metcalfe’s Law after 40 Years of Ethernet. Computer 46, 12
(2013), 26–31. https://doi.org/10.1109/MC.2013.374

[26] "Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service". Last ac-
cessed: 02-27-2023. "https://www.databricks.com/session_na20/zeus-ubers-
highly-scalable-and-distributed-shuffle-as-a-service".

[27] Spark Job Scheduling. Last accessed: 02-27-2023.
https://spark.apache.org/docs/latest/job-scheduling.html.

[28] Min Shen, Ye Zhou, and Chandni Singh. 2020. Magnet: Push-Based Shuffle
Service for Large-Scale Data Processing. Proc. VLDB Endow. 13, 12 (aug 2020),
3382–3395. https://doi.org/10.14778/3415478.3415558

[29] Spark Dynamic Allocation Shuffle Tracking. Last accessed: 02-27-2023.
"https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation".

[30] TPC-DS 2.13 (3 TB) Dataset. Last accessed: 02-27-2023.
"https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-
ds_v2.13.0.pdf".

[31] Dimitris Tsirogiannis, Nathan A. Binkert, Stavros Harizopoulos, Mehul A. Shah,
Benjamin A. Sowell, Bryan D. Kaplan, and Kevin R. Meyer. 2019. Scalable analysis
platform for semi-structured data. Patent No. US10275475B2, Filed Mar. 14th.,
2014, Issued Apr. 30th., 2019.

[32] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Ten-
giz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design con-
siderations for high throughput cloud-native relational databases. In SIG-
MOD 2017. https://www.amazon.science/publications/amazon-aurora-design-
considerations-for-high-throughput-cloud-native-relational-databases

[33] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory
Cluster Computing (NSDI’12). USENIX Association, USA.

3569


	Abstract
	1 Introduction
	2 Use Cases and Challenges
	2.1 Use Cases
	2.2 Challenges

	3 Glue ETL Stack
	3.1 User Interface
	3.2 Glue ETL Library with DynamicFrames
	3.3 Serverless, Fast Startup, and Auto-scaling
	3.4 Decoupling Storage for Cloud Shuffle
	3.5 Performance with Vectorized Readers
	3.6 Glue Workflows & Incremental Processing
	3.7 Monitoring Pipelines and Data Quality
	3.8 Connectivity for Data Integration

	4 The AWS Glue Data Catalog
	4.1 Background
	4.2 Data Model and Architecture
	4.3 Extensibility and Discovery

	5 Glue Crawlers
	5.1 Architecture

	6 Conclusion
	Acknowledgments
	References

